Having Fuse Or Integral Short Patents (Class 438/215)
  • Patent number: 7977164
    Abstract: Disclosed herein is a fuse of a semiconductor memory device and a repair process for the same. The fuse includes a lower conductive film of a multilayer interconnection formed on a lower structure of a semiconductor substrate, an upper conductive film of the multilayer interconnection spaced apart upward from the lower conductive film to define a predetermined vertical space therebetween, and a contact electrode, which vertically connects the upper and lower conductive films to each other and forms a fuse body. The lower conductive film includes a form not coinciding with that of the upper conductive film. With such a configuration, the device can achieve a stable minimization in the length of the fuse and the distance between adjacent fuses in consideration of a laser beam irradiation region for the high integration of the semiconductor memory device. In this way, the device performs the repair process of cutting the contact electrode and/or upper conductive film using a laser beam.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun Kwon An
  • Patent number: 7923808
    Abstract: A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu
  • Patent number: 7902013
    Abstract: An electrically floating region is formed in the top surface of a semiconductor wafer to implement a radio frequency (RF) blocking structure. The RF blocking structure lies below the metal pads and traces that carry an RF signal in a metal interconnect structure to substantially reduces the attenuation of the RF signal.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: March 8, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Jeffrey A. Babcock, Yongseon Koh
  • Patent number: 7872327
    Abstract: A semiconductor integrated circuit device has: a layer insulating film formed on a semiconductor substrate; a fuse portion which is configured by an uppermost metal wiring layer that is formed on the layer insulating film; an inorganic insulating protective film which is formed on the metal wiring layer and the layer insulating film; and an organic insulating protective film which is formed on the inorganic insulating protective film. An opening is formed in the organic insulating protective film so that the inorganic insulating protective on the fuse portion is exposed. According to this configuration, it is not required to etch away the layer insulating film in order to form an opening above the fuse portion. Therefore, the time period required for forming the opening can be shortened and the whole production time period can be shortened.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Katsuhiko Tsuura
  • Patent number: 7867832
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 7838358
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: November 23, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7833844
    Abstract: A disclosed method of producing a semiconductor device includes the steps of (A) forming a gate electrode and a trimming fuse on a semiconductor substrate; (B) forming a side wall insulating film covering the gate electrode and the trimming fuse; (C) forming a conductive film on the side wall insulating film and patterning the conductive film to form an etching stop layer and a resistance element; (D) forming a side wall on the sides of the gate electrode; (E) repeating, one or more times, sub-steps of forming an interlayer insulating film and of forming an upper wiring layer, and then forming a passivation film; (F) removing the passivation film and the interlayer insulating film in the trimming opening forming area until the etching stop layer is exposed; and (G) forming the trimming opening by removing the etching stop layer in the trimming opening forming area.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 16, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasunori Hashimoto
  • Patent number: 7829392
    Abstract: A method for manufacturing a fuse box of a semiconductor device includes forming an interlayer dielectric film over a semiconductor substrate including a given lower structure; forming a metal line and a fuse over the interlayer dielectric film; forming a first protective film over the resulting structure; etching the first protective film and the fuse at a given depth by a photo-etching process with a repair mask to form an open region; and forming a second protective film vertical to the fuse.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Soo Choi
  • Patent number: 7820493
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: October 26, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7791111
    Abstract: A semiconductor device has a plurality of fuse element portions each of which including a first fuse interconnect having a fuse to be portion, a second fuse interconnect connected to an internal circuit, a first impurity diffusion layer for electrically connecting the first fuse interconnect and the second fuse interconnect, and a second impurity diffusion layers. The first fuse interconnect, the second fuse interconnect, and the first impurity diffusion layer of each of the plurality of fuse element portions are arranged approximately parallel to one another at a predetermined pitch distance.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kazumasa Kuroyanagi, Shoji Koyama
  • Patent number: 7781280
    Abstract: An upper electrode of a capacitor has a two-layer structure of first and second upper electrodes. A gate electrode of a MOS field effect transistor and a fuse are formed by patterning conductive layers used to form the lower electrode, first upper electrode and second upper electrode of the capacitor. In forming a capacitor and a fuse on a semiconductor substrate by a conventional method, at least three etching masks are selectively used to pattern respective layers to form the capacitor and fuse before wiring connection. The number of etching masks can be reduced in manufacturing a semiconductor device having capacitors, fuses and MOS field effect transistors so that the number of processes can be reduced and it becomes easy to improve the productivity and reduce the manufacture cost.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Yamaha Corporation
    Inventor: Masayoshi Omura
  • Patent number: 7772047
    Abstract: A semiconductor device having a redistribution layer, and methods of forming same, are disclosed. After fabrication of semiconductor die on a wafer, a tape assembly is applied onto a surface of the wafer, in contact with the surfaces of each semiconductor die on the wafer. The tape assembly includes a backgrind tape as a base layer, and a film assembly adhered to the backgrind tape. The film assembly in turn includes an adhesive film on which is deposited a thin layer of conductive material. The redistribution layer pattern is traced into the tape assembly, using for example a laser. Thereafter, the unheated portions of the tape assembly may be removed, leaving the heated redistribution layer pattern on each semiconductor die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Chien-Ko Liao, Chin-Tien Chiu, Jack Chang Chien, Cheemen Yu, Hem Takiar
  • Patent number: 7772680
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7704805
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: April 27, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7692190
    Abstract: The semiconductor device has a fuse and a fuse opening created above the fuse. The fuse is divided into a plurality of lines at a crossing portion where the fuse crosses with an edge of the fuse opening. The plurality of divided lines of the fuse 101 are in parallel with each other and in perpendicular to the edge of the fuse opening.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: April 6, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Nobuyuki Katsuki
  • Patent number: 7670897
    Abstract: A non-volatile memory semiconductor device and a method for fabricating the same are disclosed. The semiconductor device includes a PN junction diode formed over a semiconductor substrate. Insulating films may be formed over the PN junction diode and patterned to have via holes. A resistive random access memory including a first metal pattern may be in contact with a first region of the PN junction diode. An oxide film pattern may be formed over the first metal pattern and a second metal pattern formed over the oxide film pattern. The first metal pattern, the oxide film pattern and the second metal pattern may be formed in the via holes.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: March 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Soo-Hong Kim
  • Patent number: 7666734
    Abstract: A fuse used for redundancy function in a semiconductor device includes a pair of fuse terminals formed as a common layer with top interconnect lines by using a damascene technique, and a fuse element made of refractive metal and bridging the fuse terminals. The fuse element is formed as a common layer with the protective cover films covering the interconnect lines.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: February 23, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Norio Okada
  • Patent number: 7662674
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a metallic fuse structure by forming at least one via on a first interconnect structure, lining the at least one via with a barrier layer, and then forming a second interconnect structure on the at least one via.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 16, 2010
    Assignee: Intel Corporation
    Inventors: Jose A. Maiz, Jun He, Mark Bohr
  • Patent number: 7649240
    Abstract: A semiconductor memory device having an improved fuse structure may include an interlayer insulating film on a semiconductor substrate, an opening in the interlayer insulating film, a vertical fuse that may conform to the opening, a fuse insulating film on the vertical fuse that may fill the opening, and metal wiring lines that may be electrically connected to the vertical fuse.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: January 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-duk Kim, Jong-hyun Ahn, Jeong-ho Shin
  • Patent number: 7648870
    Abstract: A method of forming a fuse region in a semiconductor damascene process in which a specific layer is formed to prevent corrosion and re-connection of a severed part of the fuse region to prevent malfunction. A first conductive layer is formed over a substrate and an interlayer dielectric layer is deposited over the first conductive layer. A second conductive layer is buried in the interlayer dielectric layer by a dual damascene process to simultaneously form an interconnection and a fuse. The resultant structure is coated with a passivation layer. The fuse is cut to form a severed portion. A selective metal layer is deposited over the severed portion.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: January 19, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Se Yeul Bae
  • Patent number: 7642150
    Abstract: Techniques for forming shallow junctions are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for forming shallow junctions. The method may comprise generating an ion beam comprising molecular ions based on one or more materials selected from a group consisting of: digermane (Ge2H6), germanium nitride (Ge3N4), germanium-fluorine compounds (GFn, wherein n=1, 2, or 3), and other germanium-containing compounds. The method may also comprise causing the ion beam to impact a semiconductor wafer.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: January 5, 2010
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Edwin A. Arevalo, Christopher R. Hatem, Anthony Renau, Jonathan Gerald England
  • Patent number: 7605059
    Abstract: A semiconductor device comprises: a MOS transistor including: a semiconductor substrate; a source region, formed in the semiconductor substrate, that comprises an impurity of a first conductive type; a drain region, formed in the semiconductor substrate, that comprises an impurity of the first conductive type; and a gate electrode, formed through a gate insulating film on the semiconductor substrate, between the source region and the drain region; an impurity region of the first conductive type formed in the semiconductor substrate; an impurity region of a second conductive type to be opposite to the first conductive type formed in the semiconductor substrate; and a wiring provided to connect each of the impurity region of the first conductive type and the impurity region of the second conductive type to the gate electrode.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 20, 2009
    Assignee: Fujifilm Corporation
    Inventors: Noriaki Suzuki, Masanori Nagase
  • Patent number: 7595235
    Abstract: A solid electrolytic capacitor includes a package for a capacitor element including an anode lead portion and a cathode portion. The package includes an insulating resin member which is arranged to cover the capacitor element and which includes hole portions formed therethrough. An anode terminal of the solid electrolytic capacitor includes a metal-plating layer which is placed in the hole portion to be electrically connected to the anode lead portion through the hole portion. A cathode terminal of the solid electrolytic capacitor includes a metal-plating layer which is placed in the hole portion to be electrically connected to the cathode conducting portion through the hole portion.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: September 29, 2009
    Assignee: NEC Tokin Corporation
    Inventors: Satoshi Arai, Sadamu Toita, Yoshihiko Saiki, Naoki Wako, Masahiko Takahashi
  • Patent number: 7566593
    Abstract: A fuse structure comprises a cavity interposed between a substrate and a fuse material layer. The cavity is not formed at a sidewall of the fuse material layer, or at a surface of the fuse material layer opposite the substrate. A void may be formed interposed between the substrate and the fuse material layer while using a self-aligned etching method, when the fuse material layer comprises lobed ends and a narrower middle region. The void is separated by a pair of sacrificial layer pedestals that support the fuse material layer. The void is encapsulated to form the cavity by using an encapsulating dielectric layer. Alternatively, a block mask may be used when forming the void interposed between the substrate and the fuse material layer.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Deok-kee Kim, Chandrasekharan Kothandaraman
  • Patent number: 7531388
    Abstract: Electrically programmable fuse structures and methods of fabrication thereof are presented, wherein a fuse includes first and second terminal portions interconnected by an elongate fuse element. The first terminal portion has a maximum width greater than a maximum width of the fuse element, and the fuse includes a narrowed width region where the first terminal portion and fuse element interface. The narrowed width region extends at least partially into and includes part of the first terminal portion. The width of the first terminal portion in the narrowed region is less than the maximum width of the first terminal portion to enhance current crowding therein. In another implementation, the fuse element includes a restricted width region wherein width of the fuse element is less than the maximum width thereof to enhance current crowding therein, and length of the restricted width region is less than a total length of the fuse element.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 12, 2009
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., William R. Tonti, Jack A. Mandelman
  • Patent number: 7517762
    Abstract: A fuse area of a semiconductor device capable of preventing moisture-absorption and a method for manufacturing the fuse area are provided. When forming a guard ring for preventing permeation of moisture through the sidewall of an exposed fuse opening portion, an etch stop layer is formed over a fuse line. A guard ring opening portion is formed using the etch stop layer. The guard ring opening portion is filled with a material for forming the uppermost wiring of multi-level interconnect wirings or the material of a passivation layer, thereby forming the guard ring concurrently with the uppermost interconnect wiring or the passivation layer. Accordingly, permeation of moisture through an interlayer insulating layer or the interface between interlayer insulating layers around the fuse opening portion can be efficiently prevented by a simple process.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: April 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yoon Kim, Won-seong Lee, Young-woo Park
  • Patent number: 7495309
    Abstract: A redundant fuse is provided with a redundant length, here a winding structure, at one end thereof, here at a vicinity of a second wire side to which a high voltage (Vcc) is impressed. A disconnected portion is provided between the other end side of the redundant fuse, here a second wire side which is on the ground potential (GND) and the winding structure.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: February 24, 2009
    Assignee: Fujitsu Limited
    Inventors: Motonobu Sato, Hiroshi Nakadai, Toyoji Sawada, Satoshi Otsuka, Masayuki Nakada
  • Patent number: 7459350
    Abstract: A method for making a semiconductor device having a fuse window above a substrate is disclosed. The semiconductor device has at least one fuse protection circuit located under the fuse window. The fuse protection circuit includes a fuse having a first end connected to a first voltage and a second end. A first transistor having a drain is connected to the second end of the fuse, a gate for receiving an input signal, and a source is connected to a second voltage. A second transistor having a drain is connected to the second end of the fuse, a gate, and a source is connected to the second voltage. A first diode having an anode and a cathode, the anode of the first diode is connected to the second voltage and the cathode of the first diode is connected to the second end of the fuse. A second diode having an anode and a cathode, the anode of the second diode is connected to the second end of the fuse and the cathode of the second diode is connected to the first voltage.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: December 2, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chen-Hui Hsieh
  • Patent number: 7442626
    Abstract: A repair fuse element and method of construction are disclosed that eliminate or substantially reduce the disadvantages and problems associated with prior fuse elements. In one embodiment, the fuse element is constructed with a rectangular-shaped contact. The contact is made long enough so that it makes contact at each end with a metal layer, but design rule spacing is still maintained between the connections with the metal layer. The overlapping areas between the rectangular contact and the metal layers are asymmetrical. Alternatively, these overlapping areas are smaller than the design rule overlap requirements. In a second embodiment, a fuse element is constructed with a plurality of rectangular-shaped contacts. As a result, a current value that is significantly lower than conventional fuse current values, can be used to melt such a contact or blow the fuse.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: October 28, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Andrew T. Appel
  • Patent number: 7413936
    Abstract: A programmable package with a fuse embedded therein, and fabrication method are provided. The fuse has first and second terminal ends joined by a central portion defining a fusible link. The ends include a portion of the first and second conductive layers, the central portion including a portion of the first conductive layer. The first layer may be electroless copper and the second layer may be electrolytic copper. The fuse may have a dog-bone or a bow tie shape. The method includes providing a substrate with a dielectric layer, and forming the fuse by depositing first conductive layer, forming and patterning second conductive layer over a portion of the first layer, and patterning first layer to form interconnects between areas of the second layer.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: Hamid Azimi, Debabrata Gupta, Saliya Witharana
  • Patent number: 7402887
    Abstract: A semiconductor device has a semiconductor substrate, first and second insulating layers, a fuse, a diffusion layer and a conductive pattern. The first insulating layer is selectively formed on a surface of the semiconductor substrate. The fuse is formed on the first insulating layer. The diffusion layer is formed on the surface of the semiconductor substrate. The diffusion layer is applied to a fixed potential. The second insulating layer is formed on the fuse. The conductive pattern is formed on the second insulating layer. The conductive pattern surrounds the fuse. Further, the conductive pattern is electrically connected to the diffusion layer.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 22, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Katsuhiro Hisaka
  • Patent number: 7402464
    Abstract: A fuse box includes a semiconductor substrate having a fuse region, and a lower line in the fuse region that has a first region and a second region. An upper line is placed on the upper part of the lower line to overlap the first region. A fuse is placed on the upper part of the upper line, and connects electrically to the second region of the lower line and the upper surface of the upper line. A lower interlayer insulating layer is interposed between the lower line and the upper line, and an upper interlayer insulating layer is interposed between the upper line and the fuse. The fuse is formed on the upper interlayer insulating layer. Both ends of the fuse connect electrically to the second region of the lower line and the upper line, respectively, through fuse holes penetrating the lower and upper interlayer insulating layers.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: July 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Chul Kim
  • Patent number: 7381594
    Abstract: A semiconductor structure including at least one e-fuse embedded within a trench that is located in a semiconductor substrate (bulk or semiconductor-on-insulator) is provided. In accordance with the present invention, the e-fuse is in electrical contact with a dopant region that is located within the semiconductor substrate. The present invention also provides a method of fabricating such a semiconductor structure in which the embedded e-fuse is formed substantially at the same time with the trench isolation regions.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Jack A. Mandelman, William R. Tonti, Chih-Chao Yang
  • Publication number: 20080093703
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 7354805
    Abstract: A fuse structure and method of forming the same is described, wherein the body of the fuse is formed from a crystalline semiconductor body on an insulator, preferably of a silicon-on-insulator wafer, surrounded by a fill-in dielectric. The fill-in dielectric is preferably a material that minimizes stresses on the crystalline body, such as an oxide. The body may be doped, and may also include a silicide layer on the upper surface. This fuse structure may be successfully programmed over a wide range of programming voltages and time.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Edward P. Maciejewski
  • Patent number: 7352050
    Abstract: In a fuse region of a semiconductor device, and a method of fabricating the same, the fuse region includes an interlayer insulating layer on a semiconductor substrate, a plurality of fuses on the interlayer insulating layer disposed in parallel with each other, a blocking layer on the interlayer insulating layer between each of the plurality of fuses and in parallel with the plurality of fuses, and a plurality of fuse grooves recessed into the interlayer insulating layer between each of the plurality of fuses and the blocking layer.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: April 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck-Jin Kang, Chang-Suk Hyun, Il-Young Moon, Kang-Yoon Lee, Kwang-bo Sim, Sang-Kil Jeon
  • Patent number: 7344924
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: March 18, 2008
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7335537
    Abstract: A method of manufacturing a semiconductor device includes forming a first insulating film supported by a semiconductor substrate, forming an aluminum layer supported by the first insulating film, etching the aluminum layer to form a bonding pad and fuse elements, depositing by plasma chemical vapor deposition a second insulating film covering the bonding pad and the fuse elements, the second insulating film having planar portions between the fuse elements and ridged portions opposite the fuse elements, depositing by plasma chemical vapor deposition a third insulating film covering the second insulating film, etching the third insulating film to form a first hole exposing a first region of the second insulating film, opposite the fuse elements, and a second hole exposing a second region of the second insulating film, opposite at least part of said bonding pad, and etching the second insulating film to form a third hole exposing at least part of the bonding pad.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: February 26, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Noriaki Fujiki, Takashi Yamashita, Junko Izumitani
  • Patent number: 7309898
    Abstract: A method and apparatus for improving the latchup tolerance of circuits embedded in an integrated circuit while avoiding the introduction of noise from such tolerance into the power rails.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: December 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Raminderpal Singh, Steven Howard Voldman
  • Publication number: 20070278617
    Abstract: A semiconductor device includes a semiconductor substrate, a fuse which comprises a conductive material and is formed on a semiconductor substrate, a contacting target conductor region which is placed around the fuse on the semiconductor substrate and formed so as to make electrical contact with the fuse through the conductive material constituting the fuse when a process for cutting the fuse is carried out, and a determination unit which detects whether or not the fuse is electrically disconnected, and detects whether or not the contacting target conductor region and the fuse are electrically connected, and determines that the fuse is in a cut state when electrical disconnection of said fuse is detected or electrical connection between said contacting target conductor region and said fuse is detected.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 6, 2007
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Norio Okada, Takehiro Ueda
  • Patent number: 7268068
    Abstract: A semiconductor device comprises a multiple insulation layer structure in which multiple insulation layers each having interconnection layer are built up and either one of the interconnection layer forming a fuse is blown in order to select a spare cell to relieve a defective cell; and an opening area corresponding to said fuse, the opening being formed on one or more insulation layers disposed above the layer which includes the fuse, wherein a side wall position corresponding to the opening of the first protective insulation film formed on the top layer of the multiple layers and a side wall position corresponding to the opening of the second protective insulation film formed on the first protective insulation film are continuous at the boundary thereof.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 11, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Patent number: 7256465
    Abstract: An ultra-shallow surface channel MOS transistor and method for fabricating the same have been provided. The method comprises: forming CMOS source and drain regions, and an intervening well region; depositing a surface channel on the surface overlying the well region; forming a high-k dielectric overlying the surface channel; and, forming a gate electrode overlying the high-k dielectric. Typically, the surface channel is a metal oxide, and may be one of the following materials: indium oxide (In2O3), ZnO, RuO, ITO, or LaX-1SrXCoO3. In some aspects, the method further comprises: depositing a placeholder material overlying the surface channel; and, etching the placeholder material to form a gate region overlying the surface channel. In one aspect, the high-k dielectric is deposited prior to the deposition of the placeholder material. Alternately, the high-k dielectric is deposited following the etching of the placeholder material.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Bruce D. Ulrich
  • Patent number: 7242072
    Abstract: A fuse structure and method of forming the same is described, wherein the body of the fuse is formed from a crystalline semiconductor body on an insulator, preferably of a silicon-on-insulator wafer, surrounded by a fill-in dielectric. The fill-in dielectric is preferably a material that minimizes stresses on the crystalline body, such as an oxide. The body may be doped, and may also include a silicide layer on the upper surface. This fuse structure may be successfully programmed over a wide range of programming voltages and time.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: July 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Edward P. Maciejewski
  • Patent number: 7180102
    Abstract: A fusible link formed on a semiconductor substrate. The fusible link comprises a silicide layer overlying a polysilicon layer. The fusible link is programmed to an open state by passing a current therethrough that opens the polysilicon and the silicide layers.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 20, 2007
    Assignee: Agere Systems Inc.
    Inventor: Frank Yauchee Hui
  • Patent number: 7135758
    Abstract: A system to package high performance microelectronic devices, such as processors, responds to component transients. In one embodiment, the system includes a decoupling capacitor that is disposed between a Vcc electrical bump and a Vss electrical bump. The decoupling capacitor has Vcc and Vss terminals. The Vcc and Vss terminals share electrical pads with the Vcc electrical bump and the Vss electrical bump. A simple current loop is created that improves the power delivery for the system.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: November 14, 2006
    Assignee: Intel Corporation
    Inventors: Damion T. Searls, Weston C. Roth, James Daniel Jackson
  • Patent number: 7087974
    Abstract: An anti-fuse is manufactured by forming an isolation region including an insulating material layer buried in a surface of a device formation region on a surface of a semiconductor substrate, and by forming diffusion regions at both sides of the isolation region, then by contacting electrodes to the respective diffusion regions. The anti-fuse is initially in a non-conductive state, and is programmed to be in a permanently conductive state by a simple writing circuit.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Kawasaki Microelectronics Inc.
    Inventors: Isamu Kuno, Tomoharu Katagiri
  • Patent number: 7067897
    Abstract: A semiconductor device comprising a substrate, a plurality of dielectric films formed on the substrate, laid one upon another, and a fuse interconnect-wire formed above the substrate and covered with a predetermined one of the dielectric films, and including a fuse main body which is to be blown to electrically disconnect the fuse interconnect-wire, which is smaller than a bottom of a fuse-blowing recess made in the predetermined dielectric film, which has a length not less than the diameter of a fuse-blowing laser beam and which opposes the bottom of the fuse-blowing recess.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: June 27, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Hatano, Hiroshi Ikegami, Takamasa Usui, Mie Matsuo
  • Patent number: 7067359
    Abstract: A method and apparatus for providing an electrical fuse is provided. An electrical fuse is patterned from the active layer of a semiconductor-on-insulator (SOI) wafer. One shape of the electrical fuse may be a first and second portion electrically coupled via a third section. The third section is typically thinner than the first and second portion. An ion implant is performed to fully deplete the electrical fuse, and a silicidation process is performed. Thereafter, standard processing techniques may be used to form vias and other integrated circuit structures.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: June 27, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chi-Hsi Wu
  • Patent number: 7038319
    Abstract: A semiconductor chip package with reduced cross-talk between adjacent signals in a layer of a carrier is disclosed. A first pair of conductors for carrying a first signal is provided in a layer of the carrier. A second pair of conductors for carrying a second signal is provided adjacent to the first pair of conductors in the layer, where the first and second pairs of conductors are configured such that cross-talk between the first and second pairs of conductors is substantially minimized, without increasing the size of the package. The height of the first pair of conductors is shorter than the second pair of conductors. Alternatively, the first and second pairs of conductors are configured so that they evenly affect each other. The chip package thus reduces the cross-talk without compromising the density of the interconnections in the package or resulting in an increase in the size of the package.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Patrick H. Buffet, Charles S. Chiu, Jon D. Garlett, Louis L. Hsu, Brian J. Schuh
  • Patent number: 7005727
    Abstract: A programmable package with a fuse embedded therein, and fabrication method are provided. The fuse has first and second terminal ends joined by a central portion defining a fusible link. The ends include a portion of the first and second conductive layers, the central portion including a portion of the first conductive layer. The first layer may be electroless copper and the second layer may be electrolytic copper. The fuse may have a dog-bone or a bow tie shape. The method includes providing a substrate with a dielectric layer, and forming the fuse by depositing first conductive layer, forming and patterning second conductive layer over a portion of the first layer, and patterning first layer to form interconnects between areas of the second layer.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: February 28, 2006
    Assignee: Intel Corporation
    Inventors: Hamid Azimi, Debabrata Gupta, Saliya Witharana