Multiple Interelectrode Dielectrics Or Nonsilicon Compound Gate Insulator Patents (Class 438/261)
  • Patent number: 7479430
    Abstract: A non-volatile semiconductor memory device according to the present invention has a semiconductor substrate and a memory cell having a floating gate provided through a tunnel insulating layer on the semiconductor substrate, and a control gate provided through an inter-layer insulting layer on said floating gate. The inter-insulating layer includes a silicon oxide layer contiguous to said floating gate, a first silicon nitride layer provided by a CVD method on the silicon oxide layer and a second silicon nitride layer provided on said first silicon nitride layer and having a lower trap density than that of the first silicon nitride layer. The inter-insulating layer may includes a silicon oxide layer contiguous to said floating gate and a silicon oxide layer deposited on said silicon oxide layer and having a quantity of hydrogen content on the order of 1019/cm3 or less.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: January 20, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Seiichi Mori
  • Patent number: 7479428
    Abstract: A high permittivity gate dielectric is used in an NROM memory cell. The gate dielectric has a dielectric constant greater than silicon dioxide and is comprised of an atomic layer deposited and/or evaporated nanolaminate structure. The NROM memory cell has a substrate with doped source/drain regions. The high-k gate dielectric is formed above the substrate between a pair of the source/drain regions. A polysilicon control gate is formed on top of the gate dielectric. The gate dielectric can have an oxide-high-k dielectric-oxide composite structure, an oxide-nitride-high-k dielectric composite structure, or a high-k dielectric-high-k dielectric-high-k dielectric composite structure.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: January 20, 2009
    Inventor: Leonard Forbes
  • Patent number: 7479429
    Abstract: A multi-bit split-gate memory device is formed over a substrate. A storage layer is formed over the substrate. A first conductive layer is formed over the storage layer. A thickness of a portion of the conductive layer is removed to leave a pillar of the conductive layer and an area of reduced thickness of the conductive layer. A first sidewall spacer is formed adjacent to the pillar to cover a first portion and a second portion of the area of reduced thickness of the conductive layer. The pillar is replaced with a select gate. The area of reduced thickness is selectively removed to leave the first and second portions as control gates.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 20, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh Rao, Ramachandran Muralidhar, Leo Mathew
  • Patent number: 7479425
    Abstract: Structures and methods of fabricating of a floating gate non-volatile memory device. In a first example embodiment, We form a bottom tunnel layer comprised of a lower oxide tunnel layer and a upper hafnium oxide tunnel layer; a charge storage layer comprised of a tantalum oxide and a top blocking layer preferably comprised of a lower hafnium oxide storage layer and an upper oxide storage layer. We form a gate electrode over the top blocking layer. We pattern the layers to form a gate structure and form source/drain regions to complete the memory device. In a second example embodiment, we form a floating gate non-volatile memory device comprised of: a bottom tunnel layer comprised essentially of silicon oxide; a charge storage layer comprised of a tantalum oxide; a top blocking layer comprised essentially of silicon oxide; and a gate electrode. The embodiments also comprise anneals and nitridation steps.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: January 20, 2009
    Assignee: Chartered Semiconductor Manufacturing, Ltd
    Inventors: Chew Hoe Ang, Dong Kyun Sohn, Liang Choo Hsia
  • Publication number: 20090014780
    Abstract: A multiple layer tunnel insulator is fabricated between a substrate and a discrete trap layer. The properties of the multiple layers determines the volatility of the memory device. The composition of each layer and/or the quantity of layers is adjusted to fabricate either a DRAM device, a non-volatile memory device, or both simultaneously.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 15, 2009
    Inventor: Arup Bhattacharyya
  • Publication number: 20090008695
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate. A lamination structure is on the substrate along a first direction. The lamination structure comprises a plurality of conductive layers arranged from bottom to top and separated from each other, and each of the conductive layers has a channel region and an adjacent source/drain doped region along the first direction. A first gate structure is on a sidewall of the channel region of each conductive layer. The first gate structure comprises an inner first gate insulating layer and an outer first gate conductive layer.
    Type: Application
    Filed: December 28, 2007
    Publication date: January 8, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wei-Su Chen, Ming-Jinn Tsai
  • Patent number: 7473599
    Abstract: A method for manufacturing a memory unit capable of storing multibits binary information. A gate is formed on a dielectric layer over a semiconductor substrate. Next, a first etching is performed to etch the semiconductor substrate by using the gate acting as an etching mask to remove exposed surface of the dielectric layer. Subsequently, a first oxide layer is conformally formed on the gate and the semiconductor substrate. An charge-trapping layer is conformally formed on the first oxide layer, and subsequently a second oxide layer is conformally formed on the isolating layer. Next, a second etching is performed to etch the second oxide layer and the charging-trapping layer to form sandwich spacers composed of the second oxide layer/the isolating layer/the first oxide layer on the substrate and the gate sidewall.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 6, 2009
    Inventor: Erik S. Jeng
  • Publication number: 20090004795
    Abstract: A method of manufacturing a flash memory device that prevents generation of voids when forming an interlayer dielectric film. The method may include forming a gate on a semiconductor substrate, and then sequentially stacking a first dielectric film and a second dielectric film on the semiconductor substrate, and then forming a first spacer comprising a first dielectric film pattern and a second dielectric film pattern on sidewalls of the gate by performing a first etching process, and then forming source and drain areas in the semiconductor substrate, and then removing the second dielectric film, and then sequentially stacking a third dielectric film and a fourth dielectric film on the semiconductor substrate, and then forming a second spacer comprising the first dielectric pattern and a third dielectric pattern on the sidewalls of the gate by performing a second etching process, and then forming an interlayer dielectric film on the semiconductor substrate including the gate and the first spacer.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Inventor: Hyun-Ju Lim
  • Publication number: 20080315284
    Abstract: A flash memory cell includes a substrate, a T-shaped control gate disposed above the substrate, a floating gate embedded in a lower recess of the T-shaped control gate, a dielectric layer between the T-shaped control gate and the floating gate; a cap layer above the T-shaped control gate, a control gate oxide between the T-shaped control gate and the substrate, a floating gate oxide between the floating gate and the substrate, a liner covering the cap layer and the floating gate, and a source/drain region adjacent to the floating gate. The floating gate has a vertical wall surface that is coplanar with one side of the dielectric layer.
    Type: Application
    Filed: December 11, 2007
    Publication date: December 25, 2008
    Inventors: Ching-Nan Hsiao, Chung-Lin Huang, Chen-Yu Tsai, Chung-Yuan Lee
  • Patent number: 7468299
    Abstract: Methods for forming non-volatile memory cells include: (a) providing a semiconductor substrate having at least two source/drain regions, and a dielectric material disposed on the substrate above at least one of the at least two source/drain regions wherein the dielectric material has an exposed surface, and wherein the at least two source/drain regions are separated by a recess trench having an exposed surface, wherein the trench extends downward into the substrate to a depth position below the at least two source/drain regions; (b) forming a charge-trapping layer on the exposed surfaces of the dielectric material and the recess trench; and (c) forming a gate above the charge-trapping layer.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: December 23, 2008
    Assignee: MACRONIX International Co., Ltd.
    Inventors: ChiaHua Ho, Erh-Kun Lai, Hang-Ting Lue
  • Patent number: 7465631
    Abstract: A non-volatile memory device and a method of manufacturing the same, in which the program speed can be enhanced and the interference phenomenon can be reduced. The non-volatile memory device includes a semiconductor substrate having an active region defined by isolation layers arranged in one direction, a control gate arranged vertically to the direction in which the isolation layers are arranged, a floating gate formed on the active region below the control gate and having a lateral curve so that the floating gate has a width narrowed upwardly, a gate insulating layer formed between the floating gate and the semiconductor substrate, and a dielectric layer formed between the floating gate and the control gate.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: December 16, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jung Ryul Ahn, Jum Soo Kim
  • Publication number: 20080305593
    Abstract: A memory structure disclosed in the present invention features a control gate and floating gates being positioned in recessed trenches. A method of fabricating the memory structure includes the steps of first providing a substrate having a first recessed trench. Then, a first gate dielectric layer is formed on the first recessed trench. A first conductive layer is formed on the first gate dielectric layer. After that, the first conductive layer is etched to form a spacer which functions as a floating gate on a sidewall of the first recessed trench. A second recessed trench is formed in a bottom of the first recessed trench. An inter-gate dielectric layer is formed on a surface of the spacer, a sidewall and a bottom of the second recessed trench. A second conductive layer formed to fill up the first and the second recessed trench.
    Type: Application
    Filed: December 4, 2007
    Publication date: December 11, 2008
    Inventors: Ching-Nan Hsiao, Pei-Ing Lee, Ming-Cheng Chang, Chung-Lin Huang, Hsi-Hua Chang, Chih-Hsiang Wu
  • Publication number: 20080303080
    Abstract: Non-volatile memory devices and arrays are described that utilize back-side trapped floating node memory cells with band-gap engineered gate stacks with asymmetric tunnel barriers. Embodiments of the present invention allow for direct tunneling programming and efficient erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention and reduces the possibility of damage to the channel/insulator interface. The direct tunneling program and efficient erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory device embodiments of the present invention are presented that are arranged in NOR or NAND memory architecture arrays. Memory cell embodiments of the present invention also allow multiple levels of bit storage in a single memory cell, and allow for programming and erase with reduced voltages.
    Type: Application
    Filed: July 22, 2008
    Publication date: December 11, 2008
    Inventor: Arup Bhattacharyya
  • Patent number: 7462533
    Abstract: A method for fabricating a memory cell includes forming a stacked insulating layer, and a lower conductive layer on a semiconductor substrate, patterning the lower conductive layer and the insulating layer to form a gap region, forming a gate insulating layer on exposed surfaces of the semiconductor substrate and the lower conductive layer in the gap region, forming a gate pattern on the gate insulating layer for filling the gap region, the gate pattern protruded upward to have sidewall portions exposed above the lower conductive layer, forming an upper sidewall pattern on each exposed sidewall portion of the gate pattern, patterning the lower conductive layer and the insulating layer to form a lower sidewall pattern and a charge storage layer under each upper sidewall pattern, wherein the gate pattern and each upper sidewall pattern are used as an etching mask.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: December 9, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwang Kim, Hee-Seog Jeon
  • Publication number: 20080296661
    Abstract: A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
    Type: Application
    Filed: August 4, 2008
    Publication date: December 4, 2008
    Inventors: Krishnaswamy Ramkumar, Ravindra Kapre, Jeremy Warren
  • Publication number: 20080296659
    Abstract: The present invention relates to a NAND flash memory array having vertical channels and sidewall gate structure and a fabricating method of the same. A NAND flash memory array of the present invention has insulator strip structure and one or more semiconductor strips are next to the both sides of the insulator strip. A NAND flash memory array of the present invention allows for an improvement of the integrity by decreasing the memory cell area by half and less, and solves the problems of the conventional three-dimensional structure regarding isolation between not only channels but also source/drain regions at the bottom of trenches. A method for fabricating the NAND flash memory array having a pillar structure, which uses the conventional CMOS process and an etching process with minimum masks, enables to cut down costs.
    Type: Application
    Filed: November 7, 2006
    Publication date: December 4, 2008
    Inventors: Byung Gook Park, Seong Jae Cho
  • Publication number: 20080293199
    Abstract: A single-poly, P-channel non-volatile memory cell that is fully compatible with nano-scale semiconductor manufacturing process is provided. The single-poly, P-channel non-volatile memory cell includes an N well, a gate formed on the N well, a gate dielectric layer between the gate and the N well, an ONO layer on sidewalls of the gate, a P+ source doping region and a P+ drain doping region. The ONO layer includes a first oxide layer deposited on the sidewalls of the gate and extends to the N well, and a silicon nitride layer formed on the first oxide layer. The silicon nitride layer functions as a charge-trapping layer.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 27, 2008
    Inventors: Chrong-Jung Lin, Hsin-Ming Chen, Shih-Jye Shen, Ya-Chin King, Ching-Hsiang Hsu
  • Publication number: 20080290398
    Abstract: A nonvolatile charge trap memory device and a method to form the same are described. The device includes a channel region having a channel length with <100> crystal plane orientation. The channel region is between a pair of source and drain regions and a gate stack is disposed above the channel region.
    Type: Application
    Filed: September 26, 2007
    Publication date: November 27, 2008
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Publication number: 20080283900
    Abstract: Disclosed is a method of manufacturing a semiconductor device, which includes exposing a photoresist using an exposing mask provided with a light-shielding pattern having two or more narrow width portions, developing the photoresist to form a plurality of stripe-shaped resist patterns, selectively etching a first conductive film using the resist pattern as a mask, forming an intermediate insulating film on the first conductive film, forming a second conductive film on the intermediate insulating film, and forming, by patterning the first conductive film, the intermediate insulating film, and the second conductive film, a flash memory cell and a structure constructed by forming a lower conductor pattern, a segment of the intermediate insulating film, and a dummy gate electrode in this stacking order.
    Type: Application
    Filed: June 16, 2008
    Publication date: November 20, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Shinichi NAKAGAWA, Itsuro SANNOMIYA
  • Publication number: 20080286925
    Abstract: The present invention provides a non-volatile memory string having serially connected dual-gate devices, in which a first gate dielectric layer adjacent a first gate electrode layer in each dual-gate device is charge-storing and in which the second gate electrode adjacent a non-charge storing gate dielectric layer are connected in common. In one implementation, the second gate electrodes of the dual-gate devices in the memory string are provided by a continuous layer of doped polysilicon, tungsten, tantalum nitride, tungsten nitride or any combination of two or more of these conductors.
    Type: Application
    Filed: May 27, 2008
    Publication date: November 20, 2008
    Inventor: Andrew J. Walker
  • Patent number: 7452767
    Abstract: A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: November 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Jr., Cyril Cabral, Jr., Eduard A. Cartier, Matthew W. Copel, Martin M. Frank, Evgeni P. Gousev, Supratik Guha, Rajarao Jammy, Vijay Narayanan, Vamsi K. Paruchuri
  • Publication number: 20080277719
    Abstract: The present invention relates to a non-volatile memory cell and a method of fabricating the same. The non-volatile memory cell according to the present invention comprises a substrate, a first oxide film formed over an active region of the substrate, a source and drain formed within the active region, a charge storage unit formed on the first oxide film, a second oxide film configured to surround the charge storage unit and formed on the first oxide film, and a gate formed to surround the second oxide film. According to the non-volatile memory cell and a cell array including the same in accordance with the present invention, the charge storage unit is fully surrounded by the gate or the gate line, thus a disturbance phenomenon that may occur due to the memory operation of cells formed in other neighboring gate or gate line can be minimized.
    Type: Application
    Filed: March 14, 2008
    Publication date: November 13, 2008
    Inventors: Yang-Kyu Choi, Kuk-Hwan Kim
  • Patent number: 7445998
    Abstract: A method for fabricating a semiconductor device is described. The method includes providing a substrate having a trench therein, and a trench device in the trench. The trench device includes two gate structures disposed on the sidewalls of the trench, a doped region in the substrate between the gate structures and an inter-gate dielectric layer disposed on the surface of the gate structures. A thermal treatment process in a nitrogen-containing ambient is performed to remove the native oxide layer formed on the surface of the doped region. Then, a conductive layer is formed to fill in the trench.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: November 4, 2008
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Rex Young, Pin-Yao Wang
  • Publication number: 20080268596
    Abstract: Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated select and peripheral circuitry formation are provided. Strips of charge storage material elongated in a column direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. After forming isolation trenches in the substrate between active areas below the strips of charge storage material, spacer-assisted patterning is used to form a pattern at the memory array region. Strips of photoresist are patterned over a portion of the pattern at the memory array. Photoresist is also applied at the peripheral circuitry region.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 30, 2008
    Inventors: Tuan Pham, Takashi Orimoto, Masaaki Higashitani, James Kai, George Matamis
  • Publication number: 20080258199
    Abstract: The present invention relates to a flash memory device and its fabrication method, in more detail, it relates to a novel device structure for improving a scaling-down characteristic/performance and increasing memory capacity of the MOS-based flash memory device. A new device structure according to the present invention is compatible with existing fabrication process and is based on a recessed channel, which is capable of easily implementing highly-integrated/high-performance and 2-bit/cell. The proposed device has a structure suppressing the short channel effect while largely reducing the cell area and enabling 2-bit/cell by forming the charge storage node as a spacer inside the recessed channel. Moreover, if selectively removing the dielectric films around the recessed silicon surface, the sides as well as the surface of the recessed channel is exposed.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Applicant: KYUNGPOOK NATIONAL UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventor: Jong-Ho Lee
  • Patent number: 7439131
    Abstract: A flash memory device has a resistivity measurement pattern and method of forming the same. A trench is formed in an isolation film in a Self-Aligned Floating Gate (SAFG) scheme. The trench is buried to form a resistivity measurement floating gate. This allows the resistivity of the floating gate to be measured even in the SAFG scheme. Contacts for resistivity measurement are directly connected to the resistivity measurement floating gate. Therefore, variation in resistivity measurement values, which is incurred by the parasitic interface, can be reduced.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 21, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Hong Yang, Sang Wook Park
  • Patent number: 7439157
    Abstract: A method includes removing a portion of a substrate to define an isolation trench; forming a first dielectric layer on exposed surfaces of the substrate in the trench; forming a second dielectric layer on at least the first dielectric layer, the second dielectric layer containing a different dielectric material than the first dielectric layer; depositing a third dielectric layer to fill the trench; removing an upper portion of the third dielectric layer from the trench and leaving a lower portion covering a portion of the second dielectric layer; oxidizing the lower portion of the third dielectric layer after removing the upper portion; removing an exposed portion of the second dielectric layer from the trench, thereby exposing a portion of the first dielectric layer; and forming a fourth dielectric layer in the trench covering the exposed portion of the first dielectric layer.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Zailong Bian, John Smythe, Janos Fucsko, Michael Violette
  • Patent number: 7435647
    Abstract: A flash memory device that has a structure capable of preventing gate stack damage, and a method of manufacturing the same, is presented. The method includes forming a first photo resist pattern to open a common source region on a substrate where a shallow trench isolation region, a tunnel oxide layer, and a gate stack including a floating gate, a dielectric layer and a control gate are formed, removing an insulating layer in the shallow trench isolation region with using the first photo resist pattern as a mask, and removing the first photo resist pattern. The method further includes depositing a buffer oxide layer on surface of the substrate to cover the gate stack and the common source region, forming a second photo resist pattern on surface of the substrate including the buffer oxide layer to open the common source region, and injecting dopants to the common source region by using the second photo resist pattern as a mask.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: October 14, 2008
    Assignee: Olympus Corporation
    Inventor: Dong Oog Kim
  • Publication number: 20080248622
    Abstract: Non-volatile semiconductor memory devices with dual control gate memory cells and methods of forming the same using integrated peripheral circuitry formation are provided. Strips of charge storage material elongated in a row direction across the surface of a substrate with strips of tunnel dielectric material therebetween are formed. Forming the strips defines the dimension of the resulting charge storage structures in the column direction. The strips of charge storage material can include multiple layers of charge storage material to form composite charge storage structures in one embodiment. Strips of control gate material are formed between strips of charge storage material adjacent in the column direction. The strips of charge storage and control gate material are divided along their lengths in the row direction as part of forming isolation trenches and columns of active areas.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 9, 2008
    Inventors: George Matamis, Takashi Orimoto, Masaaki Higashitani, James Kai, Tuan Pham
  • Publication number: 20080248618
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate layered dielectric layer of cerium oxide and aluminum oxide acting as a single dielectric layer with a ratio of approximately two to one between the cerium oxide and the aluminum oxide, and a method of fabricating such a dielectric layer is described. The described arrangement produces a reliable structure with a high dielectric constant (high-k) for use in a variety of electronic devices. The dielectric structure is formed by depositing cerium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing aluminum oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure.
    Type: Application
    Filed: May 8, 2008
    Publication date: October 9, 2008
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7432216
    Abstract: The technique capable of reducing the power consumption in the MISFET by suppressing the scattering of the carriers due to the fixed charges is provided. A silicon oxynitride film with a physical thickness of 1.5 nm or more and the relative dielectric constant of 4.1 or higher is formed at the interface between a semiconductor substrate and an alumina film. By so doing, a gate insulator composed of the silicon oxynitride film and the alumina film is constituted. The silicon oxynitride film is formed by performing a thermal treatment of a silicon oxide film formed on the semiconductor substrate in a NO or N2O atmosphere. In this manner, the fixed charges in the silicon oxynitride film are set to 5×1012 cm?2 or less, and the fixed charges in the interface between the silicon oxynitride film and the alumina film are set to 5×1012 cm?2 or more.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: October 7, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Shimamoto, Shinichi Saito, Shimpei Tsujikawa
  • Publication number: 20080237699
    Abstract: A nonvolatile semiconductor memory includes a source area and a drain area provided on a semiconductor substrate with a gap which serves as a channel area, a first insulating layer, a charge accumulating layer, a second insulating layer (block layer) and a control electrode, formed successively on the channel area, and the second insulating layer is formed by adding an appropriate amount of high valence substance into base material composed of substance having a sufficiently higher dielectric constant than the first insulating layer so as to accumulate a large amount of negative charges in the block layer by localized state capable of trapping electrons, so that the high dielectric constant of the block layer and the high electronic barrier are achieved at the same time.
    Type: Application
    Filed: March 18, 2008
    Publication date: October 2, 2008
    Inventors: Tatsuo SHIMIZU, Koichi Muraoka, Masato Koyama, Shoko Kikuchi
  • Publication number: 20080230831
    Abstract: A charge retention characteristic of a nonvolatile memory transistor is improved. A first insulating film that functions as a tunnel insulating film, a charge storage layer, and a second insulating film are sandwiched between a semiconductor substrate and a conductive film. The charge storage layer is formed of two silicon nitride films. A silicon nitride film which is a lower layer is formed using NH3 as a nitrogen source gas by a CVD method and contains a larger number of N—H bonds than the upper layer. A second silicon nitride film which is an upper layer is formed using N2 as a nitrogen source gas by a CVD method and contains a larger number of Si—H bonds than the lower layer.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 25, 2008
    Inventors: Kosei Noda, Nanae Sato
  • Patent number: 7427537
    Abstract: In a semiconductor integrated circuit device having a system-on-chip structure in which a DRAM and a logic integrated circuit are mixedly mounted on a chip, a silicide layer is formed on the surfaces of the source and the drain of a MISFET of a direct peripheral circuit of the DRAM, the surfaces of the source and the drain of a MISFET of an indirect peripheral circuit of the DRAM, and the surfaces of the source and the drain of a MISFET of the logic integrated circuit, and the silicide layer is not formed on the surfaces of the source and the drain of a memory cell selective MISFET of the memory cell of the DRAM.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: September 23, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Takafumi Tokunaga, Makoto Yoshida, Fumio Ootsuka
  • Publication number: 20080227254
    Abstract: An electronic device including a nonvolatile memory cell can include a substrate including a first portion and a second portion, wherein a first major surface within the first portion lies at an elevation lower than a second major surface within the second portion. The electronic device can also include a charge storage stack overlying the first portion, wherein the charge storage stack includes discontinuous storage elements. The electronic device can further include a control gate electrode overlying the first portion, and a select gate electrode overlying the second portion, wherein the select gate electrode includes a sidewall spacer. In a particular embodiment, a process can be used to form the charge storage stack and control gate electrode. A semiconductor layer can be formed after the charge storage stack and control gate electrode are formed to achieve the substrate with different major surfaces at different elevations. The select gate electrode can be formed over the semiconductor layer.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 18, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Ramachandran Muralidhar
  • Publication number: 20080217673
    Abstract: A semiconductor device includes a stack structure in which multiple channel layers are stacked on a substrate so as to be sandwiched between bit line layers, a gate electrode that is provided to the side of the lateral surface of an interior of a groove portion formed within the stack structure, and a charge storage layer that is provided between the gate electrode and the channel layer.
    Type: Application
    Filed: February 5, 2008
    Publication date: September 11, 2008
    Applicant: Spansion LLC
    Inventors: Takayuki Maruyama, Yukio Hayakawa, Hiroyuki Nansei
  • Publication number: 20080211008
    Abstract: Embodiments relate to a manufacturing method of a flash memory device which improves electrical characteristics by reducing or preventing void generation. A manufacturing method of a flash memory device according to embodiments includes forming a plurality of gate patterns over a semiconductor substrate including a tunnel oxide layer, a floating gate, a dielectric layer, and a control gate. A spacer layer may be formed as a compound insulating layer structure over the side wall of the gate pattern. A source/drain area may be formed over the semiconductor substrate at both sides of the control gate. An insulating layer located at the outermost of the spacer layer may be removed. A contact hole may be formed between the gate patterns by forming and patterning the interlayer insulating layer. A contact plug may be formed in the contact hole.
    Type: Application
    Filed: November 20, 2007
    Publication date: September 4, 2008
    Inventor: Jin-Ha Park
  • Publication number: 20080203464
    Abstract: A memory device, array and method of arranging where the memory device includes a memory cell region including a plurality of memory cells. Each memory cell includes a source, a drain and a channel between the source and the drain, a channel dielectric, a charge storage region and an electrically alterable conductor-material system in proximity to the charge storage region. Cell lines extend among the memory cells. A connection region is provided for electrically coupling contacts and one or more of the cell lines. A non-memory region has embedded logic. Memory cells are arrayed at a cell pitch, with cell lines extending from cell to cell and arrayed substantially at the cell pitch, and with contacts arrayed substantially at the cell pitch forming a high density memory device.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 28, 2008
    Inventor: Chih-Hsin Wang
  • Patent number: 7416944
    Abstract: In a flash EEPROM device, and method for fabricating the same, no bit line contact is made, thereby minimizing a design rule between a contact and a gate. Thus, cell size may be reduced. The flash EEPROM device includes a semiconductor substrate having an active area defined in a bit line direction and a word line direction, a plurality of floating gates formed in the word line direction, an interlayer polysilicon oxide film formed on a floating gate, a control gate formed on the interlayer polysilicon oxide film, source and drain electrodes disposed between adjacent floating gates in the word line direction, a buried N+ region formed in the semiconductor substrate under the source and drain electrodes, and a metal silicide film formed on an upper surface of the control gate.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 26, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Heung Jin Kim
  • Patent number: 7416933
    Abstract: Complementary transistors and methods of forming the complementary transistors on a semiconductor assembly are described. The transistors are formed with an optional interfacial oxide, such as SiO2 or oxy-nitride, to overlay a semiconductor substrate which will be conductively doped for PMOS and NMOS regions. Then a dielectric possessing a high dielectric constant of least seven or greater (also referred to as a high-k dielectric) is deposited on the interfacial oxide. The high-k dielectric is covered with a thin monolayer of metal oxide (i.e., aluminum oxide, Al2O3) that is removed from the NMOS regions, but remains in the PMOS regions. The resulting NMOS transistor diffusion regions contain predominately metal to silicon bonds that create predominately Fermi level pinning near the valence band while the resulting PMOS transistor diffusion regions contain metal to silicon bonds that create predominately Fermi level pinning near the conduction band.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: August 26, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 7413947
    Abstract: The present invention provides an integrated high voltage capacitor, a method of manufacture therefore, and an integrated circuit chip including the same. The integrated high voltage capacitor, among other features, includes a first capacitor plate (120) located over or in a substrate (105), and an insulator (130) located over the first capacitor plate (120), at least a portion of the insulator (130) comprising an interlevel dielectric layer (135, 138, 143, or 148). The integrated high voltage capacitor further includes a second capacitor plate (160) located over the insulator (130) and a top-level dielectric layer (199) located at least partially along a sidewall of the second capacitor plate (160).
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: August 19, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: David L. Larkin, Ashish V. Gokhale, Dhaval A. Saraiya, Quang Xuan Mai
  • Publication number: 20080191268
    Abstract: An integrated circuit and method of manufacturing an integrated circuit is disclosed. In one embodiment, the integrated circuit includes a gate structure which includes a polysilicon double layer. The polysilicon double layer having a first polysilicon layer and a second polysilicon layer formed above the first polysilicon layer, the first polysilicon layer being doped with positive ions to a higher concentration than the second polysilicon layer.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Applicant: Qimonda AG
    Inventors: Franz Hofmann, Michael Specht, Josef Willer
  • Patent number: 7410857
    Abstract: After an ONO film in which a silicon nitride film (22) formed by a plasma nitriding method using a plasma processor having a radial line slot antenna is sandwiched by silicon oxide films (21), (23), a bit line diffusion layer (17) is formed in a memory cell array region (11) by an ion implantation as a resist pattern (16) taken as a mask, then lattice defects are given to the silicon nitride film (22) by a further ion implantation. Accordingly, a highly reliable semiconductor memory device can be realized, in which a high quality nitride film is formed in a low temperature condition, in addition, the nitride film can be used as a charge trap film having a charge capture function sufficiently adaptable for a miniaturization and a high integration which are recent demands.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: August 12, 2008
    Assignee: Spansion LLC.
    Inventors: Masahiko Higashi, Manabu Nakamura, Kentaro Sera, Hiroyuki Nansei, Yukihiro Utsuno, Hideo Takagi, Tatsuya Kajita
  • Patent number: 7407858
    Abstract: A method of fabricating a RRAM includes preparing a substrate and forming a bottom electrode ori the substrate. A PCMO layer is deposited on the bottom electrode using MOCVD or liquid MOCVD, followed by a post-annealing process. The deposited PCMO thin film has a crystallized PCMO structure or a nano-size and amorphous PCMO structure. A top electrode is formed on the PCMO layer.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: August 5, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, David R. Evans
  • Publication number: 20080173928
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention comprises a semiconductor substrate, a pillar-shaped semiconductor layer extending in the vertical direction with respect to the surface of the semiconductor substrate, a plurality of memory cells arranged in the vertical direction on the side surface of the semiconductor layer and having a charge storage layer and a control gate electrode, a first select gate transistor arranged on the semiconductor layer at an end of the memory cells on the side of the semiconductor substrate, and a second select gate transistor arranged on the semiconductor layer on the other end of the memory cells opposite to the side of the semiconductor substrate, wherein the first select gate transistor includes a diffusion layer in the semiconductor substrate and is electrically connected to the pillar-shaped semiconductor layer by way of the diffusion layer that serves as the drain region.
    Type: Application
    Filed: December 20, 2007
    Publication date: July 24, 2008
    Inventors: Fumitaka Arai, Riichiro Shirota
  • Publication number: 20080173927
    Abstract: A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed at a distance from each other in the semiconductor substrate; a first insulating film formed on a portion of the semiconductor substrate, the portion being located between the source region and the drain region; a charge storage film formed on the first insulating film; a second insulating film formed above the charge storage film and made of a high-permittivity material; a control gate electrode formed above the second insulating film; and a silicon nitride layer including nitrogen atoms having three-coordinate nitrogen bonds, at least one of second-nearest neighbor atoms of the nitrogen atoms being a nitrogen atom. At least one of the charge storage film and the control gate electrode contains silicon, the silicon nitride layer is located between the second insulating film and the at least one of the charge storage film and the control gate electrode.
    Type: Application
    Filed: September 6, 2007
    Publication date: July 24, 2008
    Inventors: Kiwamu Sakuma, Daisuke Matsushita, Koichi Kato, Yasushi Nakasaki, Izumi Hirano, Kouichi Muraoka, Yuichiro Mitani, Shigeto Fukatsu, Toshihide Ito
  • Patent number: 7402491
    Abstract: A method of manufacturing a semiconductor device can include forming a tunnel oxide layer on a substrate, forming a floating gate on the tunnel oxide layer and forming a dielectric layer pattern on the floating gate using an ALD process. The dielectric layer pattern can include a metal precursor that includes zirconium and an oxidant. A control gate can be formed on the dielectric layer pattern. The semiconductor device can include the dielectric layer pattern provided herein.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: July 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Mei Choi, Kyoung-Ryul Yoon, Seung-Hwan Lee, Ki-Yeon Park, Sung-Tae Kim, Young-Sun Kim, Cha-Young Yoo
  • Patent number: 7396723
    Abstract: A method of manufacturing an EEPROM device can reduce the cell area. The method of manufacturing an Electrically Erasable Programmable Read-Only Memory (EEPROM) includes forming a mask pattern over a semiconductor substrate; forming a gate oxide layer over a top of the semiconductor substrate exposed through the mask pattern; forming access gates which are self-aligned with both side walls of the mask pattern, over a top of the gate oxide layer; removing the mask pattern; forming first dielectric spacers to be attached to side walls of the access gates; forming an insulating layer adapted to cover the access gates and the first dielectric spacers; and forming two cell gates, which are self-aligned with opposite side walls of the two access gates, respectively, each first dielectric spacer being interposed between a corresponding cell gate and a corresponding access gate, the cell gates separately arranged over a top of the insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 8, 2008
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dong-Oog Kim
  • Publication number: 20080157178
    Abstract: A flash memory device and fabricating method thereof are provided. A device isolating layer, a tunnel oxide film, and a floating gate can be formed on a substrate. An oxide-nitride-oxide (ONO) layer can be formed over the substrate, and a control gate can be formed on the ONO layer. A spacer can be formed of a high-temperature oxide film and a nitride film at sidewalls of the control gate.
    Type: Application
    Filed: November 8, 2007
    Publication date: July 3, 2008
    Inventor: Dong Oog Kim
  • Publication number: 20080160693
    Abstract: A method of forming a non-volatile memory device includes forming first mask patterns, which can have relatively large distances therebetween. A distance regulating layer is formed that conformally covers the first mask patterns. Second mask patterns are formed in grooves on the distance regulating layer between the first mask patterns.
    Type: Application
    Filed: November 27, 2007
    Publication date: July 3, 2008
    Inventors: Jae-Hwang Sim, Yong-Sik Yim, Ki-Nam Kim, Jae-Kwan Park