Multiple Interelectrode Dielectrics Or Nonsilicon Compound Gate Insulator Patents (Class 438/261)
  • Patent number: 9102522
    Abstract: An embodiment of a method of integration of a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming a pad dielectric layer of a MOS device above a first region of a substrate; forming a channel of the memory device from a thin film of semiconducting material overlying a surface above a second region of the substrate, the channel connecting a source and drain of the memory device; forming a patterned dielectric stack overlying the channel above the second region, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer; simultaneously removing the sacrificial top layer from the second region of the substrate, and the pad dielectric layer from the first region of the substrate; and simultaneously forming a gate dielectric layer above the first region of the substrate and a blocking dielectric layer above the charge-trapping layer.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: August 11, 2015
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Bo Jin, Fredrick Jenne
  • Patent number: 9059315
    Abstract: Embodiments include methods of forming an nFET-tuned gate dielectric and a pFET-tuned gate dielectric. Methods may include forming a high-k layer above a substrate having a pFET region and an nFET region, forming a first sacrificial layer, a pFET work-function metal layer, and a second sacrificial layer above the first high-k layer in the pFET region, and an nFET work-function metal layer above the first high-k layer in the nFET region and above the second sacrificial layer in the pFET region. The first high-k layer then may be annealed to form an nFET gate dielectric layer in the nFET region and a pFET gate dielectric layer in the pFET region. The first high-k layer may be annealed in the presence of a nitrogen source to cause atoms from the nitrogen source to diffuse into the first high-k layer in the nFET region.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: June 16, 2015
    Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, Inc.
    Inventors: Takashi Ando, Maryjane Brodsky, Michael P. Chudzik, Min Dai, Siddarth A. Krishnan, Joseph F. Shepard, Jr., Yanfeng Wang, Jinping Liu
  • Patent number: 9041088
    Abstract: Disclosed are non-volatile memory devices and methods of manufacturing the same. The non-volatile memory device includes device isolation patterns defining active portions in a substrate and gate structures disposed on the substrate. The active portions are spaced apart from each other in a first direction and extend in a second direction perpendicular to the first direction. The gate structures are spaced apart from each other in the second direction and extend in the first direction. Each of the device isolation patterns includes a first air gap, and each of a top surface and a bottom surface of the first air gap has a wave-shape in a cross-sectional view taken along the second direction.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwang Sim, Jinhyun Shin, HoJun Seong
  • Patent number: 9029936
    Abstract: A memory device includes a semiconductor channel, a tunnel dielectric layer located over the semiconductor channel, a first charge trap including a plurality of electrically conductive nanodots located over the tunnel dielectric layer, dielectric separation layer located over the nanodots, a second charge trap including a continuous metal layer located over the separation layer, a blocking dielectric located over the second charge trap, and a control gate located over the blocking dielectric.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 12, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Purayath, George Samachisa, George Matamis, James Kai, Yuan Zhang
  • Patent number: 9029938
    Abstract: According to one embodiment, the stacked body includes a plurality of electrode layers and a plurality of insulating layers alternately stacked on the substrate. The plurality of contact parts are provided in a protruding shape on respective end parts of the plurality of electrode layers. The plurality of contact parts do not overlap each other in the stacking direction. The plurality of contact parts are displaced in a surface direction of the substrate. The plurality of plugs extends from the respective contact parts toward the respective circuit interconnections and electrically connects the respective contact parts with the respective circuit interconnections.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Nakaki
  • Patent number: 8999786
    Abstract: Methods and structures for transistors having reduced source contact to gate spacings in semiconductor devices are disclosed. In one embodiment, a method of forming a transistor can include: forming a gate over an active area of the transistor; forming source and drain regions aligned to the gate in the active area; forming source and drain contacts over the source and drain regions, where a spacing from the gate to the source contact of the transistor is less than a spacing from the gate to the drain contact of the transistor; and using one or more modified masks for forming doping profiles for the source region and the drain region.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: April 7, 2015
    Assignee: Marvell International Ltd.
    Inventors: Albert Wu, Pantas Sutardja, Winston Lee, Peter Lee, Chien-Chuan Wei, Runzi Chang
  • Patent number: 8994091
    Abstract: A non-volatile memory device having a vertical structure includes a semiconductor layer, a sidewall insulation layer extending in a vertical direction on the semiconductor layer, and having one or more protrusion regions, first control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of portions of the sidewall insulation layer where the one or more protrusion regions are not formed and second control gate electrodes arranged in the vertical direction on the semiconductor layer, and respectively contacting one of the one or more protrusion regions.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Lee, Jin-Gyun Kim, Koong-Hyun Nam, Ki-Hyun Hwang, Hun-Hyeong Lim, Dong-Kyum Kim
  • Patent number: 8981459
    Abstract: A semiconductor structure uses its control gate to be the wordline for receiving an operation voltage for the semiconductor structure. The semiconductor structure has a first and a second doped region and a buried channel between the first and the second doped region, wherein the buried channel has a first length along the first direction. The semiconductor structure further has a charge trapping layer stack on the buried channel and a conductive layer on the charge trapping layer stack, wherein the conductive layer extends along the first direction. The conductive layer is configured as both the control gate and the wordline of the semiconductor structure.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 17, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shih-Guei Yan, Wen-Jer Tsai, Chih-Chieh Cheng
  • Patent number: 8975143
    Abstract: Fluorine is located in selective portions of a gate oxide to adjust characteristics of the gate oxide. In some embodiments, the fluorine promotes oxidation which increases the thickness of the selective portion of the gate oxide. In some embodiments, the fluorine lowers the dielectric constant of the oxide at the selective portion. In some examples, having fluorine at selective portions of a select gate oxide of a non volatile memory may reduce program disturb of the memory.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: March 10, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Byoung W. Min
  • Patent number: 8975684
    Abstract: Disclosed are non-volatile memory devices and methods of manufacturing the same. The non-volatile memory device includes device isolation patterns defining active portions in a substrate and gate structures disposed on the substrate. The active portions are spaced apart from each other in a first direction and extend in a second direction perpendicular to the first direction. The gate structures are spaced apart from each other in the second direction and extend in the first direction. Each of the device isolation patterns includes a first air gap, and each of a top surface and a bottom surface of the first air gap has a wave-shape in a cross-sectional view taken along the second direction.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwang Sim, Jinhyun Shin, HoJun Seong
  • Patent number: 8969941
    Abstract: According to an embodiment, a semiconductor device, includes a semiconductor substrate, first and second transistors. The first transistor includes a first insulating film provided on the semiconductor substrate, a first conductive film provided on the first insulating film, a second insulating film provided on the first conductive film, and a second conductive film provided on the second insulating film. The second transistor is provided to be separated from the first transistor, the second transistor including a third insulating film provided on the semiconductor substrate, a third conductive film provided on the third insulating film, a fourth insulating film provided on the third conductive film, and a fourth conductive film provided on the fourth insulating film. The third conductive film is thicker than the first conductive film, and the second transistor has a through-portion piercing the fourth insulating film to connect the third conductive film and the fourth conductive film.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 3, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Sakamoto
  • Patent number: 8962466
    Abstract: A metal oxide formed by in situ oxidation assisted by radiation induced photo-acid is described. The method includes depositing a photosensitive material over a metal surface of an electrode. Upon exposure to radiation (for example ultraviolet light), a component, such as a photo-acid generator, of the photosensitive material forms an oxidizing reactant, such as a photo acid, which causes oxidation of the metal at the metal surface. As a result of the oxidation, a layer of metal oxide is formed. The photosensitive material can then be removed, and subsequent elements of the component can be formed in contact with the metal oxide layer. The metal oxide can be a transition metal oxide by oxidation of a transition metal. The metal oxide layer can be applied as a memory element in a programmable resistance memory cell. The metal oxide can be an element of a programmable metallization cell.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Feng-Min Lee, Erh-Kun Lai, Wei-Chih Chien, Ming-Hsiu Lee, Chih-Chieh Yu
  • Patent number: 8956943
    Abstract: A method for manufacturing a non-volatile memory is disclosed. A gate structure is formed on a substrate and includes a gate dielectric layer and a gate conductive layer. The gate dielectric layer is partly removed, thereby a symmetrical opening is formed among the gate conductive layer, the substrate and the gate dielectric layer, and a cavity is formed on end sides of the gate dielectric layer. A first oxide layer is formed on a sidewall and bottom of the gate conductive layer, and a second oxide layer is formed on a surface of the substrate. A nitride material layer is formed covering the gate structure, the first and second oxide layer and the substrate and filling the opening. An etching process is performed to partly remove the nitride material layer, thereby forming a nitride layer on a sidewall of the gate conductive layer and extending into the opening.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: February 17, 2015
    Assignee: United Microelectronics Corporation
    Inventors: Chien-Hung Chen, Tzu-Ping Chen, Yu-Jen Chang
  • Patent number: 8946023
    Abstract: A method of making a vertical NAND device includes forming a lower portion of a memory stack over a substrate, forming a lower portion of memory openings in the lower portion of the memory stack, and at least partially filling the lower portion of the memory openings with a sacrificial material. The method also includes forming an upper portion of the memory stack over the lower portion of the memory stack and over the sacrificial material, forming an upper portion of the memory openings in the upper portion of the memory stack to expose the sacrificial material in the lower portion of the memory openings, removing the sacrificial material to connect the lower portion of the memory openings with a respective upper portion of the memory openings to form continuous memory openings, and forming a semiconductor channel in each continuous memory opening.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Raghuveer S. Makala, Yao-Sheng Lee, Jayavel Pachamuthu, Johann Alsmeier, Henry Chien
  • Patent number: 8945996
    Abstract: A method of forming circuitry components includes forming a stack of horizontally extending and vertically overlapping features. The stack has a primary portion and an end portion. At least some of the features extend farther in the horizontal direction in the end portion moving deeper into the stack in the end portion. Operative structures are formed vertically through the features in the primary portion and dummy structures are formed vertically through the features in the end portion. Horizontally elongated openings are formed through the features to form horizontally elongated and vertically overlapping lines from material of the features. The lines individually extend from the primary portion into the end portion, and individually laterally about sides of vertically extending portions of both the operative structures and the dummy structures.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: February 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Roger W. Lindsay, Krishna K. Parat
  • Patent number: 8941168
    Abstract: A semiconductor device includes an element isolation region having an element isolation insulating film therein; an active region delineated by the element isolation region; agate insulating film formed in the active region; a charge storage layer above the gate insulating film; and an interelectrode insulating film. The interelectrode insulating film is formed in a first region above an upper surface of the element isolation insulating film, a second region along a sidewall of the charge storage layer, and a third region above an upper surface of the charge storage layer. The interelectrode insulating film includes a stack of a first silicon oxide film, a first silicon nitride film, a second silicon oxide film, and a second silicon nitride film. A control electrode layer is formed above the interelectrode insulating film. The second silicon oxide film is thinner in the first region than in the third region.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: January 27, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Matsuo, Masayuki Tanaka, Hirofumi Iikawa
  • Patent number: 8932925
    Abstract: A method includes forming a first conductive layer over a substrate in a first region and second region of the substrate; patterning the first conductive layer to form a select gate in the first region and to remove the first conductive layer from the second region; forming a charge storage layer over the select gate and the substrate in the first region and over the substrate in the second region; forming a second conductive layer over the charge storage layer in the first and second regions; and patterning the second conductive layer and charge storage layer to form a control gate overlapping the select gate in the first region, wherein a first portion of the charge storage layer remains between the select gate and control gate, and to form an electrode in the second region, wherein a second portion of the charge storage layer remains between the electrode and substrate.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 13, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Karthik Ramanan
  • Publication number: 20150011063
    Abstract: Semiconductor structures including an etch stop material between a substrate and a stack of alternating insulating materials and first conductive materials, wherein the etch stop material comprises an amorphous aluminum oxide on the substrate and a crystalline aluminum oxide on the amorphous aluminum oxide; a channel material extending through the stack; and a second conductive material between the channel material and at least one of the first conductive materials in the stack of alternating insulating materials and first conductive materials, wherein the second conductive material is not between the channel material and the etch stop material. Also disclosed are methods of fabricating such semiconductor structures.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Jeffery B. Hull, John M. Meldrim
  • Patent number: 8927353
    Abstract: A fin field effect transistor and method of forming the same. The fin field effect transistor includes a semiconductor substrate having a fin structure and between two trenches with top portions and bottom portions. The fin field effect transistor further includes shallow trench isolations formed in the bottom portions of the trenches and a gate electrode over the fin structure and the shallow trench isolation, wherein the gate electrode is substantially perpendicular to the fin structure. The fin field effect transistor further includes a gate dielectric layer along sidewalls of the fin structure and source/drain electrode formed in the fin structure.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Wang Hsu, Chih-Yuan Ting, Tang-Xuan Zhong, Yi-Nien Su, Jang-Shiang Tsai
  • Publication number: 20150001606
    Abstract: A method of forming a split gate memory cell structure using a substrate includes forming a gate stack comprising a select gate and a dielectric portion overlying the select gate. A charge storage layer is formed over the substrate including over the gate stack. A first sidewall spacer of conductive material is formed along a first sidewall of the gate stack extending past a top of the select gate. A second sidewall spacer of dielectric material is formed along the first sidewall on the first sidewall spacer. A portion of the first sidewall spacer is silicided using the second sidewall spacer as a mask whereby silicide does not extend to the charge storage layer.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Cheong Min Hong, Sung-Taeg Kang
  • Patent number: 8921136
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8912067
    Abstract: A method for manufacturing three types of MOS transistors in three regions of a same substrate, including the steps of: forming a first insulating layer, removing the first insulating layer from the first and second regions, forming a silicon oxide layer, depositing an insulating layer having a dielectric constant which is at least twice greater than that of silicon oxide, depositing a first conductive oxygen scavenging layer, removing the first conductive layer from the second and third regions, and annealing.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: December 16, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Jean-Luc Huguenin, Grégory Bidal
  • Patent number: 8901632
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM region and a first protection layer over a logic region. A control gate and a storage layer are formed over the substrate in the NVM region. The control gate has a top surface below a top surface of the select gate. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The first and second protection layers are removed from the logic region. A portion of the second protection layer is left over the control gate and the select gate. A gate structure, formed over the logic region, has a high k dielectric and a metal gate.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Byoung W. Min, Jane A. Yater
  • Patent number: 8883624
    Abstract: Memory cells including embedded SONOS based non-volatile memory (NVM) and MOS transistors and methods of forming the same are described. Generally, the method includes: forming a gate stack of a NVM transistor in a NVM region of a substrate including the NVM region and a plurality of MOS regions; and depositing a high-k dielectric material over the gate stack of the NVM transistor and the plurality of MOS regions to concurrently form a blocking dielectric comprising the high-k dielectric material in the gate stack of the NVM transistor and high-k gate dielectrics in the plurality of MOS regions. In one embodiment, a first metal layer is deposited over the high-k dielectric material and patterned to concurrently form a metal gate over the gate stack of the NVM transistor, and a metal gate of a field effect transistor in one of the MOS regions.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: November 11, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventor: Krishnaswamy Ramkumar
  • Patent number: 8865582
    Abstract: Disclosed are methods for manufacturing floating gate memory devices and the floating gate memory devices thus manufactured. In one embodiment, the method comprises providing a monocrystalline semiconductor substrate, forming a tunnel oxide layer on the substrate, and depositing a protective layer on the tunnel oxide layer to form a stack of the tunnel oxide layer and the protective layer. The method further includes forming at least one opening in the stack, thereby exposing at least one portion of the substrate, and cleaning the at least one exposed portion with a cleaning liquid. The method still further includes loading the substrate comprising the stack into a reactor and, thereafter, performing an in-situ etch to remove the protective layer, using the at least one exposed portion as a source to epitaxially grow a layer comprising the monocrystalline semiconductor material, and forming the layer into at least one columnar floating gate structure.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 21, 2014
    Assignee: IMEC
    Inventors: Roger Loo, Matty Caymax, Pieter Blomme, Geert Van den Bosch
  • Patent number: 8866210
    Abstract: A dielectric structure may be arranged having a thin nitrided surface of an insulator with a charge blocking insulator over the nitrided surface. The insulator may be formed of a number of different insulating materials such as a metal oxide, a metal oxycarbide, a semiconductor oxide, or oxycarbide. In an embodiment, the dielectric structure may be formed by nitridation of a surface of an insulator using ammonia and deposition of a blocking insulator having a larger band gap than the insulator. The dielectric structure may form part of a memory device, as well as other devices and systems.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 21, 2014
    Assignee: Micro Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8853695
    Abstract: A substrate supporting thin film transistors thereon, each including a semiconductor layer and source-drain electrodes, wherein the source-drain electrodes are formed from a nitrogen-containing layer or oxygen/nitrogen-containing layer and a thin film of pure copper or copper alloy. The nitrogen-containing layer or oxygen/nitrogen-containing layer has respectively part or all of its nitrogen or part or all of its oxygen or nitrogen connected to silicon in the semiconductor layer of the thin film transistor, and the thin film of pure copper or copper alloy is connected to the semiconductor layer of said thin film transistor through the nitrogen-containing layer or oxygen/nitrogen-containing layer.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: October 7, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Aya Hino, Hiroshi Gotou
  • Patent number: 8847327
    Abstract: A layout data creation device includes a transistor adjustment unit. The transistor adjustment unit divides a pillar-type transistor including a plurality of unit pillar-type transistors into the unit pillar-type transistors groups. The unit pillar-type transistors can be placed in a placement area. The number of the unit pillar-type transistors in each group is an integer. The transistor adjustment unit generates sub-pillar-type transistors that are placed in the placement area.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: September 30, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventors: Shinji Kato, Kazuteru Ishizuka, Kiyotaka Endo, Mitsuki Koda
  • Patent number: 8836014
    Abstract: An electronic memory cell includes a first selection transistor gate surmounting a first part of the channel and a lateral spacer disposed against a lateral flank of the selection transistor gate, a part of the lateral spacer forming a memory transistor gate surmounting a second part of the channel. The memory transistor gate includes a stack of the ONO type and a conductive zone including a lateral face inclined at an angle ? strictly between 0 and 90° with respect to the plane of the substrate.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 16, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Christelle Charpin-Nicolle
  • Patent number: 8835297
    Abstract: A fabricating method for fabricating a non-volatile memory structure including the following steps is provided. A first conductive type doped layer is formed in a substrate. A plurality of stacked structures is formed on the substrate, and each of the stacked structures includes a charge storage structure. A first dielectric layer is formed on the substrate between the adjacent stacked structures. A second conductive type doped region is formed in the substrate between the adjacent charge storage structures. The second conductive type doped region has an overlap region with each of the charge storage structures. In addition, the second conductive type doped region divides the first conductive type doped layer into a plurality of first conductive type doped regions that are separated from each other. A conductive layer is formed on the first dielectric layer.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 16, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Chih-Chieh Cheng, Shih-Guei Yan, Wen-Jer Tsai
  • Patent number: 8829596
    Abstract: The nonvolatile memory device includes a semiconductor layer including trenches formed in a first direction, isolation layers filling the trenches, and active regions divided by the isolation layer, first insulating patterns formed on the semiconductor substrate in a second direction crossing the first direction, charge storage layer patterns formed over the respective active regions between the first insulating patterns, and second insulating patterns formed on the isolation layers between the charge storage layer patterns.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jong Man Kim
  • Patent number: 8829597
    Abstract: A nonvolatile memory device includes a plurality of channel connection layers formed over a substrate; a first gate electrode layer filling a space between the plurality channel connection layers; a gate dielectric layer interposed between each of the channel connection layers and the first gate electrode layer; a stacked structure formed over the plurality channel connection layers and the first gate electrode layer, the stacked structure including a plurality of interlayer dielectric layers and a plurality second gate electrode layers, which are alternately stacked; a pair of channel layers, formed through the stacked structure and connected to each channel connection layer of the plurality of channel connection layers; and a memory layer interposed between each of the channel layers and each of the second gate electrode layers.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Su-Chang Kwak
  • Patent number: 8829599
    Abstract: In a semiconductor memory device, a plurality of control gates is stacked in a first region and a second region of a substrate. A plurality of interlayer insulating layers is stacked in a portion of the second region of the substrate. Each interlayer insulating layer is formed at the same level as a corresponding one of the control gates. A plurality of sub-control gates is stacked in the first and second regions region of the substrate and interposed between the control gates and the interlayer insulating layers. A common node penetrates the interlayer insulating layers and the sub-control gates.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: September 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Young Soo Ahn
  • Patent number: 8822287
    Abstract: Methods of manufacturing semiconductor devices include forming an integrated structure and a first stopping layer pattern in a first region. A first insulating interlayer and a second stopping layer are formed. A second preliminary insulating interlayer is formed by partially etching the second stopping layer and the first insulating interlayer in the first region. A first polishing is performed to remove a protruding portion. A second polishing is performed to expose the first and second stopping layer patterns.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyo-Jung Kim, Ki-hyun Hwang, Kyung-Hyun Kim, Han-Mei Choi, Dong-Chul Yoo, Chan-Jin Park, Jong-Heun Lim, Myung-Jung Pyo, Byoung-Moon Yoon, Chang-Sup Mun
  • Patent number: 8809159
    Abstract: Provided are radiation enhanced resistive switching layers, resistive random access memory (ReRAM) cells including these layers, as well as methods of forming these layers and cells. Radiation creates defects in resistive switching materials that allow forming and breaking conductive paths in these materials thereby improving their resistive switching characteristics. For example, ionizing radiation may break chemical bonds in various materials used for such a layer, while non-ionizing radiation may form electronic traps. Radiation power, dozing, and other processing characteristics can be controlled to generate a distribution of defects within the resistive switching layer. For example, an uneven distribution of defects through the thickness of a layer may help with lowering switching voltages and/or currents. Radiation may be performed before or after thermal annealing, which may be used to control distribution of radiation created defects and other types of defects in resistive switching layers.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 19, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 8809936
    Abstract: A memory cell system is provided including forming a first insulator layer over a semiconductor substrate, forming a charge trap layer over the first insulator layer, forming a second insulator layer over the charge trap layer, forming a top blocking intermediate layer over the second insulator layer, and forming a contact layer over the top blocking intermediate layer.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: August 19, 2014
    Assignees: Globalfoundries Inc., Spansion LLC
    Inventors: Lei Xue, Rinji Sugino, YouSeok Suh, Hidehiko Shiraiwa, Meng Ding, Shenqing Fang, Joong Jeon
  • Publication number: 20140227839
    Abstract: Provided is a semiconductor device having improved performance. In a semiconductor substrate located in a memory cell region, a memory cell of a nonvolatile memory is formed while, in the semiconductor substrate located in a peripheral circuit region, a MISFET is formed. At this time, over the semiconductor substrate located in the memory cell region, a control gate electrode and a memory gate electrode each for the memory cell are formed first. Then, an insulating film is formed so as to cover the control gate electrode and the memory gate electrode. Subsequently, the upper surface of the insulating film is polished to be planarized. Thereafter, a conductive film for the gate electrode of the MISFET is formed and then patterned to form a gate electrode or a dummy gate electrode for the MISFET in the peripheral circuit region.
    Type: Application
    Filed: November 21, 2013
    Publication date: August 14, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Masaaki SHINOHARA
  • Patent number: 8802527
    Abstract: A gate dielectric as formed includes a first interfacial dielectric layer and a high dielectric constant (high-k) dielectric layer containing a dielectric metal oxide. A polycrystalline semiconductor material layer is deposited on the high-k dielectric layer, and a second interfacial dielectric layer is formed at an interface between the polycrystalline semiconductor material layer and the high-k dielectric layer. A scavenging-metal-containing layer including a scavenging metal in an elemental form or in a metallic non-metal-element-containing compound is formed over the polycrystalline semiconductor material layer. A metallic compound such as a metallic nitride and a metallic carbide may be present above and/or over the scavenging-metal-containing layer. After formation of a gate stack by patterning, an anneal is performed, during which the oxygen in the interfacial dielectric layers diffuses into the scavenging-metal containing layer so that the thicknesses of the interfacial layers are reduced.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8796103
    Abstract: Provided are methods of forming nonvolatile memory elements including resistance switching layers. A method involves diffusing oxygen from a precursor layer to one or more reactive electrodes by annealing. At least one electrode in a memory element is reactive, while another may be inert. The precursor layer is converted into a resistance switching layer as a result of this diffusion. The precursor layer may initially include a stoichiometric oxide that generally does not exhibit resistance switching characteristics until oxygen vacancies are created. Metals forming such oxides may be more electronegative than metals forming a reactive electrode. The reactive electrode may have substantially no oxygen at least prior to annealing. Annealing may be performed at 250-400° C. in the presence of hydrogen. These methods simplify process control and may be used to form nonvolatile memory elements including resistance switching layers less than 20 Angstroms thick.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 5, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Mihir Tendulkar, Tim Minvielle, Yun Wang, Takeshi Yamaguchi
  • Patent number: 8796786
    Abstract: Some embodiments include methods of forming electrical contacts. A row of semiconductor material projections may be formed, with the semiconductor material projections containing repeating components of an array, and with a terminal semiconductor projection of the row comprising a contact location. An electrically conductive line may be along said row, with the line wrapping around an end of said terminal semiconductor projection and bifurcating into two branches that are along opposing sides of the semiconductor material projections. Some of the semiconductor material of the terminal semiconductor projection may be replaced with dielectric material, and then an opening may be extended into the dielectric material. An electrical contact may be formed within the opening and directly against at least one of the branches. Some embodiments include memory arrays.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: August 5, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Richard T. Housley
  • Patent number: 8796091
    Abstract: Provided are three-dimensional semiconductor devices. A device includes an electrode structure including conductive patterns sequentially stacked on a substrate, a semiconductor pattern penetrating the electrode structure and including channel regions adjacent to the conductive patterns and vertical adjacent regions between the channel regions, and a semiconductor connecting layer extending from an outer sidewall of the semiconductor pattern to connect the semiconductor pattern to the substrate.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Il Chang, Youngwoo Park, Kwang Soo Seol
  • Patent number: 8791521
    Abstract: A semiconductor device includes an interelectrode insulating film formed between a charge storage layer and a control electrode layer. The interelectrode insulating film is formed in a first region above an upper surface of an element isolation insulating film, a second region along a sidewall of the charge storage layer, and a third region above an upper surface of the charge storage layer. The interelectrode insulating film includes a first stack including a first silicon nitride film or a high dielectric constant film interposed between a first and a second silicon oxide film or a second stack including a second high dielectric constant film and a third silicon oxide film, and a second silicon nitride film formed between the control electrode layer and the first or the second stack. The second silicon nitride film is relatively thinner in the third region than in the first region.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Nakahara, Kazuhiro Matsuo, Masayuki Tanaka, Hirofumi Iikawa
  • Patent number: 8791523
    Abstract: A nonvolatile semiconductor storage device includes: a structural body; semiconductor layers; a memory film; a connecting member; and a conductive member. The structural body is provided above a memory region of a substrate including the memory region and a non-memory region, and includes electrode films stacked along a first axis perpendicular to a major surface of the substrate. The semiconductor layers penetrate through the structural body along the first axis. The memory film is provided between the electrode films and the semiconductor layer. The connecting member is provided between the substrate and the structural body and connected to respective end portions of two adjacent ones of the semiconductor layers. The conductive member is provided between the substrate and the connecting member, extends from the memory region to the non-memory region, includes a recess provided above the non-memory region, and includes a first silicide portion provided in the recess.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromitsu Iino, Tadashi Iguchi
  • Patent number: 8778760
    Abstract: A method of manufacturing a flash memory cell includes providing a substrate having a first dielectric layer formed thereon, forming a control gate on the first dielectric layer, forming an oxide-nitride-oxide (ONO) spacer on sidewalls of the control gate, forming a second dielectric layer on the substrate at two sides of the ONO spacer, and forming a floating gate at outer sides of the ONO spacer on the second dielectric layer, respectively.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: July 15, 2014
    Assignee: Taiwan Memory Company
    Inventors: Yung-Chang Lin, Nan-Ray Wu, Le-Tien Jung
  • Patent number: 8779502
    Abstract: According to one embodiment, a nonvolatile semiconductor memory includes first to n-th (n is a natural number not less than 2) semiconductor layers in a first direction and extend in a second direction, and the semiconductor layers having a stair case pattern in a first end of the second direction, a common semiconductor layer connected to the first to n-th semiconductor layers commonly in the first end of the second direction, first to n-th layer select transistors which are provided in order from the first electrode side between the first electrode and the first to n-th memory strings, and first to n-th impurity regions which make the i-th layer select transistor (i is one of 1 to n) a normally-on state in the first end of the second direction of the i-th semiconductor layer.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiwamu Sakuma, Atsuhiro Kinoshita, Masahiro Kiyotoshi, Daisuke Hagishima, Koichi Muraoka
  • Patent number: 8778759
    Abstract: A gate dielectric as formed includes a first interfacial dielectric layer and a high dielectric constant (high-k) dielectric layer containing a dielectric metal oxide. A polycrystalline semiconductor material layer is deposited on the high-k dielectric layer, and a second interfacial dielectric layer is formed at an interface between the polycrystalline semiconductor material layer and the high-k dielectric layer. A scavenging-metal-containing layer including a scavenging metal in an elemental form or in a metallic non-metal-element-containing compound is formed over the polycrystalline semiconductor material layer. A metallic compound such as a metallic nitride and a metallic carbide may be present above and/or over the scavenging-metal-containing layer. After formation of a gate stack by patterning, an anneal is performed, during which the oxygen in the interfacial dielectric layers diffuses into the scavenging-metal containing layer so that the thicknesses of the interfacial layers are reduced.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
  • Patent number: 8765553
    Abstract: Nonvolatile memory has a modified channel region interface, such as a raised source and drain or a recessed channel region.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 1, 2014
    Assignee: Macronix International Co., Ltd.
    Inventor: Yi Ying Liao
  • Patent number: 8765543
    Abstract: A method of making a monolithic three dimensional NAND string includes forming a stack of alternating layers of a first layer and a second layer over a substrate, where the first layer includes a conductive or semiconductor control gate material and the second layer includes an insulating material. The method also includes etching the stack to form at least one opening in the stack, selectively etching the first layer to form first recesses, forming a conductive or semiconductor liner having a clam shape in the first recesses, forming a blocking dielectric over the conductive or semiconductor liner in the first recesses, forming a plurality of discrete charge storage segments separated from each other in the first recesses over the blocking dielectric, forming a tunnel dielectric over a side wall of the discrete charge storage segments exposed in the at least one opening, and forming a semiconductor channel in the opening.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: July 1, 2014
    Assignee: SanDisk Technologies, Inc.
    Inventors: Johann Alsmeier, George Samachisa
  • Publication number: 20140169104
    Abstract: Embodiments of tunneling barriers and methods for same can embed molecules exhibiting a monodispersion characteristic into a dielectric layer (e.g., between first and second layers forming a dielectric layer). In one embodiment, by embedding C60 molecules inbetween first and second insulating layers forming a dielectric layer, a field sensitive tunneling barrier can be implemented. In one embodiment, the tunneling barrier can be between a floating gate and a channel in a semiconductor structure. In one embodiment, a tunneling film can be used in nonvolatile memory applications where C60 provides accessible energy levels to prompt resonant tunneling through the dielectric layer upon voltage application. Embodiments also contemplate engineered fullerene molecules incorporated within the context of at least one of a tunneling dielectric and a floating gate within a nonvolatile flash memory structure.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 19, 2014
    Applicants: NANO-C, INC., CORNELL UNIVERSITY
    Inventors: Edwin C. Kan, Qianying Xu, Ramesh Sivarajan, Henning Richter, Viktor Vejins
  • Patent number: 8748972
    Abstract: Flash memory devices and methods for fabricating the same are provided. In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises the steps of fabricating a first gate stack and a second gate stack overlying a substrate. A trench is etched into the substrate between the first gate stack and the second gate stack and a first impurity doped region is formed within the substrate underlying the trench. The trench is filled at least partially with a conductive material.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 10, 2014
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Fred Cheung, Ashot Melik-Martirosian, Kyunghoon Min, Michael Brennan, Hiroyuki Kinoshita