Multiple Interelectrode Dielectrics Or Nonsilicon Compound Gate Insulator Patents (Class 438/261)
  • Patent number: 8053300
    Abstract: A semiconductor device includes a semiconductor substrate, an nMISFET formed on the substrate, the nMISFET including a first dielectric formed on the substrate and a first metal gate electrode formed on the first dielectric and formed of one metal element selected from Ti, Zr, Hf, Ta, Sc, Y, a lanthanoide and actinide series and of one selected from boride, silicide and germanide compounds of the one metal element, and a pMISFET formed on the substrate, the pMISFET including a second dielectric formed on the substrate and a second metal gate electrode formed on the second dielectric and made of the same material as that of the first metal gate electrode, at least a portion of the second dielectric facing the second metal gate electrode being made of an insulating material different from that of at least a portion of the first dielectric facing the first metal gate electrode.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Reika Ichihara, Yoshinori Tsuchiya, Masato Koyama, Akira Nishiyama
  • Patent number: 8053828
    Abstract: First and second memory cells have first and second channels, first and second tunnel insulating films, first and second charge storage layers formed of an insulating film, first and second block insulating films, and first and second gate electrodes. A first select transistor has a third channel, a first gate insulating film, and a first gate electrode. The first channel includes a first-conductivity-type region and a second-conductivity-type region which is formed on at least a part of the first-conductivity-type region and whose conductivity type is opposite to the first conductivity type. The third channel includes the first-conductivity-type region and the second-conductivity-type region formed on the first-conductivity-type region. The number of data stored in the first memory cell is smaller than that of data stored in the second memory cell.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8048739
    Abstract: According to yet another embodiment, a method for forming a non-volatile memory device includes etching a substrate to form first and second trenches. The first and second trenches are filled with an insulating material to form first and second isolation structures. A conductive layer is formed over the first and second isolation structures and between the first and second isolation structures to form a floating gate. The conductive layer and the first isolation structure are etched to form a third trench having an upper portion and a lower portion, the upper portion having vertical sidewalls and the lower portion having sloping sidewalls. The third trench is filled with a conductive material to form a control gate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Patent number: 8044452
    Abstract: The present invention provides a high-quality semiconductor device in which deterioration in transistor characteristics and an increase in interface layer due to a gate insulating film are suppressed, and a method for manufacturing the same. In the present invention, an interface layer, a diffusion suppressing layer and a high dielectric constant insulating film are formed sequentially in this order on one surface of a silicon substrate.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: October 25, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Tominaga Koji, Iwamoto Kunihiko, Yasuda Tetsuji, Nabatame Toshihide
  • Publication number: 20110255334
    Abstract: Subject matter disclosed herein relates to a multi-level flash memory and a process flow to form same.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Inventors: Alessandro Grossi, Giulio Albini, Anna Maria Conti
  • Patent number: 8039345
    Abstract: A method of forming a semiconductor device may include forming a first pattern on a substrate, and forming a first dielectric layer on the first pattern. The first pattern may be between portions of the first dielectric layer and the substrate. A second dielectric layer may be formed on the first dielectric layer, and the first dielectric layer may be between the first pattern and the second dielectric layer. A second pattern may be formed on the second dielectric layer. Portions of the second dielectric layer may be exposed by the second pattern, and the first and second dielectric layers may be between portions of the first and second patterns. The exposed portions of the second dielectric layer may be isotropically etched.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 18, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-yub Jeon, Jong-heui Song, Song-yi Yang
  • Publication number: 20110244640
    Abstract: A method of manufacturing a flash memory cell includes providing a substrate having a first dielectric layer formed thereon, forming a control gate on the first dielectric layer, forming an oxide-nitride-oxide (ONO) spacer on sidewalls of the control gate, forming a second dielectric layer on the substrate at two sides of the ONO spacer, and forming a floating gate at outer sides of the ONO spacer on the second dielectric layer, respectively.
    Type: Application
    Filed: March 14, 2011
    Publication date: October 6, 2011
    Inventors: Yung-Chang Lin, Nan-Ray Wu, Le-Tien Jung
  • Patent number: 8021948
    Abstract: A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 20, 2011
    Assignee: IMEC
    Inventors: Bogdan Govoreanu, Stefan De Gendt, Sven Van Elshocht, Tom Schram
  • Patent number: 8017477
    Abstract: A nonvolatile memory device includes a plurality of first control gate electrodes, second control gate electrodes, first storage node films, and second storage node films. The first control gate electrodes are recessed into a semiconductor substrate. Each second control gate electrode is disposed between two adjacent first control gate electrodes. The second control gate electrodes are disposed on the semiconductor substrate over the first control gate electrodes. The first storage node films are disposed between the semiconductor substrate and the first control gate electrodes. The second storage node films are disposed between the semiconductor substrate and the second control gate electrodes. A method of fabricating the nonvolatile memory device includes forming the first storage node films, forming the first control gate electrodes, forming the second storage node films, and forming the second control gate electrodes.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park
  • Patent number: 8017480
    Abstract: A method for fabricating a floating gate memory device comprises using thin buried diffusion regions with increased encroachment by a buried diffusion oxide layer into the buried diffusion layer and underneath the tunnel oxide under the floating gate. Further, the floating gate polysilicon layer has a larger height than the buried diffusion height. The increased step height of the gate polysilicon layer to the buried diffusion layer, and the increased encroachment of the buried diffusion oxide, can produce a higher GCR, while still allowing decreased cell size using a virtual ground array design.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 13, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Chen-Chin Liu, Chun-Pei Wu, Ta-Kang Chu, Yao-Fu Chan
  • Patent number: 8017991
    Abstract: Example embodiments provide a non-volatile memory device with increased integration and methods of operating and fabricating the same. A non-volatile memory device may include a plurality of first storage node films and a plurality of first control gate electrodes on a semiconductor substrate. A plurality of second storage node films and a plurality of second control gate electrodes may be recessed into the semiconductor substrate between two adjacent first control gate electrodes and below the bottom of the plurality of first control gate electrodes. A plurality of bit line regions may be on the semiconductor substrate and each may extend across the plurality of first control gate electrodes and the plurality of second control gate electrodes.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Suk-pil Kim, Yoon-dong Park, June-mo Koo
  • Patent number: 8012822
    Abstract: A process for forming dielectric films containing at least metal atoms, silicon atoms, and oxygen atoms on a silicon substrate comprises a first step of oxidizing a surface portion of the silicon substrate to form a silicon dioxide film; a second step of forming a metal film on the silicon dioxide film in a non-oxidizing atmosphere; a third step of heating in a non-oxidizing atmosphere to diffuse the metal atoms constituting the metal film into the silicon dioxide film; and a fourth step of oxidizing the silicon dioxide film containing the diffused metal atoms to form the film containing the metal atoms, silicon atoms, and oxygen atoms.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 6, 2011
    Assignees: Canon Kabushiki Kaisha, Canon Anelva Corporation
    Inventors: Naomu Kitano, Yusuke Fukuchi, Nobumasa Suzuki, Hideo Kitagawa
  • Patent number: 8008147
    Abstract: It is possible to prevent the deterioration of device characteristic as much as possible. A semiconductor device includes: a semiconductor substrate; a gate insulating film provided above the semiconductor substrate and containing a metal, oxygen and an additive element; a gate electrode provided above the gate insulating film; and source/drain regions provided in the semiconductor substrate on both sides of the gate electrode. The additive element is at least one element selected from elements of Group 5, 6, 15, and 16 at a concentration of 0.003 atomic % or more but 3 atomic % or less.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuuichi Kamimuta, Akira Nishiyama, Yasushi Nakasaki, Tsunehiro Ino, Masato Koyama
  • Patent number: 8008152
    Abstract: A method of manufacturing a semiconductor device comprising a first insulating film formed on a semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, forming the second insulating film comprises forming a lower insulating film containing oxygen and a metal element, thermally treating the lower insulating film in an atmosphere containing oxidizing gas, and forming an upper insulating film on the thermally treated lower insulating film using film forming gas containing at least one of hydrogen and chlorine.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Fujitsuka, Katsuaki Natori, Daisuke Nishida, Masayuki Tanaka, Katsuyuki Sekine, Yoshio Ozawa, Akihito Yamamoto
  • Patent number: 8003468
    Abstract: Devices and methods for isolating adjacent charge accumulation layers in a semiconductor device are disclosed. In one embodiment, a semiconductor device comprises a bit line formed in a semiconductor substrate, a charge accumulation layer formed on the semiconductor substrate, a word line formed on the charge accumulation layer across the bit line, and a channel region formed in the semiconductor substrate below the word line and between the bit line and its adjacent bit line. For the semiconductor device, the charge accumulation layer is formed above the channel region in a widthwise direction of the word line, and a width of the word line is set to be narrower than a distance between an end of the channel region and a central part of the channel region in a lengthwise direction of the word line.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 23, 2011
    Assignee: Spansion LLC
    Inventors: Fumihiko Inoue, Haruki Souma, Yukio Hayakawa
  • Patent number: 7998809
    Abstract: An improved process forming a floating gate region of a semiconductor memory device. The process includes using a ceria slurry for chemical mechanical planarization to provide “stop on polysilicon” capabilities, allowing a thin nitride layer, or in the alternative no nitride layer, to be used and reducing the number of processing steps required to form the floating gate region.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Naga Chandrasekaran
  • Patent number: 7994003
    Abstract: A method of fabricating a nonvolatile memory device includes forming a tunnel insulating layer on a semiconductor substrate, forming a charge storage layer on the tunnel insulating layer, forming a dielectric layer on the charge storage layer, the dielectric layer including a first aluminum oxide layer, a silicon oxide layer, and a second aluminum oxide layer sequentially stacked on the charge storage layer, and forming a gate electrode on the dielectric layer, the gate electrode directly contacting the second aluminum oxide layer of the dielectric layer.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byong-Ju Kim, Sun-Jung Kim, Zong-Liang Huo, Jun-Kyu Yang, Seon-Ho Jo, Han-Mei Choi, Young-Sun Kim
  • Publication number: 20110180865
    Abstract: Memory cells formed to include a charge storage node having conductive nanodots over a charge storage material are useful in non-volatile memory devices and electronic systems.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventor: Nirmal Ramaswamy
  • Patent number: 7985649
    Abstract: A method of making a semiconductor device on a semiconductor layer is provided. The method includes: forming a select gate dielectric layer over the semiconductor layer; forming a select gate layer over the select gate dielectric layer; and forming a sidewall of the select gate layer by removing at least a portion of the select gate layer. The method further includes growing a sacrificial layer on at least a portion of the sidewall of the select gate layer and under at least a portion of the select gate layer and removing the sacrificial layer to expose a surface of the at least portion of the sidewall of the select gate layer and a surface of the semiconductor layer under the select gate layer. The method further includes forming a control gate dielectric layer, a charge storage layer, and a control gate layer.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 26, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Cheong M. Hong, Sung-Taeg Kang, Konstantin V. Loiko, Spencer E. Williams
  • Patent number: 7985650
    Abstract: A nonvolatile semiconductor memory device includes a floating gate electrode which is selectively formed on a main surface of a first conductivity type with a first gate insulating film interposed therebetween, a control gate electrode formed on the floating gate electrode with a second gate insulating film interposed therebetween, and source/drain regions of a second conductivity type which are formed in the main surface of the substrate in correspondence with the respective gate electrodes. The first gate electrode has a three-layer structure in which a silicon nitride film is held between silicon oxide films, and the silicon nitride film includes triple coordinate nitrogen bonds.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Mitani, Daisuke Matsushita
  • Patent number: 7985647
    Abstract: In one embodiment of a method of manufacturing a nonvolatile memory device, a tunnel insulating layer and a charge trap layer are first formed over a semiconductor substrate that defines active regions and isolation regions. The tunnel insulating layer, the charge trap layer, and the semiconductor substrate formed in the isolation regions are etched to form trenches for isolation in the respective isolation regions. The trenches for isolation are filled with an insulating layer to form isolation layers in the respective trenches. A lower passivation layer is formed over an entire surface including top surfaces of the isolation layers. A first oxide layer is formed over an entire surface including the lower passivation layer. Meta-stable bond structures within the lower passivation layer are removed. A nitride layer, a second oxide layer, and an upper passivation layer are sequentially formed over an entire surface including the first oxide layer.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: July 26, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kwang Hyun Yun
  • Patent number: 7982262
    Abstract: A NAND based memory device uses inversion bit lines in order to eliminate the need for implanted bit lines. As a result, the cell size can be reduced, which can provide greater densities in smaller packaging. In another aspect, a method for fabricating a NAND based memory device that uses inversion bit lines is disclosed.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: July 19, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Chao-I Wu
  • Patent number: 7981815
    Abstract: Disclosed is a producing method or a semiconductor device including: loading at least one substrate into a processing chamber; forming a metal oxide film or a silicon oxide film on a surface of the substrate by repeatedly supplying a metal compound or a silicon compound, each of which is a first material, an oxide material which is a second material including an oxygen atom, and a hydride material which is a third material, into the processing chamber predetermined times; and unloading the substrate from the processing chamber.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 19, 2011
    Assignees: Hitachi Kokusai Electric Inc., Shin-Etsu Chemical Co., Ltd.
    Inventors: Hironobu Miya, Kazuhiro Hirahara, Yoshitaka Hamada, Atsuhiko Suda
  • Patent number: 7981745
    Abstract: Methods of forming a top oxide around a charge storage material layer of a memory cell and methods of improving quality of a top oxide around a charge storage material layer of a memory cell are provided. The method can involve providing a charge storage layer on a semiconductor substrate, a nitride layer on the charge storage layer, and a first poly layer on the nitride layer, and converting at least a portion of the nitride layer to a top oxide. By converting at least a portion of a nitride layer to a top oxide layer, the quality of the resultant top oxide layer can be improved.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 19, 2011
    Assignee: Spansion LLC
    Inventors: Chungho Lee, Kuo-Tung Chang, Hiroyuki Kinoshita, Huaqiang Wu, Fred Cheung
  • Publication number: 20110169067
    Abstract: A microelectronic flash memory device including a plurality of memory cells including transistors fitted with a matrix of channels connecting a block of common source to a second block on which bit lines rest, the transistors also being formed by a plurality of gates including at least one gate material, including a first selection gate coating the channels, a plurality of control gates coating the channels, a plurality of second selection gates each coating the channels of the same row and the matricial arrangement, at least one or more of the gates based on superposition of layers including at least one first layer of dielectrical material, at least one charge store zone, and at least one second layer of dielectrical material.
    Type: Application
    Filed: July 10, 2009
    Publication date: July 14, 2011
    Applicant: COMM A L'ENER ATOM ET AUX ENERGIES ALT.
    Inventors: Thomas Ernst, Gabriel Molas, Barbara De Salvo, Stephane Becu
  • Patent number: 7977227
    Abstract: A method of manufacturing a non-volatile semiconductor memory device includes forming a sub-gate without an additional mask. A low word-line resistance is formed by a metal silicide layer on a main gate of the memory device. In operation, application of a voltage to the sub-gate forms a transient state inversion layer that serves as a bit-line, so that no implantation is required to form the bit-line.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: July 12, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Chiahua Ho, Yen-Hao Shih, Hang-Ting Lue, Erh-Kun Lai, Kuang Yeu Hsieh
  • Patent number: 7977735
    Abstract: A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 12, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, Hang-Ting Lue, Kuang Yeu Hsieh
  • Patent number: 7977191
    Abstract: A method of forming a flash memory device includes forming a plurality of memory gates over a semiconductor substrate, forming an oxide film over the uppermost surface and sidewalls of the memory gates and then forming a plurality of selective gates on sidewalls of each of the memory gates.
    Type: Grant
    Filed: December 27, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Ki-Jun Yun
  • Publication number: 20110165745
    Abstract: A nonvolatile semiconductor memory according to examples of the present invention comprises a memory cell and a peripheral transistor. The memory cell has a first intergate insulating film having a multilayer structure and provided on a floating gate electrode and an isolation insulating layer. The peripheral transistor has a second intergate insulating film having a multilayer structure and provided on a first gate electrode and a second isolation insulating layer. The first and second intergate insulating films have the same structure, and a lowermost insulating layer of the first intergate insulating film on the first isolation insulating layer is thinner than a lowermost insulating layer of the second intergate insulating film on the second isolation insulating layer.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Inventor: Toshitake Yaegashi
  • Patent number: 7973356
    Abstract: A nonvolatile semiconductor memory device includes: a semiconductor substrate; a first gate electrode formed on the semiconductor substrate through a gate insulating film; a second gate electrode formed in a side direction of the first gate electrode and electrically insulated from the first gate electrode; and an insulating film formed at least between the semiconductor substrate and the second gate electrode to trap electric charge, as an electric charge trapping film. The first gate electrode comprises a lower portion contacting the gate insulating film and an upper portion above the lower portion of the first gate electrode, and a distance between the upper portion of the first gate electrode and the second gate electrode is longer than a distance between the lower portion of the first gate electrode and the second gate electrode.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 5, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Takeshi Kikuchi
  • Patent number: 7968443
    Abstract: A cross method for fabricating a CMOS integrated circuit (IC) includes providing a semiconductor wafer having a topside semiconductor surface, a bevel semiconductor surface, and a backside semiconductor surface, wherein the bevel semiconductor surface and backside semiconductor surface include silicon or germanium. A metal including high-k gate dielectric layer is formed on at least the topside semiconductor surface and on at least a portion of the bevel semiconductor surface and backside semiconductor surface. The high-k dielectric material on the bevel semiconductor surface and the backside semiconductor surface are selectively removed while protecting the high-k dielectric layer on the topside semiconductor surface. The selective removing includes a first oxidizing treatment, and a fluoride including wet etch follows the first oxidizing treatment. The fabrication of the IC is completed including forming at least one metal gate layer on the high-k gate dielectric layer after the selectively removing step.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 28, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Brian K. Kirkpatrick, James J. Chambers
  • Patent number: 7968407
    Abstract: A method of manufacturing a semiconductor memory device, the method including forming a tunnel insulation layer on a substrate, forming a preliminary charge trapping layer on the tunnel insulation layer, forming an etch stop layer on the preliminary charge trapping layer, wherein a portion of the preliminary charge trapping layer is not covered by the etch stop layer, removing the exposed portion of the preliminary charge trapping layer to form a charge trapping layer having a uniform thickness, forming a dielectric layer on the charge trapping layer, and forming a gate electrode on the dielectric layer.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Albert Fayrushin
  • Patent number: 7969535
    Abstract: A pixel unit having a display area is provided. The pixel unit includes a first substrate, a second substrate, a liquid crystal layer, and at least one ultraviolet light (UV) absorption pattern. The second substrate is disposed in parallel to the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate. The UV absorption pattern is disposed between the first substrate and the second substrate. A part of the display area overlaps the UV absorption pattern to define at least one first alignment area, while the part of the display area which does not overlap the UV absorption pattern defines at least one second alignment area. The liquid crystal molecules of the liquid crystal layer present different pre-tilt angles in the first alignment area and the second alignment area.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 28, 2011
    Assignee: Au Optronics Corporation
    Inventors: Chung-Hsiang Chiu, Ching-Huan Lin, Sung-Kao Liu, Yue-Shih Jeng
  • Patent number: 7964462
    Abstract: Provided is a method of manufacturing a semiconductor device. The method includes: forming a charge storage layer on a substrate on which a gate insulating layer is formed; forming a first metal oxide layer on the charge storage layer using a first reaction source including a metal oxide layer precursor and a first oxidizing agent and changing the first metal oxide layer to a second metal oxide layer using a second reaction source including a second oxidizing agent having larger oxidizing power than the first oxidizing agent and repeating the forming of the first metal oxide layer and the changing of the first metal oxide layer to the second metal oxide layer several times to form a blocking insulating layer; and forming an electrode layer on the blocking insulating layer.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-chul Yoo, Han-mei Choi, Kwang-hee Lee, Kyong-won An, Cha-young Yoo
  • Patent number: 7964908
    Abstract: In one aspect, a memory cell includes a plurality of dielectric layers located within a charge storage gate structure. At least one of the dielectric layers includes an dielectric material including oxygen, and nano regions including oxygen embedded in the dielectric material, where an oxygen concentration of the dielectric material is the greater than an oxygen concentration of the nano regions. In another aspect, at least one of the dielectric layers includes a dielectric material and nano regions embedded in the dielectric material, where an atomic composition of the dielectric material is the same as the atomic composition of the nano regions, and a density of the dielectric material is the greater than a density of the nano regions.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sun-Jung Kim, Young-Sun Kim, Se-Hoon Oh, Eun-Ha Lee, Young-Su Chung
  • Patent number: 7960266
    Abstract: High density semiconductor devices and methods of fabricating the same are provided. Spacer fabrication techniques are utilized to form circuit elements having reduced feature sizes, which in some instances are smaller than the smallest lithographically resolvable element size of the process being used. Spacers are formed that serve as a mask for etching one or more layers beneath the spacers. An etch stop pad layer having a material composition substantially similar to the spacer material is provided between a dielectric layer and an insulating sacrificial layer such as silicon nitride. When etching the sacrificial layer, the matched pad layer provides an etch stop to avoid damaging and reducing the size of the dielectric layer. The matched material compositions further provide improved adhesion for the spacers, thereby improving the rigidity and integrity of the spacers.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: June 14, 2011
    Assignee: SanDisk Corporation
    Inventors: James Kai, George Matamis, Tuan Duc Pham, Masaaki Higashitani, Takashi Orimoto
  • Patent number: 7960230
    Abstract: According to an aspect of the invention, there is provided a semiconductor device including a plurality of memory cells, comprising a plurality of floating gate electrodes which are formed on a tunnel insulating film formed on a semiconductor substrate and have an upper portion which is narrower in a channel width direction than a lower portion, an interelectrode insulating film formed on the floating gate electrodes, and a control gate electrode which is formed on the interelectrode insulating film formed on the floating gate electrodes and partially buried between the floating gate electrodes opposing each other.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshio Ozawa
  • Publication number: 20110133264
    Abstract: A method for manufacturing an Electrically Erasable Programmable Read-Only Memory (EEPROM) device includes providing a substrate and forming a gate oxide over the substrate. Also, the method includes providing a mask overlying the gate oxide layer, the mask defining a tunnel opening. The method additionally includes performing selective etching over the mask to form a tunnel oxide layer. The method includes forming a floating gate over the tunnel oxide layer and a selective gate over the gate oxide layer. The method includes angle doping a region of the substrate using the floating gate as a mask to obtain a first doped region. The method further includes forming a dielectric layer over the floating gate and a control gate over the dielectric layer. The method additionally includes angle doping a second region of the substrate using the selective gate as a mask to obtain a second doped region, wherein the first and second doped regions partially overlap.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 9, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: YIPENG JAN, Zhen Yang, Shenghe Huang
  • Patent number: 7951674
    Abstract: The present invention provides a method for making SONOS memory, comprising the following steps: depositing silicon oxide layer and silicon oxynitride layer in sequence on underlayer; coating a layer of photoresist on the silicon oxynitride layer; removing part of the photoresist and form the logic area; removing silicon oxynitride layer in the logic area; removing the bottom oxide layer in the logic area; growing top oxide layer on the silicon oxynitride layer and logic area; removing the top oxide layer in the logic area; growing gate oxide layer; forming device structure of SONOS and logic area. The present invention can avoid the damage of top oxide layer and lateral etching in wet etching so as to improve the defect-free rate of devices.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 31, 2011
    Assignee: Shanghai IC R&D Center Co., Ltd.
    Inventors: Jun Zhu, Ming Li
  • Publication number: 20110124166
    Abstract: In a memory device and a method of manufacturing the memory device, a source contact connected to a common source line may be formed on a drain region instead of a source region. A transistor having a negative threshold voltage may be formed between the source region and the drain region. A channel of the transistor may be formed. Because the source contact is formed on the drain region, the size of the source region may be reduced. An integration degree of the memory device may be improved. A control gate may linearly extend in a second direction because the source contact is not formed on the source region.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Inventor: Wook-Hyoung Lee
  • Publication number: 20110115009
    Abstract: A method for forming a semiconductor device is disclosed. The method includes providing a substrate prepared with a second gate structure. An inter-gate dielectric is formed on the substrate and over the second gate. A first gate is also formed. The first gate is adjacent to and separated from the second gate by the inter-gate dielectric. The substrate is patterned to form a split gate structure with the first and second adjacent gates. The split gate structure is provided with an e-field equalizer adjacent to the first gate. The e-field equalizer improves uniformity of e-field across the first gate during operation.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Shyue Seng TAN, Lee Wee TEO, Chunshan YIN
  • Publication number: 20110110156
    Abstract: There is provided a technology which can allow a semiconductor chip formed with a nonvolatile memory to be sufficiently reduced in size. There is also provided a technology which can ensure the reliability of the nonvolatile memory. In a memory cell of the present invention, a boost gate electrode is formed over a control gate electrode via an insulating film. The boost gate electrode has the function of boosting a voltage applied to a memory gate electrode through capacitive coupling between the boost gate electrode and the memory gate electrode. That is, during a write operation or an erase operation to the memory cell, a high voltage is applied to the memory gate electrode and, to apply the high voltage to the memory gate electrode, the capacitive coupling using the boost gate electrode is subsidiarily used in the present invention.
    Type: Application
    Filed: October 23, 2010
    Publication date: May 12, 2011
    Inventors: Yoshiyuki KAWASHIMA, Takashi Hashimoto
  • Publication number: 20110101441
    Abstract: Methods of forming memory and memory devices are disclosed, such as a memory device having a memory cell with a floating gate formed from a first conductor, a control gate formed from a second conductor, and a dielectric interposed between the floating gate and the control gate. For example, a select gate may be coupled in series with the memory cell and has a first control gate portion formed from the first conductor and a second control gate portion formed from a third conductor. A contact may be formed from the third conductor and coupled in series with the select gate. Other methods and devices are also disclosed.
    Type: Application
    Filed: November 5, 2009
    Publication date: May 5, 2011
    Inventor: Andrew Bicksler
  • Patent number: 7935596
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The bit line dielectrics can extend into the semiconductor. The memory cell contains a charge trapping dielectric stack, a poly gate, a pair of pocket implant regions, and a pair of bit lines. The bit line can be formed by an implant process at a higher energy level and/or a higher concentration of dopants without suffering device short channel roll off issues because spacers at bit line sidewalls constrain the implant in narrower implant regions.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 3, 2011
    Assignee: Spansion LLC
    Inventors: Ning Cheng, Huaqiang Wu, Hiro Kinoshita, Jihwan Choi
  • Patent number: 7932125
    Abstract: Devices and methods for forming self-aligned charge storage regions are disclosed. In one embodiment, a method for manufacturing a semiconductor device comprises forming a layer of a nitride film stacked between two oxide films on a semiconductor substrate, and forming a gate electrode on the layer of the nitride film stacked between the two oxide films. In addition, the method comprises removing side portions of the nitride film such that a central portion of the nitride film below a center portion of the gate electrode remains, oxidizing the central portion of the nitride film, and forming charge storage layers in the side portions of the nitride film, where the charge storage layers are separated by the central portion of the nitride film.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 26, 2011
    Assignee: Spansion LLC
    Inventor: Fumihiko Inoue
  • Patent number: 7932149
    Abstract: In a method of manufacturing a semiconductor device, a tunnel insulation layer is formed on a substrate. A charge trapping layer is formed on the tunnel insulation layer. A protection layer pattern or a mold is formed on the charge trapping layer. Charge trapping layer patterns are formed on the tunnel insulation layer by etching the charge trapping layer using the protection layer pattern or the mold. The charge trapping layer patterns may be spaced apart from each other. Blocking layers are formed on the charge trapping layer patterns, respectively. A gate electrode is formed on the blocking layers and the tunnel insulation layer using the protection layer pattern or the mold.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hyun Park, Jeong-Uk Han, Jae-Min Yu, Young-Cheon Jeong, Sang-Hoon Park, Kwan-Jong Roh, Byeong-Cheol Lim, Yong-Seok Chung
  • Patent number: 7927949
    Abstract: A semiconductor memory device manufacturing method includes forming a floating gate electrode above a semiconductor substrate, forming an interelectrode insulating film above the floating gate electrode, forming a first radical nitride film on a surface of the interelectrode insulating film by first radical nitriding, and forming a control gate electrode on the first radical nitride film.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Isao Kamioka, Junichi Shiozawa, Akihito Yamamoto, Ryota Fujitsuka, Yoshihiro Ogawa, Katsuaki Natori, Katsuyuki Sekine, Masayuki Tanaka, Daisuke Nishida
  • Publication number: 20110084327
    Abstract: A non-volatile memory device includes a source region, a drain region, and a channel region therebetween. The channel region has a length extending from the source region to the drain region and a channel width in the direction perpendicular to the channel length direction. The device includes a floating gate positioned between the source and the drain in the channel length direction. The width of the floating gate is less than the channel width. A control gate covers a top surface and a side surface of the floating gate. The control gate also overlies an entirety of the channel region. Erasure of the cell is accomplished by Fowler-Nordheim tunneling from the floating gate to the control gate. Programming is accomplished by electrons migrating through an electron concentration gradient from a channel region underneath the control gate into a channel region underneath the floating gate and then injecting into the floating gate.
    Type: Application
    Filed: September 10, 2010
    Publication date: April 14, 2011
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: DE YUAN XIAO, Gary Chen, Roger Lee
  • Patent number: 7923327
    Abstract: Provided are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device comprises: a control gate region formed by doping a semiconductor substrate with second impurities; an electron injection region formed by doping the semiconductor substrate with first impurities, where a top surface of the electron injection region includes a tip portion at an edge; a floating gate electrode covering at least a portion of the control gate region and the tip portion of the electron injection region; a first tunnel oxide layer interposed between the floating gate electrode and the control gate region; a second tunnel oxide layer interposed between the floating gate electrode and the electron injection region; a trench surrounding the electron injection region in the semiconductor substrate; and a device isolation layer pattern filled in the trench.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kun Park
  • Patent number: 7919372
    Abstract: A semiconductor device having a silicon oxide/silicon nitride/silicon oxide (“ONO”) structure is formed by providing a first silicon oxide layer and a silicon nitride layer over a substrate having a memory region and a logic device region; patterning the first silicon oxide layer and the silicon nitride layer to define bottom oxide and silicon nitride portions of partially completed ONO stacks and to expose the substrate in the logic device regions; performing a rapid thermal annealing process in the presence of a radical oxidizing agent to form concurrently a second silicon oxide layer on the exposed surface of the silicon nitride layer and a gate oxide layer over the substrate; and depositing a conductive layer over the completed ONO stacks and the gate oxide. The invention is employed in manufacture of, for example, memory devices having and peripheral logic devices and memory cells including ONO structures.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 5, 2011
    Assignee: Macronix International, Co. Ltd.
    Inventors: Chih-Hao Wang, Hsin-Huei Chen, Chong-Jen Huang, Kuang-Wen Liu, Jia-Rong Chiou, Chong-Mu Chen