Including Elongated Source Or Drain Region Disposed Under Thick Oxide Regions (e.g., Buried Or Diffused Bitline, Etc.) Patents (Class 438/262)
  • Patent number: 7001779
    Abstract: The invention includes a method of forming a semiconductor construction, such as an MRAM construction. A block is formed over a semiconductor substrate. First and second layers are formed over the block, and over a region of the substrate proximate the block. The first and second layers are removed from over the block while leaving portions of the first and second layers over the region proximate the block. At least some of the first layer is removed from under the second layer to form a channel over the region proximate the block. A material, such as a soft magnetic material, is provided within the channel. The invention also includes semiconductor constructions.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: February 21, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Joel A. Drewes
  • Patent number: 7001808
    Abstract: Defects in element forming regions on which memory cells of a non-volatile memory are formed are to be diminished to reduce leakage current. End portions of element forming regions with non-volatile memory cells formed thereon are extended a length D by utilizing the region which underlies a dummy conductive film, whereby a stress induced from an insulating film which surrounds the element forming regions is concentrated on the extended region. As a result, defects do not extend up to the regions where memory cells are formed and therefore it is possible to reduce leakage current in the memory cells.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: February 21, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Keisuke Tsukamoto, Yoshihiro Ikeda, Tsutomu Okazaki, Daisuke Okada, Hiroshi Yanagita
  • Patent number: 6989320
    Abstract: The present invention pertains to implementing a dual poly process in forming a transistor based memory device. The process allows buried bitlines to be formed with less energy and to shallower depths than conventional bitlines to save resources and space, and to improve Vt roll-off. Oxide materials are also formed over the buried bitlines to improve (e.g., increase) a breakdown voltage between the bitlines and wordlines, thus allowing for greater discrimination between programming and erasing charges and more reliable resulting data storage. The process also facilitates a reduction in buried bitline width and thus allows bitlines to be formed closer together. As a result, more devices can be “packed” within the same or a smaller area.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: January 24, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Weidong Qian, Mark Ramsbey, Jean Yee-Mei Yang, Sameer Haddad
  • Patent number: 6987048
    Abstract: A memory device and a method of fabrication are provided. The memory device includes a semiconductor substrate, a bottom dielectric, a charge storing layer, and a top dielectric in a stacked gate configuration. Silicided buried bitlines, which function as a source and a drain, are formed within the substrate. The silicided bitlines have a reduced resistance, which greatly reduces the number of bitline contacts necessary in an array of memory devices.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 17, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ning Cheng, Hiroyuki Kinoshita, Jeff P. Erhardt, Mark T. Ramsbey, Cyrus Tabery, Jean Yee-Mei Yang
  • Patent number: 6949788
    Abstract: A nonvolatile semiconductor memory device having MONOS type memory cells of increased efficiency by hot electron injection and improved scaling characteristics includes a channel forming region in the vicinity of a surface of a substrate, first and second impurity regions, acting as a source and a drain in operation, formed in the vicinity of the surface of the substrate sandwiching the channel forming region between them, a gate insulating film stacked on the channel forming region and having a plurality of films, and a charge storing means that is formed in the gate insulating film dispersed in the plane facing the channel forming region. A bottom insulating film includes a dielectric film that exhibits a FN type electroconductivity and makes the energy barrier between the bottom insulating film and the substrate lower than that between silicon dioxide and silicon.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: September 27, 2005
    Assignee: Sony Corporation
    Inventors: Ichiro Fujiwara, Toshio Kobayashi
  • Patent number: 6919242
    Abstract: By arranging floating spacer and gate non-volatile memory transistors in symmetric pairs, increased chip density may be attained. For each pair of such transistors, the floating gates are laterally aligned with floating spacers appearing on laterally outward edges of each floating gate. At laterally inward edges, the two transistors share a common drain electrode. The transistors are independent of each other except for the shared drain electrode. Tunnel oxide separated the floating spacer from the floating gate, but both the spacer and the gate are maintained at a common potential, thereby providing dual paths for charge exiting the tunnel oxide, as the charged is propelled by a programming voltage. The pairs of transistors can be aligned in columns with the direction of the columns orthogonal to the direction of the pairs, thereby forming a memory array.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: July 19, 2005
    Assignee: Atmel Corporation
    Inventor: Bohumil Lojek
  • Patent number: 6908816
    Abstract: Embodiments of the present invention relate to a method for fabricating a Vss line in a memory device, which comprises: forming a plurality of memory cells above a semiconductor substrate, forming a channel between two of the memory cells, forming an oxide/nitride/oxide stack above the memory cells and the channel, removing a portion of the oxide/nitride/oxide stack between the memory cells to expose the semiconductor substrate, removing the oxide/nitride/oxide stack above the gates of the memory cells, forming a plurality of source regions in the substrate between the memory cells, forming a poly-silicon layer above the memory cells and the channel to connect to the source regions, and removing a sufficient portion of the poly-silicon layer to form a Vss line.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: June 21, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Timothy Thurgate, Nga-Ching Wong
  • Patent number: 6897110
    Abstract: A method of fabricating a memory array, while protecting it from charge damage. Bitlines that may have source/drain regions of memory cells are formed in a substrate. Wordlines are formed above the bitlines and may have gate regions. Next, a first metal region that is coupled to one of the bitlines is formed above the bitlines. A second metal region that is not electrically coupled to the first metal region is formed. Then, the first metal region is electrically coupled to the second metal region. Charge damage is reduced by keeping the antenna ratio between the first metal region and the bitline low. For further protection, a diode or fuse may also be formed between the substrate and the portion of the metal region that is coupled to the bitline. Also, fuse may be formed between a bitline and a wordline to protect the wordline.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 24, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Yi He, Wei Zheng, Zhizheng Liu, Mark W. Randolph, Darlene G. Hamilton, Ken Tanpairoj
  • Patent number: 6894340
    Abstract: A process and structure for fabricating a non-volatile memory cell through the formation of a source and drain region and a charge trapping layer located therebetween is presented. E-fields for generating trapped charges are formed through using poly-edge discharge techniques wherein the gate structures of the memory cells are laterally separated from the vertical region of the source and drain regions. The gate structure forms a laterally directed e-field through the charge trapping layer to one of the source and drain regions which enables the charge to be trapped and retained in an area that is lateral to the source and drain regions. Lateral separation of the gate from the source and drain regions is maintained through the use of spacers which may take the form of insulated polysilicon structures or in an alternate embodiment may take the form of insulating spacers located on the sidewalls of the gate structure.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: May 17, 2005
    Assignee: Macronix International
    Inventors: Tung Chen Kuo, Hsiang Lan Lung
  • Patent number: 6891221
    Abstract: In this invention a process for a flash memory cell and an architecture for using the flash memory cell is disclosed to provide a nonvolatile memory having a high storage density. Adjacent columns of cells share the same source and the source line connecting these sources runs vertically in the memory layout, connecting to the sources of adjacent columns memory cells. Bit lines connect to drains of cells in adjacent columns and are laid out vertically, alternating with source lines in an every other column scheme. Wordlines made of a second layer of polysilicon form control gates of the flash memory cells and are continuous over the full width of a memory partition. Programming is done in a vertical page using hot electrons to inject charge onto the floating gates. the cells are erased using Fowler-Nordheim tunneling of electrons from the floating gate to the control gate by way of inter polysilicon oxide formed on the walls of the floating gates.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: May 10, 2005
    Assignee: Aplus Flash Technology, Inc.
    Inventors: Peter W. Lee, Hung-Sheng Chen, Vei-Han Chan
  • Patent number: 6887757
    Abstract: A method of fabricating a flash memory device is provided. First, a substrate partitioned into a memory cell region and a peripheral circuit region is provided. A tunnel dielectric layer is formed over the memory cell region and a liner layer is formed over the peripheral circuit region. Thereafter, a patterned gate conductive layer is formed over the substrate. An inter-gate dielectric layer and a passivation layer are sequentially formed over the substrate. The passivation layer, the inter-gate dielectric layer, the gate conductive layer and the liner layer over the peripheral circuit region are removed. A gate dielectric layer is formed over the peripheral circuit region while the passivation layer over the memory cell region is converted into an oxide layer. Another conductive layer is formed over the substrate. The conductive layer, the oxide layer, the inter-gate dielectric layer and the gate conductive layer over the memory cell region are patterned to form a memory gate.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: May 3, 2005
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Kuang-Chao Chen, Hsueh-Hao Shih, Ling-Wuu Yang
  • Patent number: 6875651
    Abstract: A memory array dual-trench isolation structure and a method for forming the same have been provided.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: April 5, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Patent number: 6875660
    Abstract: A method of manufacturing a flash memory is provided. First, a substrate with a first gate structure and a second gate structure thereon is provided. The first gate structure and the second gate structure each comprises of a dielectric layer, a first conductive layer and a cap layer. A tunneling oxide layer is formed over the substrate and then a first spacer is formed on the sidewall of the first conductive layer. Thereafter, a second conductive layer is formed on one side designated for forming a source region of the sidewalls of the first gate structure and the second gate structure. Then, the source region is formed in the substrate in the designated area. Next, an inter-gate dielectric layer is formed over the second conductive layer and then an insulating layer is formed over the source region. After forming a third conductive layer over the area between the first gate structure and the second gate structure, a drain region is formed in the substrate.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: April 5, 2005
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chih-Wei Hung, Cheng-Yuan Hsu, Da Sung
  • Patent number: 6869843
    Abstract: A disclosed method for forming a non-volatile memory cell includes forming a component stack including an electron trapping layer on a substrate surface. A dielectric layer is formed over the component stack, and a portion is removed such that a remainder of the dielectric layer exists substantially along sidewalls of the component stack. An oxide layer is formed over a bit line in the substrate adjacent to the component stack, and an electrically conductive layer is formed over the component stack and the oxide layer. A described non-volatile memory cell includes a component stack on a substrate surface, the component stack including an electron trapping layer. Multiple dielectric spacers are positioned along sidewalls of the component stack. An oxide layer is positioned over a bit line in the substrate adjacent to the component stack, and an electrically conductive layer is positioned over the component stack and the oxide layer.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: March 22, 2005
    Assignee: Macronix International Co., Ltd.
    Inventors: Fu-Shiung Hsu, Chen-Chin Liu
  • Patent number: 6858497
    Abstract: The present invention prevents production of residue which causes short-circuit between word lines. A memory cell comprises a channel formation region CH, charge storage films CSF each comprised of a plurality of stacked dielectric films, two storages comprised of regions of the charge storage films CSF overlapping the two ends of the channel formation region CH, a single-layer dielectric film DF2 contacting the channel formation region CH between the storages, auxiliary layers (for example, bit lines BL1 and BL2) formed on two impurity regions S/D, two first control electrodes CG1 and CG2 formed on the auxiliary layers with dielectric film interposed and positioned on the storages, and a second control electrode WL buried in a state insulated from the first control electrodes CG1 and CG2 in a space between them and contacting the single-layer dielectric film DF2.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: February 22, 2005
    Assignee: Sony Corporation
    Inventors: Hiroyuki Moriya, Toshio Kobayashi
  • Patent number: 6849514
    Abstract: A method of manufacturing a SONOS flash memory device is disclosed.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: February 1, 2005
    Assignee: Donghu Electronics Co., Ltd.
    Inventor: Chang Hun Han
  • Patent number: 6830969
    Abstract: The present invention relates to a method of manufacturing a semiconductor device.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: December 14, 2004
    Assignee: Hynix Semiconductor INC
    Inventor: Won Sic Woo
  • Patent number: 6825084
    Abstract: A method for making a twin MONOS memory array is described where two nitride storage sites lay under the memory cell word gate. The fabrication techniques incorporate self alignment techniques to produce a small cell in which N+ diffusion the nitride storage sites are defined by sidewalls. The memory cell is used in an NAND array where the memory operations are controlled by voltages on the word lines and column selectors. Each storage site within the memory cell is separately programmed and read by application of voltages to the selected cell through the selected word line whereas the unselected word lines are used to pass drain and source voltages to the selected cell from upper and lower column voltages.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 30, 2004
    Assignee: Halo LSI, Inc.
    Inventors: Seiki Ogura, Tomoko Ogura, Tomoya Saito, Kimihiro Satoh
  • Patent number: 6825523
    Abstract: A process for manufacturing a dual charge storage location electrically programmable memory cell that includes the steps of forming a central insulated gate over a semiconductor substrate; forming physically separated charge-confining layers stack portions of a dielectric-charge trapping material-dielectric layers stack at the sides of the central gate, the charge trapping material layer in each charge-confining layers stack portion forming a charge storage element; forming side control gates over each of the charge-confining layers stack portions; forming memory cell source/drain regions laterally to the side control gates; and electrically connecting the side control gates to the central gate. Each of the charge-confining layers stack portions at the sides of the central gate is formed with an “L” shape, with a base charge-confining layers stack portion lying on the substrate surface and an upright charge-confining layers stack portion lying against a respective side of the insulated gate.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: November 30, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventors: Paolo Caprara, Claudio Brambilla, Manlio Sergio Cereda
  • Patent number: 6815794
    Abstract: Semiconductor devices with a multiple isolation structure and methods for fabricating the same are provided. In one aspect, a semiconductor device comprises a heavily doped buried layer having a first conductivity type, which is formed in a predetermined region of a semiconductor substrate, and an epitaxial layer having the first conductivity type, which covers an entire surface of the semiconductor substrate. A device isolation structure is disposed such that the device isolation structure penetrates the epitaxial layer and a portion of the semiconductor substrate to define a device region. The device isolation structure includes an upper isolation structure penetrating an epitaxial layer as well as a lower isolation structure formed in the semiconductor substrate under the upper isolation structure.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: November 9, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-Sook Shin, Kwang-Dong Yoo
  • Patent number: 6812096
    Abstract: A flash memory device that comprises a self-aligned contact opening and a fabrication method thereof are described. Subsequent to the formation of the control gate of the flash memory device, a spacer is formed over a sidewall of the gate layer in a subsequent process, followed by forming another dielectric layer over the substrate to cover the control gate. Thereafter, the dielectric layer and the dielectric layer underlying the control gate are patterned to form a self-aligned contact opening between two neighboring control gates to expose a bit line in the substrate. A conductive material further fills the self-aligned contact opening.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: November 2, 2004
    Assignee: Macronix International Co., Ltd.
    Inventors: Kuang-Chao Chen, Ling-Wuu Yang, Jui-Lin Lu
  • Patent number: 6812099
    Abstract: A method for fabricating a non-volatile memory having a P-type floating gate is described. A tunneling layer is formed on a substrate and then a first patterned polysilicon layer is formed on the tunneling layer. A buried drain is formed in the substrate beside the first polysilicon layer and then an insulating structure is formed on the tunneling layer on the buried drain. Thereafter, a second polysilicon layer is formed on the first polysilicon layer to constitute a floating gate together with the first polysilicon layer. A P-type ion is implanted into the second polysilicon layer and then a dielectric layer and a control gate are sequentially formed on the floating gate. A thermal process is then performed to make the P-type, ion in the second polysilicon layer diffuse into the first polysilicon layer.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: November 2, 2004
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Hung-Sui Lin, Nian-Kai Zous, Tao-Cheng Lu, Kent Kuohua Chang
  • Publication number: 20040211953
    Abstract: A contact structure for a PCM device is formed by an elongated formation having a longitudinal extension parallel to the upper surface of the body and an end face extending in a vertical plane. The end face is in contact with a bottom portion of an active region of chalcogenic material so that the dimensions of the contact area defined by the end face are determined by the thickness of the elongated formation and by the width thereof.
    Type: Application
    Filed: January 13, 2004
    Publication date: October 28, 2004
    Applicants: STMicroelectronics S.r.l., OVONYX Inc.
    Inventors: Osama Khouri, Giorgio Pollaccia, Fabio Pellizzer
  • Publication number: 20040209427
    Abstract: A method of filling a bit line contact via. The method includes providing a substrate having a transistor, with a gate electrode, drain region, and source region, on the substrate, forming a first barrier layer overlying the sidewall of the gate electrode, drain region, and source region, forming a first conductive layer overlying the first barrier layer, removing the first barrier layer and first conductive layer above the source region, forming an insulating barrier layer overlying the substrate, forming a first dielectric layer overlying the insulating barrier layer above the source region, forming a second dielectric layer overlying the substrate, forming a via through the second dielectric layer and the insulative barrier layer, exposing the first conductive layer, forming a second barrier layer overlying the surface of the via, and filling the via with a second conductive layer.
    Type: Application
    Filed: August 13, 2003
    Publication date: October 21, 2004
    Applicant: Nanya Technology Corporation
    Inventors: Tse-Yao Huang, Yi-Nan Chen
  • Patent number: 6803265
    Abstract: A manufacturing method for an integrated circuit memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric layer. First and second bitlines are implanted and a wordline layer is deposited. A hard mask layer is deposited over the wordline layer. A photoresist is deposited over the wordline layer and used to form a hard mask. The photoresist is removed. The wordline layer is processed using the hard mask to form a wordline and the hard mask is removed. A reduced hydrogen, ultra-violet block data retention liner covers the wordline and the charge-trapping dielectric layer. The reduced hydrogen levels reduce the charge loss compared to prior art. The surface of the liner is processed to block UV light before completing the integrated circuit.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: October 12, 2004
    Assignee: FASL LLC
    Inventors: Minh Van Ngo, Arvind Halliyal, Tazrien Kamal, Hidehiko Shiraiwa, Rinji Sugino, Dawn M. Hopper, Pei-Yuan Gao
  • Patent number: 6803273
    Abstract: A method of forming a semiconductor component having a conductive line (24) and a silicide region (140) that crosses a trench (72). The method involves forming nitride sidewalls (130) to protect the stack during the silicidation process.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: October 12, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas M. Ambrose, Freidoon Mehrad, Ming Yang, Lancy Tsung
  • Patent number: 6798015
    Abstract: A semiconductor device according to the present invention includes a memory region in which a memory cell array is formed of non-volatile memory devices arranged in a matrix of a plurality of rows and columns. Each of the nonvolatile memory devices includes a word gate formed over a semiconductor layer with a gate insulating layer interposed in between, impurity layers formed in the semiconductor layer, and sidewall-shaped control gates formed along both side surfaces of the word gate. The control gate includes a first control gate and a second control gate which are adjacent to each other. The first control gate is formed on a first insulating layer formed of a first silicon oxide film, a silicon nitride film, and a second silicon oxide film. The second control gate is formed on a second insulating layer formed of a silicon oxide film.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: September 28, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Yoshikazu Kasuya
  • Patent number: 6797566
    Abstract: A semiconductor integrated circuit device with third gates comprising second conduction type source/drain diffusion layer regions 205 formed in first conduction type well 201, floating gates 203b formed on semiconductor substrate 200 through an insulator film 202, control gates 211a formed on floating gates 203b through nitrogen-introduced silicon oxide film 210a and third gates 207a different from the floating gates and the control gates, formed through the semiconductor substrates, the floating gates, the control gates and the insulator film, where the third gates are formed as filled in gaps between the floating gates existing in a vertical direction to word lines and channels and the height of third gates 207a thus formed is made lower than that of floating gates 203b, has improved reduction of memory cell size and operating speed and improved reliability after programming/erasing cycles.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: September 28, 2004
    Assignees: Renesas Technology Corp., Hitachi Device Engineering Corp. Ltd.
    Inventors: Takashi Kobayashi, Yasushi Goto, Tokuo Kure, Hideaki Kurata, Hitoshi Kume, Katsutaka Kimura, Syunichi Saeki
  • Patent number: 6784481
    Abstract: A flash memory having a charge-storage dielectric layer. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 31, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You-Cheol Shin, Jong-Woo Park, Jung-Dal Choi
  • Patent number: 6784055
    Abstract: A flash memory having a charge-storage dielectric layer and a method for forming the same are provided. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: August 31, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You-Cheol Shin, Jong-Woo Park, Jung-Dal Choi
  • Publication number: 20040166634
    Abstract: In this invention a process for a flash memory cell and an architecture for using the flash memory cell is disclosed to provide a nonvolatile memory having a high storage density. Adjacent columns of cells share the same source and the source line connecting these sources runs vertically in the memory layout, connecting to the sources of adjacent columns memory cells. Bit lines connect to drains of cells in adjacent columns and are laid out vertically, alternating with source lines in an every other column scheme. Wordlines made of a second layer of polysilicon form control gates of the flash memory cells and are continuous over the full width of a memory partition. Programming is done in a vertical page using hot electrons to inject charge onto the floating gates. the cells are erased using Fowler-Nordheim tunneling of electrons from the floating gate to the control gate by way of inter polysilicon oxide formed on the walls of the floating gates.
    Type: Application
    Filed: March 1, 2004
    Publication date: August 26, 2004
    Applicant: APLUS FLASH TECHNOLOGY, INC.
    Inventors: Peter W. Lee, Hung-Sheng Chen, Vei-Han Chan
  • Publication number: 20040161896
    Abstract: A buried bit line and a fabrication method thereof, wherein the device includes a substrate, a shallow doped region disposed in the substrate, a deep doped region disposed in the substrate below a part of the shallow doped region, wherein the shallow doped region and the deep dope region together form a bit line of the memory device.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Inventors: Jiun-Ren Lai, Chun-Yi Yang, Shi-Xian Chen, Gwen Chang
  • Patent number: 6778441
    Abstract: Structures and methods for DEAPROM memory with low tunnel barrier intergate insulators are provided. The DEAPROM memory includes a first source/drain region and a second source/drain region separated by a channel region in a substrate. A floating gate opposes the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator having a tunnel barrier of less than 1.5 eV. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of NiO, Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5, Y2O3, Gd2O3, SrBi2Ta2O3, SrTiO3, PbTiO3, and PbZrO3. The floating gate includes a polysilicon floating gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator. And, the control gate includes a polysilicon control gate having a metal layer formed thereon in contact with the low tunnel barrier intergate insulator.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Jerome M. Eldridge, Kie Y. Ahn
  • Publication number: 20040126973
    Abstract: The present invention is related to a method for fabricating a semiconductor device capable of preventing a bit line pattern from being attacked during a storage node contact hole formation. The method includes the steps of: forming a bit line insulation layer on a substrate structure having a plurality of plugs; forming a group of trenches exposing a group of the plugs by etching the bit line insulation layer; burying each trench by a conductive material to form a bit line electrically connected to the exposed plug; isolating the bit line by performing a chemical mechanical polishing process until the bit line insulation layer is exposed; forming an inter-layer insulation layer on the above structure including the bit line; and etching selectively the inter-layer insulation layer and the bit line insulation layer to form storage node contact holes exposing another group of the plugs.
    Type: Application
    Filed: July 1, 2003
    Publication date: July 1, 2004
    Inventor: Sung-Kwon Lee
  • Publication number: 20040126966
    Abstract: A method for forming a semiconductor device having improved characteristics and reliability by forming a hard mask layer on a bit line to prevent degradation of characteristics of the device in a self-alignment contact process of a storage electrode is disclosed. The hard mask layer utilizes over-hang formed at the upper portion of the bit line so as to provide sufficient protection for the bit line in the subsequent etching processes.
    Type: Application
    Filed: June 30, 2003
    Publication date: July 1, 2004
    Inventors: Jung Taik Cheong, Sang Do Lee, Choi
  • Patent number: 6756269
    Abstract: A patterning of a first poly-silicon is processed, to divide the first poly-silicon into memory elements and expose silicon substrate portions which function as boundaries. A second poly-silicon is formed on the silicon substrate. A first N+ impurity diffusing region is formed by diffusing impurities included in the second poly-silicon into the silicon substrate at the boundary via heat-treatment. Then, using the first and second poly-silicon as a material of a floating gate, forming a material of an intermediate insulating film on this material, and forming a material of a control gate on the insulating film, a control gate and a floating gate are formed by etching these materials. Finally, a second impurity diffusing region is formed in the silicon substrate, the second impurity diffusing region being connected with the first impurity diffusing region.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: June 29, 2004
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Kouichi Shimoda
  • Publication number: 20040110344
    Abstract: A memory device and a method for fabricating the same are described. The memory device includes a substrate, buried bit lines, word line structures, a dielectric layer, conductive lines in trenches and self-aligned contacts. The buried bit lines are located in the substrate, and the word line structures are disposed on the substrate crossing over the buried bit lines. Each word line structure consists of a word line, a gate oxide layer, a capping layer and a spacer. Each conductive line is disposed in the dielectric layer and over a buried bit line, and crosses over the capping layers. The dielectric layer is disposed between the word line structures and between the conductive lines. Each self-aligned contact is disposed under a conductive line and between two adjacent word lines to electrically connect the conductive line and the corresponding buried bit line.
    Type: Application
    Filed: July 15, 2003
    Publication date: June 10, 2004
    Inventors: Weng-Hsing Huang, Kent Kuohua Chang
  • Patent number: 6746918
    Abstract: A stack-gate non-volatile memory device with a tapered floating-gate structure is disclosed by the present invention, in which the tapered floating-gate structure offers a longer effective channel length to alleviate the punch-through effect and a larger surface area for erasing or programming between the tapered floating-gate structure and the integrated common-source/drain conductive structure. The stack-gate non-volatile memory devices of the present invention are implemented into three contactless array architectures: a contactless NOR-type array, a contacless NAND-type array, and a contactless parallel common-source/drain conductive bit-lines array. The features and advantages of the contactless memory arrays are a smaller cell size of 4F2, a smaller common-source/drain bus-line resistance and capacitance, a higher erasing speed, and a smaller bit/word-line resistance and capacitance, as compared to the prior arts.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: June 8, 2004
    Assignee: Silicon Based Technology Corp.
    Inventor: Ching-Yuan Wu
  • Patent number: 6746915
    Abstract: The stack-type DRAM memory structure of the present invention comprises a plurality of self-aligned thin third conductive islands over shallow heavily-doped source diffusion regions without dummy transistors to obtain a cell size of 6F2 or smaller; a rectangular tube-shaped cavity having a conductive island formed above a nearby transistor-stack being formed over each of the self-aligned thin third conductive islands to offer a larger surface area for forming a high-capacity DRAM capacitor of the present invention; a planarized third conductive island being formed between a pair of first sidewall dielectric spacers and on each of shallow heavily-doped common-drain diffusion regions to offer a larger contact area and a higher contact integrity; and a plurality of planarized conductive contact-islands being formed over the planarized third conductive islands to eliminate the aspect-ratio effect and being patterned and etched simultaneously with a plurality of bit lines.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: June 8, 2004
    Assignee: Intelligent Sources Development Corp.
    Inventor: Ching-Yuan Wu
  • Publication number: 20040102008
    Abstract: In a channel region between the source/drain diffusion layers, impurities of the same conductivity type as the well are doped in an area apart from the diffusion regions. By using as a mask the gate formed in advance, tilted ion implantation in opposite directions is performed to form the diffusion layers and heavily impurity doped region of the same conductivity type as the well in a self-alignment manner relative to the gate.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 27, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Yoshitaka Sasago, Takashi Kobayashi
  • Publication number: 20040097036
    Abstract: A method for fabricating a vertical nitride read-only memory (NROM) cell. A substrate having at least one trench is provided. A spacer is formed over the sidewall of the trench. Subsequently, ion implantation is performed on the substrate using the spacer as a mask to form doping areas as bit lines in the substrate near its surface and the bottom of the trench. Bit line oxides are formed over each of the doping areas. After the spacer is removed, a conformable insulating layer as gate dielectric is deposited on the sidewall of the trench and the surface of the bit line oxide. Finally, a conductive layer as a word line is deposited over the insulating layer and fills in the trench.
    Type: Application
    Filed: October 27, 2003
    Publication date: May 20, 2004
    Applicant: Nanya Technology Corporation
    Inventors: Ching-Nan Hsiao, Chi-Hui Lin, Chung-Lin Huang, Ying-Cheng Chuang
  • Patent number: 6737325
    Abstract: According to one embodiment of the invention, a method for manufacturing a transistor is provided. The method includes masking a polysilicon layer of a semiconductor device to have a dimension greater than a critical dimension of a gate to be formed. The polysilicon layer overlies a substrate layer. The method also includes incompletely etching the polysilicon layer. The method also includes forming a source region and a drain region in the substrate layer through the incompletely etched polysilicon layer by doping the substrate layer and applying heat at a first temperature. The method also includes forming a source extension and a drain extension in the substrate layer after forming the source region and the drain region by doping the substrate layer and applying heat at a second temperature.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: May 18, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Reima Tapani Laaksonen
  • Patent number: 6737703
    Abstract: In a memory device, a substrate has a plurality of source/drain regions in the substrate. Between the source/drain regions are trenches filled with oxide. Individual bit lines in the form of conductive regions are provided in the substrate, each bit line being under and running along the oxide in a trench. Each bit line connects to source/drain regions by means of connecting conductive regions extending from that bit line to source/drain regions.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 18, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard Fastow, Sameer Haddad, Yu Sun
  • Publication number: 20040084704
    Abstract: Provided is, for example, a method for the fabrication of electrical interconnects in semiconductor devices wherein a substrate including two or more transistors having gate regions wherein the gate regions are not exposed (e.g., the gate regions are completely covered by an insulating cap) is provided. An insulating layer overlying the transistors and the active areas is deposited, where upon a hard mask is created and patterned to form a contact plug/interconnect opening over a first active area and a portion of a first transistor immediately adjacent the first active area. A spacer is formed within the contact plug/interconnect opening. Insulating material overlying active areas between transistors is removed. A portion of the gate region of the first transistor is then exposed and interconnect material is deposited within the contact plug/interconnect opening onto the exposed portion of the gate region of the first transistor and the first active area.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Daniel Smith, Jason Taylor
  • Patent number: 6723605
    Abstract: A method is provided for manufacturing a MirrorBit® Flash memory with high conductivity bitlines and shallow trench isolation integration. A hard mask is formed over a substrate and used to form a core trench and a shallow trench isolation (STI) trench. The trenches are filled with an insulating material in an STI fill process. A core mask is formed over the STI trenches and exposing the core trenches. The insulating material is removed from the core trenches and the core and hard mask are removed. A doped bitline material is deposited on the surface of the semiconductor, which fills the core trench. The surface of the semiconductor is planarized, inlaying insulating material and doped bitline material in the trenches. A thermal anneal causes the dopant diffusion from the doped bitline material into the substrate to form the high conductivity bitlines.
    Type: Grant
    Filed: December 15, 2001
    Date of Patent: April 20, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jeffrey P. Erhardt, Kashmir S. Sahota
  • Publication number: 20040070020
    Abstract: A nonvolatile semiconductor memory device having MONOS type memory cells of increased efficiency by hot electron injection and improved scaling characteristics includes a channel forming region in the vicinity of a surface of a substrate, first and second impurity regions, acting as a source and a drain in operation, formed in the vicinity of the surface of the substrate sandwiching the channel forming region between them, a gate insulating film stacked on the channel forming region and having a plurality of films, and a charge storing means that is formed in the gate insulating film dispersed in the plane facing the channel forming region. A bottom insulating film includes a dielectric film that exhibits a FN type electroconductivity and makes the energy barrier between the bottom insulating film and the substrate lower than that between silicon dioxide and silicon.
    Type: Application
    Filed: December 14, 2000
    Publication date: April 15, 2004
    Inventors: Ichiro Fujiwara, Toshio Kobayashi
  • Patent number: 6720216
    Abstract: One aspect provided herein relates to a method for forming a logic array for a programmable decoder. Various embodiments include forming vertical pillars to extend outwardly from a semiconductor substrate at intersections of output lines and input lines. Each pillar includes first and second contact layers of a first conductivity type separated by an oxide layer. A number of single crystalline ultra thin vertical floating gate transistors are selectively disposed adjacent to the number of vertical transistors. Forming the transistors includes forming a lightly doped polysilicon layer of a second conductivity type on sidewalls of the pillars, and annealing to transform the polysilicon layer into a single crystalline material of the second conductivity type, arid to forth first and second source/drain regions of the first conductivity type adjacent to the first and second contact layers. Source lines and address lines are operably formed with respect to the transistors.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: April 13, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 6713336
    Abstract: A flash memory device having improved gate capacitive coupling ratio between a floating gate and a control gate and a fabrication method therefor. The disclosed flash memory device comprises a semiconductor substrate having a first trench with a width including an active region and an isolation region at either side thereof; an isolation layer formed on the isolation regions of the first trench; a second trench in the first trench defined by the isolation layer and exposing only the active region; a groove-shaped floating gate formed on the surface of the second trench and having a tunnel oxide layer on the lower part thereof; a control gate formed on the floating gate and having a gate insulating layer on the lower part thereof; a source region and a drain region formed in the substrate at both sides of the floating gate; and metal wirings formed to be in contact with the source and drain regions, respectively, through the isolation layer on the substrate.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: March 30, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Hun Shin, Jae Doo Eom
  • Publication number: 20040058496
    Abstract: The present invention provides a method for fabricating a semiconductor device capable of preventing a pattern at an edge area of a wafer from being lifted and acting as a particle source. The present invention includes the steps of: preparing a wafer having a first area and a second area, wherein the first area has lower topology than the second area; forming a target layer on the wafer; and patterning the target layer through a photolithography process so to form a number of first patterns in a line shape at the second area and to form a number of second patterns in a closed loop shape at the first area.
    Type: Application
    Filed: December 30, 2002
    Publication date: March 25, 2004
    Inventor: Sung-Kwon Lee
  • Patent number: 6708312
    Abstract: A method for multi-threshold voltage CMOS process optimization. The method includes the steps of: providing a semiconductor substrate with a plurality of devices of different threshold voltages; establishing a plurality of types of timing models for a timing calculation; obtaining a static timing analysis report through the timing calculation; defining a large and a small setup time margin as a Tl and a Ts; changing the devices whose setup time margins are less than Ts to low threshold devices; changing the devices whose setup time margins are greater than Tl to high threshold devices; checking a setup time of each device; changing the devices whose setup time margin does not meet the enhanced static timing analysis report; performing a first pocket implant process for the normal threshold devices; performing a second pocket implant process for the low threshold devices and performing a third pocket implant process for the high threshold devices.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: March 16, 2004
    Assignee: Silicon Integrated Systems Corp.
    Inventors: Ming-Mao Chiang, Ching-Chang Shih, Chin-Cho Tsai, Tien-Yueh Liu, Kuo-Chung Huang