Having Additional, Nonmemory Control Electrode Or Channel Portion (e.g., For Accessing Field Effect Transistor Structure, Etc.) Patents (Class 438/266)
  • Publication number: 20150097223
    Abstract: A device comprises a control gate structure over a substrate, a memory gate structure over the substrate, wherein the memory gate structure comprises a memory gate electrode and a memory gate spacer, and wherein the memory gate spacer is over the memory gate electrode, a charge storage layer formed between the control gate structure and the memory gate structure, wherein the charge storage layer is an L-shaped structure, a first spacer along a sidewall of the memory gate structure, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 8987787
    Abstract: A semiconductor structure includes first and second chips assembled to each other. The first chip includes N of first conductive lines, M of second conductive lines disposed on the first conductive lines, N of third conductive lines perpendicularly on the second conductive lines and parallel to the first conductive lines, N of first vias connected to the first conductive lines, M sets of second vias connected to the second conductive lines, and N sets of third vias connected to the third conductive lines. The second and first conductive lines form an overlapping area. The third conductive lines and N sets of the third vias include at least two groups respectively disposed in a first and a third regions of the overlapping area. M sets of second vias include at least two groups respectively disposed in a second region and a fourth region of the overlapping area.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: March 24, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Kuang-Yeu Hsieh, Cheng-Yuan Wang
  • Publication number: 20150076582
    Abstract: A transistor is provided. The transistor includes a substrate, a gate electrode formed on the substrate, and multiple floating gates formed on the substrate. A fixed distance is designed between the adjacent floating gates. Wherein, the substrate, the multiple floating gates, and the gate electrode are separated by a plurality of active regions.
    Type: Application
    Filed: March 3, 2014
    Publication date: March 19, 2015
    Applicant: National Tsing Hua University
    Inventors: Chrong-Jung Lin, Ya-Chin King
  • Publication number: 20150079706
    Abstract: A device for monitoring charging effects includes a semiconductor substrate having a surface region. The device also includes first, second, and third doped regions spaced apart in the semiconductor substrate and a dielectric layer overlying the surface region. The device also includes a first gate overlying a first portion of the dielectric layer disposed between the first and the second doped regions, and a second gate overlying a second portion of the dielectric layer disposed between the second and the third doped regions, the second gate being characterized by a first surface area. Moreover, the device has a conductive layer electrically coupled to the second gate for collecting plasma charges. The conductive layer is characterized by a second surface area. The first gate is connected to a conductor that is coupled to a bias voltage, and the second gate is a floating gate that is not connected to any voltage.
    Type: Application
    Filed: July 3, 2014
    Publication date: March 19, 2015
    Inventor: Jiuun-Jer Yang
  • Patent number: 8980712
    Abstract: A non-volatile memory device having a string of a plurality of memory cells that are serially coupled, wherein the string of memory cells includes a plurality of second channels of a pillar type, a first channel coupling lower end portions of the plurality of the second channels with each other, and a plurality of control gate electrodes surrounding the plurality of the second channels.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: March 17, 2015
    Assignee: SK Hynix Inc.
    Inventor: Han-Soo Joo
  • Publication number: 20150056768
    Abstract: A method of fabricating a semiconductor device is disclosed. The method includes the steps of: sequentially forming agate dielectric layer and a first gate layer on a semiconductor substrate, wherein the gate dielectric layer is between the first gate layer and the semiconductor substrate; forming at least an opening in the first gate layer; forming a first dielectric layer conformally on the semiconductor substrate wherein the first dielectric layer covers the first gate layer; and forming a second gate layer filling the opening and overlapping the first gate layer.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 26, 2015
    Inventors: Cheng-Yuan Hsu, CHI Ren, Tzeng-Fei Wen
  • Publication number: 20150041815
    Abstract: According to one embodiment, a plurality of memory cell transistors including a floating gate and a control gate and a plurality of peripheral circuit transistors including a lower electrode portion and an upper electrode portion are included. The floating gate includes a first polysilicon region, and the lower electrode includes a second polysilicon region. The first polysilicon region is a p-type semiconductor in which boron is doped, and the second polysilicon region is an n-type semiconductor in which phosphorus and boron are doped.
    Type: Application
    Filed: March 3, 2014
    Publication date: February 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi SONEHARA, Takeshi MURATA, Junya FUJITA, Fumiki AISO, Saku HASHIURA
  • Publication number: 20150044833
    Abstract: There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
    Type: Application
    Filed: September 23, 2014
    Publication date: February 12, 2015
    Inventors: Thomas H. Lee, Vivek Subramanian, James M. Cleeves, Igor G. Kouznetsov, Mark G. Johnson, Paul Michael Farmwald
  • Patent number: 8952446
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a channel body, a memory film, first and second insulating separation films, a first and a second inter-layer insulating films, a selection gate, a conductive layer, and resistance elements. The substrate includes a memory cell array region and a peripheral region. The stacked body includes electrode films and insulating films. The channel body extends in a stacking direction. The memory film includes a charge storage film. The first insulating separation films divide the stacked body. The first and the second inter-layer insulating films are on the stacked body and on the conductive layer, respectively. The selection gate is on the first inter-layer insulating film. The conductive layer is on the peripheral region. The resistance elements are on the second inter-layer insulating film. The second insulating separation films divide the conductive layer.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyasu Tanaka
  • Publication number: 20150036437
    Abstract: An apparatus includes a storage transistor. The storage transistor includes a floating gate configured to store electrical charge and a control gate. The floating gate is coupled to the control gate via capacitive coupling. The floating gate and the control gate are metal. The apparatus also includes an access transistor coupled to the storage transistor. A gate of the access transistor is coupled to a word line. The storage transistor and the access transistor are serially coupled between a bit line and a source line.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: Qualcomm Incorporated
    Inventors: Xia Li, Bin Yang, Zhongze Wang
  • Patent number: 8946007
    Abstract: After formation of a gate electrode, a source trench and a drain trench are formed down to an upper portion of a bottom semiconductor layer having a first semiconductor material of a semiconductor-on-insulator (SOI) substrate. The source trench and the drain trench are filled with at least a second semiconductor material that is different from the first semiconductor material to form source and drain regions. A planarized dielectric layer is formed and a handle substrate is attached over the source and drain regions. The bottom semiconductor layer is removed selective to the second semiconductor material, the buried insulator layer, and a shallow trench isolation structure. The removal of the bottom semiconductor layer exposes a horizontal surface of the buried insulator layer present between source and drain regions on which a conductive material layer is formed as a back gate electrode.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Douglas C. La Tulipe, Jr.
  • Patent number: 8946022
    Abstract: Nanostructure-based charge storage regions are included in non-volatile memory devices and integrated with the fabrication of select gates and peripheral circuitry. One or more nanostructure coatings are applied over a substrate at a memory array area and a peripheral circuitry area. Various processes for removing the nanostructure coating from undesired areas of the substrate, such as target areas for select gates and peripheral transistors, are provided. One or more nanostructure coatings are formed using self-assembly based processes to selectively form nanostructures over active areas of the substrate in one example. Self-assembly permits the formation of discrete lines of nanostructures that are electrically isolated from one another without requiring patterning or etching of the nanostructure coating.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, James K Kai, Masaaki Higashitani, Takashi Orimoto, George Matamis, Henry Chien
  • Publication number: 20150021679
    Abstract: Some embodiments of the present disclosure relates to an architecture to create split gate flash memory cell that has lower common source (CS) resistance and a reduced cell size by utilizing a buried conductive common source structure. A two-step etch process is carried out to create a recessed path between two split gate flash memory cells. A single ion implantation to form the common source also forms a conductive path beneath the STI region that connects two split gate flash memory cells and provide potential coupling during programming and erasing and thus electrically connect the common sources of memory cells along a direction that forms a CS line. The architecture contains no OD along the source line between the cells, thus eliminating the effects of CS rounding and CS resistance, resulting in a reduced space between cells in an array. Hence, this particular architecture reduces the resistance and the buried conductive path between several cells in an array suppresses the area over head.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Inventors: Yong-Shiuan Tsair, Po-Wei Liu, Wen-Tuo Huang, Yu-Ling Hsu, Tsun-Kai Tsao, Ming-Huei Shen
  • Publication number: 20150004764
    Abstract: Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatuses and a select transistor coupled to the memory cell string. In at least one of such apparatuses, the select transistor can include a body region including a monocrystalline semiconductor material. Other embodiments including additional apparatuses and methods are described.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventor: Toru Tanzawa
  • Patent number: 8921136
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8921991
    Abstract: The present invention discloses a discrete three-dimensional memory (3D-M). It is partitioned into at least two discrete dice: a memory-array die and a peripheral-circuit die. The memory-array die comprises at least a 3D-M array, which is built in a 3-D space. The peripheral-circuit die comprises at least a peripheral-circuit component, which is built on a 2-D plane. At least one peripheral-circuit component of the 3D-M is formed in the peripheral-circuit die instead of in the memory-array die. The array efficiency of the memory-array die can be larger than 70%.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 30, 2014
    Assignees: ChengDu HaiCun IP Technology LLC
    Inventor: Guobiao Zhang
  • Patent number: 8916432
    Abstract: Methods of forming memory cells including non-volatile memory (NVM) and MOS transistors are described. In one embodiment the method includes: depositing and patterning a gate layer over a dielectric stack on a substrate to form a gate of a NVM transistor, the dielectric stack including a tunneling layer overlying a surface of the substrate, a charge-trapping layer overlying the tunneling layer and a blocking layer overlying the charge-trapping layer; forming a mask exposing source and drain (S/D) regions of the NVM transistor; etching the dielectric stack through the mask to thin the dielectric stack by removing the blocking layer and at least a first portion of the charge-trapping layer in S/D regions of the NVM transistor; and implanting dopants into S/D regions of the NVM transistor through the thinned dielectric stack to form a lightly-doped drain adjacent to the gate of the NVM transistor.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 23, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Venkatraman Prabhakar
  • Patent number: 8901632
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM region and a first protection layer over a logic region. A control gate and a storage layer are formed over the substrate in the NVM region. The control gate has a top surface below a top surface of the select gate. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The first and second protection layers are removed from the logic region. A portion of the second protection layer is left over the control gate and the select gate. A gate structure, formed over the logic region, has a high k dielectric and a metal gate.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Byoung W. Min, Jane A. Yater
  • Patent number: 8895387
    Abstract: According to one embodiment, a method includes forming first and second gate patterns each including a structure stacked in order of a first insulating layer, a floating gate layer, a charge trap layer, a second insulating layer and a dummy layer on a semiconductor layer, implanting impurities in the semiconductor layer by an ion implantation using the first and second gate patterns as a mask, forming a third insulating layer on the semiconductor layer, the third insulating layer covering side surfaces of the first and second gate patterns, and forming first and second concave portions, the first concave portion formed by removing the dummy layer of the first gate pattern, the second concave portion formed by removing the dummy layer, the second insulating layer, the charge trap layer and the floating gate layer of the second gate pattern.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Motoyuki Sato
  • Patent number: 8889510
    Abstract: A method for forming a surrounding stacked gate fin FET nonvolatile memory structure includes providing a silicon-on-insulator (SOI) substrate of a first conductivity type, patterning a fin active region on a region of the substrate, forming a tunnel oxide layer on the fin active region, and depositing a first gate electrode of a second conductivity type on the tunnel oxide layer and upper surface of the substrate. The method further includes forming a dielectric composite layer on the first gate electrode, depositing a second gate electrode on the dielectric composite layer, patterning the first and second gate electrodes to define a surrounding stacked gate area, forming a spacer layer on a sidewall of the stacked gate electrode, and forming elevated source/drain regions in the fin active region on both sides of the second gate electrode.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: November 18, 2014
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: De Yuan Xiao, Lily Jiang, Gary Chen, Roger Lee
  • Patent number: 8890300
    Abstract: The present invention discloses a discrete three-dimensional memory (3D-M). Its 3D-M arrays are located on at least one 3D-array die, while its read/write-voltage generator (VR/VW-generator) is located on a separate peripheral-circuit die. The VR/VW-generator generates at least a read and/or write voltage to the 3D-array die. A single VR/VW-generator die can support multiple 3D-array dies.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: November 18, 2014
    Assignees: ChengDu HaiCun IP Technology LLC
    Inventor: Guobiao Zhang
  • Patent number: 8883569
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Sandisk 3D LLC
    Inventor: Roy E. Scheuerlein
  • Patent number: 8872256
    Abstract: A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Juyul Lee, Bumsu Kim, Kwangmin Park, Hyun Park, Jae-Young Ahn, Dongchul Yoo, Jongsik Chun, Kihyun Hwang
  • Patent number: 8865546
    Abstract: A method for manufacturing a semiconductor device includes the steps of forming a flash memory cell provided with a floating gate, an intermediate insulating film, and a control gate, forming first and second impurity diffusion regions, thermally oxidizing surfaces of a silicon substrate and the floating gate, etching a tunnel insulating film in a partial region through a window of a resist pattern; forming a metal silicide layer on the first impurity diffusion region in the partial region, forming an interlayer insulating film covering the flash memory cell, and forming, in a first hole of the interlayer insulating film, a conductive plug connected to the metal silicide layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tetsuya Yamada
  • Publication number: 20140307511
    Abstract: A memory device, and method of making the same, in which a trench is formed into a substrate of semiconductor material. The source region is formed under the trench, and the channel region between the source and drain regions includes a first portion that extends substantially along a sidewall of the trench and a second portion that extends substantially along the surface of the substrate. The floating gate is disposed in the trench, and is insulated from the channel region first portion for controlling its conductivity. A control gate is disposed over and insulated from the channel region second portion, for controlling its conductivity. An erase gate is disposed at least partially over and insulated from the floating gate. An electrically conductive coupling gate is disposed in the trench, adjacent to and insulated from the floating gate, and over and insulated from the source region.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 16, 2014
    Inventors: Nhan Do, Jinho Kim, Xian Liu
  • Patent number: 8853027
    Abstract: In one aspect, a disclosed method of fabricating a split gate memory device includes forming a gate dielectric layer overlying an channel region of a semiconductor substrate and forming an electrically conductive select gate overlying the gate dielectric layer. The method further includes forming a counter doping region in an upper region of the substrate. A proximal boundary of the counter doping region is laterally displaced from a proximal sidewall of the select gate. The method further includes forming a charge storage layer comprising a vertical portion adjacent to the proximal sidewall of the select gate and a lateral portion overlying the counter doping region and forming an electrically conductive control gate adjacent to the vertical portion of the charge storage layer and overlying the horizontal portion of the charge storage layer.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: October 7, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Sung-Taeg Kang
  • Publication number: 20140291747
    Abstract: A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. During fabrication of the memory device, a tungsten salicide is utilized as an etch-stop layer in place of a conventionally used aluminum oxide to form channel pillars having a high aspect ratio. Use of the tungsten salicide is useful for eliminating an undesired etch-stop recess and an undesired floating gate that is formed when an Al oxide etch-stop layer is conventionally used.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Inventors: Fatma A. Simsek-Ege, Krishna K. Parat
  • Publication number: 20140264353
    Abstract: A method for manufacturing a memory device includes forming a plurality of active layers alternating with insulating layers on a substrate where the active layers include an active material, etching the active layers and insulating layers to define a plurality of stacks of active strips, and after the etching, causing crystal growth in the active strips. The substrate can have a single crystalline surface with a crystal structure orientation, and the crystal growth in the active material can form crystallized material having the crystal structure orientation of the substrate at least near side surfaces of the active strips. Causing crystal growth includes depositing a seeding layer over the plurality of stacks and the substrate, where the seeding layer is in contact with the side surfaces of the active strips, and in contact with the substrate. The method can include, after causing crystal growth, removing the seeding layer.
    Type: Application
    Filed: July 3, 2013
    Publication date: September 18, 2014
    Inventor: Erh-Kun Lai
  • Publication number: 20140264540
    Abstract: Devices and methods for forming a device are disclosed. The method includes providing a substrate and forming a memory cell pair on the substrate. Each of a memory cell of the memory cell pair includes at least one transistor having first and second gates formed between first and second terminals and a third gate disposed over the second terminal. The first gate serves as an access gate (AG), the second gate serves as a storage gate and the third gate serves as an erase gate (EG). The first cell terminal serves as a bitline terminal and the second cell terminal serves as a source line terminal. The source line terminal is a raised source line terminal and is elevated with respect to the bit line terminal and the source line terminal is common to the memory cell pair.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng TAN, Eng Huat TOH
  • Publication number: 20140264538
    Abstract: In a method of manufacturing a semiconductor device, a split gate structure is formed on a cell region of a substrate including the cell region and a logic region. The logic region has a high voltage region, an ultra high voltage region and a low voltage region, and the split gate structure includes a first gate insulation layer pattern, a floating gate, a tunnel insulation layer pattern and a control gate. A spacer layer is formed on the split gate structure and the substrate. The spacer layer is etched to form a spacer on a sidewall of the split gate structure and a second gate insulation layer pattern on the ultra high voltage region of the substrate. A gate electrode is formed on each of the high voltage region of the substrate, the second gate insulation layer pattern, and the low voltage region of the substrate.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: Tea-Kwang YU, Bae-Seong KWON, Yong-Tae KIM, Chul-Ho CHUNG, Yong-Suk CHOI
  • Patent number: 8823074
    Abstract: The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Motomu Kurata, Mayumi Mikami
  • Patent number: 8823098
    Abstract: The invention discloses a manufacture method and structure of a power transistor, comprising a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode. The two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the two gate units; the upper electrode covers the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Wuxi Versine Semiconductor Corp. Ltd.
    Inventors: Qin Huang, Yuming Bai
  • Publication number: 20140239367
    Abstract: The performances of a semiconductor device are improved. The semiconductor device has a first control gate electrode and a second control gate electrode spaced along the gate length direction, a first cap insulation film formed over the first control gate electrode, and a second cap insulation film formed over the second control gate electrode. Further, the semiconductor device has a first memory gate electrode arranged on the side of the first control gate electrode opposite to the second control gate electrode, and a second memory gate electrode arranged on the side of the second control gate electrode opposite to the first control gate electrode. The end at the top surface of the first cap insulation film on the second control gate electrode side is situated closer to the first memory gate electrode side than the side surface of the first control gate electrode on the second control gate electrode side.
    Type: Application
    Filed: January 2, 2014
    Publication date: August 28, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: KENTARO SAITO, HIRAKU CHAKIHARA
  • Patent number: 8816438
    Abstract: A semiconductor device and method of making such device is presented herein. The semiconductor device includes a plurality of memory cells, a plurality of p-n junctions, and a metal trace of a first metal layer. Each of the plurality of memory cells includes a first gate disposed over a first dielectric, a second gate disposed over a second dielectric and adjacent to a sidewall of the first gate, a first doped region in the substrate adjacent to the first gate, and a second doped region in the substrate adjacent to the second gate. The plurality of p-n junctions are electrically isolated from the doped regions of each memory cell. The metal trace extends along a single plane between a via to the second gate of at least one memory cell in the plurality of memory cells, and a via to a p-n junction within the plurality of p-n junctions.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 26, 2014
    Assignee: Spansion LLC
    Inventors: Chun Chen, Sameer Haddad, Kuo Tung Chang, Mark Ramsbey, Unsoon Kim, Shenqing Fang
  • Patent number: 8809134
    Abstract: A method of manufacturing a semiconductor structure, which comprises the steps of: providing a substrate, forming a fin on the substrate, which comprises a central portion for forming a channel and an end portion for forming a source/drain region and a source/drain extension region; forming a gate stack to cover the central portion of the fin; performing light doping to form a source/drain extension region in the end portion of the fin; forming a spacer on sidewalls of the gate stack; performing heavy doping to form a source/drain region in the end portion of the fin; removing at least a part of the spacer to expose at least a part of the source/drain extension region; forming a contact layer on an upper surface of the source/drain region and an exposed area of the source/drain extension region. Correspondingly, the present invention also provides a semiconductor structure.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 19, 2014
    Assignee: The Institute of Microelectronics Chinese Academy of Science
    Inventors: Haizhou Yin, Wei Jiang
  • Patent number: 8786003
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a substrate; a memory unit provided on the substrate; and a non-memory unit provided on the substrate. The memory unit includes: a first stacked body including a plurality of first electrode films and a first inter-electrode insulating film, the plurality of first electrode films being stacked along a first axis perpendicular to the major surface, the first inter-electrode insulating film being provided between two of the first electrode films mutually adjacent along the first axis; a first semiconductor layer opposing side surfaces of the first electrode films; a first memory film provided between the first semiconductor layer and the first electrode films; and a first conductive film provided on the first stacked body apart from the first stacked body. The non-memory unit includes a resistance element unit of the same layer as the conductive film.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Hiroyasu Tanaka
  • Patent number: 8786007
    Abstract: A three-dimensional nonvolatile memory device and a method for fabricating the same include a semiconductor substrate, a plurality of active pillars, and a plurality of gate electrodes. The semiconductor substrate includes a memory cell region and a contact region. The active pillars extend in the memory cell region perpendicular to the semiconductor substrate. The gate electrodes include a first gate electrode and a second gate electrode. The first gate electrode is disposed on the memory cell region to intersect the active pillars. The second gate electrode is disposed on the contact region, connected to the first gate electrode and comprising metal material.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soodoo Chae, Myoungbum Lee
  • Patent number: 8772108
    Abstract: A process for creating a low-cost multi-time programmable (MTP) non-volatile memory (NVM) and the resulting device are provided. Embodiments include forming a select gate and a floating gate above a substrate, each over a first shallow trench isolation (STI) region, a doped region formed between a source and a drain, and a second STI region, forming a metal layer over the floating gate, and forming a pair of self-aligned contacts on the first and second STI regions on opposite sides of the doped region, respectively, and electrically connected to the metal layer.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 8, 2014
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Eng Huat Toh, Shyue Seng Tan, Elgin Quek
  • Patent number: 8772855
    Abstract: Embodiments of a semiconductor device including a resistor and a method of fabricating the same are provided. The semiconductor device includes a mold pattern disposed on a semiconductor substrate to define a trench, a resistance pattern including a body region and first and second contact regions, wherein the body region covers the bottom and sidewalls of the trench, the first and second contact regions extend from the extending from the body region over upper surfaces of the mold pattern, respectively; and first and second lines contacting the first and second contact regions, respectively.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoonmoon Park, Keonsoo Kim, Jinhyun Shin, Jae-Hwang Sim
  • Patent number: 8765553
    Abstract: Nonvolatile memory has a modified channel region interface, such as a raised source and drain or a recessed channel region.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 1, 2014
    Assignee: Macronix International Co., Ltd.
    Inventor: Yi Ying Liao
  • Patent number: 8765552
    Abstract: A non-volatile storage device is disclosed that includes a set of connected non-volatile storage elements formed on a well, a bit line contact positioned in the well, a source line contact positioned in the well, a bit line that is connected to the bit line contact, and a source line that is connected to the source line contact and the well.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: July 1, 2014
    Assignee: SanDisk Technologies Inc.
    Inventor: Masaaki Higashitani
  • Patent number: 8748967
    Abstract: An aspect of the present embodiment, there is provided a semiconductor device, including a semiconductor substrate, a first insulator above the semiconductor substrate, the first insulator containing tungsten, germanium and silicon, a charge storage film on the first insulator, a second insulator on the charge storage film and, a control gate electrode on the second insulator.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 10, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichiro Toratani, Masayuki Tanaka
  • Patent number: 8722488
    Abstract: A method of fabricating a semiconductor device includes the following steps. At first, two gate stack layers are formed on a semiconductor substrate, and a material layer covering the gate stack layers is formed on the semiconductor substrate. Subsequently, a part of the material layer is removed to form a sacrificial layer between the gate stack layers, and a spacer at the opposite lateral sides of the gate stack layers. Furthermore, a patterned mask covering the gate stack layers and the spacer and exposing the sacrificial layer is formed, and the sacrificial layer is removed.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: May 13, 2014
    Assignee: United Microelectronics Corp.
    Inventor: Ping-Chia Shih
  • Patent number: 8722496
    Abstract: A cost-efficient SONOS (CEONOS) non-volatile memory (NVM) cell production method for CMOS ICs, where the CEONOS NVM cell requires two or three additional masks, but can otherwise be formed using the same standard CMOS flow processes used to form NMOS transistors. A first additional mask is used to form an oxide-nitride-oxide (ONO) layer that replaces the standard NMOS gate oxide and serves to store NVM data (i.e., trapped charges). A second additional mask is used to perform drain engineering, including a special pocket implant and LDD extensions, which facilitates program/erase of the CEONOS NVM cells using low voltages (e.g., 5V). The polysilicon gate, source/drain contacts and metallization are formed using corresponding NMOS processes. The CEONOS NVM cells are arranged in a space-efficient X-array pattern such that each group of four cells share three bit lines. Programming involves standard CHE injection or pulse agitated interface substrate hot electron injection (PAISHEI).
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 13, 2014
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Evgeny Pikhay, Alexey Heiman, Micha Gutman
  • Patent number: 8723248
    Abstract: In one embodiment, there is provided a nonvolatile semiconductor storage device. The device includes: a plurality of nonvolatile memory cells. Each of the nonvolatile memory cells includes: a first semiconductor layer including a first source region, a first drain region, and a first channel region; a block insulating film formed on the first channel region; a charge storage layer formed on the block insulating film; a tunnel insulating film formed on the charge storage layer; a second semiconductor layer formed on the tunnel insulating film and including a second source region, a second drain region, and a second channel region. The second channel region is formed on the tunnel insulating film such that the tunnel insulating film is located between the second source region and the second drain region. A dopant impurity concentration of the first channel region is higher than that of the second channel region.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Yasuda, Jun Fujiki
  • Patent number: 8691647
    Abstract: In one embodiment, a semiconductor device is disclosed. The semiconductor device is formed on a semiconductor substrate having an active region, the semiconductor device comprising: a gate dielectric layer disposed on the semiconductor substrate, the gate dielectric layer having at least two sub-layers with at least one sub-layer having a dielectric constant greater than SiO2; a floating gate formed on the gate dielectric layer defining a channel interposed between a source and a drain formed within the active region of the semiconductor substrate; a control gate formed above the floating gate; and an intergate dielectric layer interposed between the floating gate and the control gate, the intergate dielectric layer comprising: a first layer formed on the floating gate; a second layer formed on the first layer; and a third layer formed on the second layer, wherein each of the first, second and third layers has a dielectric constant greater than SiO2.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 8, 2014
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Arvind Halliyal, Mark T. Ramsbey, Jack F. Thomas
  • Publication number: 20140091382
    Abstract: A memory device, and method of make same, having a substrate of semiconductor material of a first conductivity type, first and second spaced-apart regions in the substrate of a second conductivity type, with a channel region in the substrate therebetween, a conductive floating gate over and insulated from the substrate, wherein the floating gate is disposed at least partially over the first region and a first portion of the channel region, a conductive second gate laterally adjacent to and insulated from the floating gate, wherein the second gate is disposed at least partially over and insulated from a second portion of the channel region, and a stressor region of embedded silicon carbide formed in the substrate underneath the second gate.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Mandana Tadayoni, Nhan Do
  • Patent number: 8686487
    Abstract: Semiconductor devices include one or more transistors having a floating gate and a control gate. In at least one embodiment, the floating gate comprises an intermediate portion extending between two end portions. The intermediate portion has an average cross-sectional area less than one or both of the end portions. In some embodiments, the intermediate portion may comprise a single nanowire. In additional embodiments, semiconductor devices have one or more transistors having a control gate and a floating gate in which a surface of the control gate opposes a lateral side surface of a floating gate that defines a recess in the floating gate. Electronic systems include such semiconductor devices. Methods of forming semiconductor devices include, for example, forming a floating gate having an intermediate portion extending between two end portions, and configuring the intermediate portion to have an average cross-sectional area less than one or both of the end portions.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Chandra Mouli, Di Li
  • Publication number: 20140070298
    Abstract: A semiconductor device includes a pillar-shaped silicon layer including a first diffusion layer, a channel region, and a second diffusion layer formed in that order from the silicon substrate side, floating gates respectively disposed in two symmetrical directions so as to sandwich the pillar-shaped silicon layer, and a control gate line disposed in two symmetrical directions other than the two directions so as to sandwich the pillar-shaped silicon layer. A tunnel insulating film is formed between the pillar-shaped silicon layer and each of the floating gates. The control gate line is disposed so as to surround the floating gates and the pillar-shaped silicon layer with an inter-polysilicon insulating film interposed therebetween.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 13, 2014
    Applicant: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: FUJIO MASUOKA, HIROKI NAKAMURA
  • Patent number: 8664063
    Abstract: A method for producing a semiconductor device includes the steps of forming a planar silicon layer, first and second pillar-shaped silicon layers on a silicon substrate; forming a gate insulating film, depositing a metal film and a polysilicon around the gate insulating film, conducting planarization, conducting etching to expose upper portions of the first and second pillar-shaped silicon layers, forming first and second insulating film sidewalls, and forming first and second gate electrodes and a gate line; forming n-type diffusion layers in upper and lower portions of the first pillar-shaped silicon layer, and forming p-type diffusion layers in upper and lower portions of the second pillar-shaped silicon layer; forming a third insulating film sidewall on side walls of the first and second insulating film sidewalls, the first and second gate electrodes, and the gate line; and forming a silicide.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 4, 2014
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura