Dielectric Isolation Formed By Grooving And Refilling With Dielectric Material Patents (Class 438/296)
  • Patent number: 8969201
    Abstract: The invention relates to a contact structure of a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a semiconductor layer on the sidewalls and bottom of the opening; a dielectric layer on the semiconductor layer; and a metal layer filling an opening of the dielectric layer.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8962429
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes simultaneously shielding a shielded region of a semiconductor substrate and exposing a surface of the shielded region of the semiconductor substrate. An ion implantation is performed to form implant areas in a non-shielded region of the semiconductor substrate adjacent the shielded region. Also, the semiconductor substrate is silicided to form a silicided area in the shielded region of the semiconductor substrate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: February 24, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Stefan Flachowsky, Jan Hoentschel
  • Patent number: 8962430
    Abstract: On a substrate formed of a first semiconductor layer, an insulating layer and a second semiconductor layer, a silicon oxide pad layer and a silicon nitride pad layer are deposited and patterned to define a mask. The mask is used to open a trench through the first semiconductor layer and insulating layer and into the second semiconductor layer. A dual liner of silicon dioxide and silicon nitride is conformally deposited within the trench. The trench is filled with silicon dioxide. A hydrofluoric acid etch removes the silicon nitride pad layer along with a portion of the conformal silicon nitride liner. A hot phosphoric acid etch removes the silicon oxide pad layer, a portion of the silicon oxide filling the trench and a portion of the conformal silicon nitride liner. The dual liner protects against substrate etch through at an edge of the trench between the first and second semiconductor layers.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 24, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Qing Liu, Nicolas Loubet, Bruce Doris
  • Patent number: 8962428
    Abstract: A semiconductor device and method of fabricating the semiconductor device are disclosed. The method includes forming a plurality of gates on a surface of a substrate, forming sidewalls on side surfaces of the gates, forming a Sigma-shaped recess in the substrate between adjacent gates, forming a SiGe seed layer on an inner surface of the Sigma-shaped recess, forming bulk SiGe doped with boron on a surface of the SiGe seed layer, and filling the Sigma-shaped recess with the boron-doped bulk SiGe, forming a first recess by etching a portion of the SiGe seed layer and the boron-doped bulk SiGe in the Sigma-shaped recess, and forming a SiGe regeneration layer in the first recess beneath the surface of the substrate, wherein the SiGe regeneration layer is doped with boron, and the boron-doped SiGe regeneration layer has a higher concentration of boron than the SiGe seed layer or the boron-doped bulk SiGe.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Lele Chen
  • Publication number: 20150048448
    Abstract: A semiconductor device and a method for forming the same are disclosed. The semiconductor device includes an isolation structure formed in a substrate to define an active region of the substrate. The active region has a field plate region therein. A step gate dielectric structure is formed on the substrate in the field plate region. The step gate dielectric structure includes a first layer of a first dielectric material and a second layer of the dielectric material, laminated vertically to each other. The first and second layers of the first dielectric material are separated from each other by a second dielectric material layer. An etch rate of the second dielectric material layer to an etchant is different from that of the second layer of the first dielectric material. A method for forming a semiconductor device is also disclosed.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Sue-Yi CHEN, Chien-Hsien SONG, Chih-Jen HUANG
  • Publication number: 20150050792
    Abstract: Methods for forming a narrow isolation region are disclosed. The narrow isolation region may serve as an extra narrow diffusion break, suitable for use in 3D FinFET technologies. A pad nitride layer is formed over a semiconductor substrate. A cavity is formed in the pad nitride layer. A conformal spacer liner is deposited in the cavity. An anisotropic etch process then forms a trench in the semiconductor substrate. The trench is narrow enough such that a dummy gate completely covers the trench. Epitaxial stressor regions may then be formed adjacent to the dummy gate. The trench is narrow enough such that there is a gap between the epitaxial stressor regions and the trench.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Srikanth B. Samavedam, Zhenyu Hu, Andy Wei, Qi Zhang, Nicholas V. LiCausi, Daniel Pham
  • Patent number: 8957481
    Abstract: The present application discloses a semiconductor structure and a method for manufacturing the same. Compared with conventional approaches to form contacts, the present disclosure reduces contact resistance and avoids a short circuit between a gate and contact plugs, while simplifying manufacturing process, increasing integration density, and lowering manufacture cost. According to the manufacturing method of the present disclosure, second shallow trench isolations are formed with an upper surface higher than an upper surface of the source/drain regions. Regions defined by sidewall spacers of the gate, sidewall spacers of the second shallow trench isolations, and the upper surface of the source/drain regions are formed as contact holes. The contacts are formed by filling the contact holes with a conductive material. The method omits the steps of etching for providing the contact holes, which lowers manufacture cost.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: February 17, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Huicai Zhong, Haizhou Yin, Zhijiong Luo
  • Publication number: 20150044842
    Abstract: A method includes forming a gate stack over a semiconductor region, depositing an impurity layer over the semiconductor region, and depositing a metal layer over the impurity layer. An annealing is then performed, wherein the elements in the impurity layer are diffused into a portion of the semiconductor region by the annealing to form a source/drain region, and wherein the metal layer reacts with a surface layer of the portion of the semiconductor region to form a source/drain silicide region over the source/drain region.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Ting Wang, Teng-Chun Tsai, Chun-Hsiung Lin, Cheng-Tung Lin, Chi-Yuan Chen, Hong-Mao Lee, Huicheng Chang
  • Patent number: 8952484
    Abstract: A non-volatile memory and a manufacturing method thereof are provided. The non-volatile memory includes a substrate, a gate structure, a first doped region, a second doped region and a pair of isolation structures. The gate structure is disposed on the substrate. The gate structure includes a charge storage structure, a gate and spacers. The charge storage structure is disposed on the substrate. The gate is disposed on the charge storage structure. The spacers are disposed on the sidewalls of the gate and the charge storage structure. The first doped region and the second doped region are respectively disposed in the substrate at two sides of the charge storage structure and at least located under the spacers. The isolation structures are respectively disposed in the substrate at two sides of the gate structure.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 10, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Guan-Wei Wu, I-Chen Yang, Yao-Wen Chang, Tao-Cheng Lu
  • Patent number: 8951874
    Abstract: Disclosed is a semiconductor device manufacturing method comprising: forming an element isolation region in one principal face of a semiconductor substrate of one conductivity type; forming a gate electrode extending from an element region to the element isolation region at both sides of the element region in a first direction, both end portions of the gate electrode in the first direction being on the element isolation region and respectively including a concave portion and protruding portions at both sides of the concave portion; carrying out ion implantation of impurities of the one conductivity type from a direction tilted from a direction perpendicular to the one principal face toward the first direction so that first and second impurity implantation regions of the one conductivity type are formed in the one principal face in two end regions of the element region in the first direction.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: February 10, 2015
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Eisuke Seo
  • Publication number: 20150035083
    Abstract: A method is provided for fabricating an MOS transistor. The method includes providing a semiconductor substrate; forming a metal gate structure; and forming a source region and a drain region. The method also includes forming a contact-etch-stop layer; forming an interlayer dielectric layer on the contact-etch-stop layer and the metal gate structure; and forming a first opening in the interlayer dielectric layer with a portion of the sidewall spacer and the contact-etch-stop layer left on the bottom. Further, forming a first contact hole in the interlayer dielectric layer by removing the portion of the sidewall spacer and the contact-etch-stop layer. Further, the method also includes forming a first conductive via in the first contact hole.
    Type: Application
    Filed: November 4, 2013
    Publication date: February 5, 2015
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: QIUHUA HAN
  • Patent number: 8946027
    Abstract: A fin field effect transistor (FinFET) structure and method of making the FinFET including a silicon fin that includes a channel region and source/drain (S/D) regions, formed on each end of the channel region, where an entire bottom surface of the channel region contacts a top surface of a lower insulator and bottom surfaces of the S/D regions contact first portions of top surfaces of a lower silicon germanium (SiGe) layer. The FinFET structure also includes extrinsic S/D regions that contact a top surface and both side surfaces of each of the S/D regions and second portions of top surfaces of the lower SiGe layer. The FinFET structure further includes a replacement gate or gate stack that contacts a conformal dielectric, formed over a top surface and both side surfaces of the channel region.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8941211
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Patent number: 8940595
    Abstract: A faceted intrinsic buffer semiconductor material is deposited on sidewalls of a source trench and a drain trench by selective epitaxy. A facet adjoins each edge at which an outer sidewall of a gate spacer adjoins a sidewall of the source trench or the drain trench. A doped semiconductor material is subsequently deposited to fill the source trench and the drain trench. The doped semiconductor material can be deposited such that the facets of the intrinsic buffer semiconductor material are extended and inner sidewalls of the deposited doped semiconductor material merges in each of the source trench and the drain trench. The doped semiconductor material can subsequently grow upward. Faceted intrinsic buffer semiconductor material portions allow greater outdiffusion of dopants near faceted corners while suppressing diffusion of dopants in regions of uniform width, thereby suppressing short channel effects.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Bhupesh Chandra, Paul Chang, Gregory G. Freeman, Dechao Guo, Judson R. Holt, Arvind Kumar, Timothy J. McArdle, Shreesh Narasimha, Viorel Ontalus, Sangameshwar Rao Saudari, Christopher D. Sheraw, Matthew W. Stoker
  • Patent number: 8936995
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: January 20, 2015
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
  • Patent number: 8936981
    Abstract: A method for fabricating a semiconductor device with mini-SONOS cell is disclosed. The method includes: providing a semiconductor substrate having a first MOS region and a second MOS region; forming a first trench in the semiconductor substrate between the first MOS region and the second MOS region; depositing a oxide liner and a nitride liner in the first trench; forming a STI in the first trench; removing a portion of the nitride liner for forming a second trench between the first MOS region of the semiconductor substrate and the STI and a third trench between the STI and the second MOS region of the semiconductor substrate; and forming a first conductive type nitride layer in the second trench.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: January 20, 2015
    Assignee: United Microelectronics Corp.
    Inventor: Ya Ya Sun
  • Publication number: 20150008530
    Abstract: A semiconductor device is provided. A cell region is disposed in a substrate. The cell region includes a memory cell. A peripheral region is disposed in the substrate. The peripheral region is adjacent to the cell region. The peripheral region has a trench isolation, a first active region and a second active region. The trench isolation is interposed between the first active region and the second active region. A common gate pattern is disposed on the peripheral region. The common gate pattern extends in a first direction and partially overlaps the first active region, the second active region and the trench isolation. A buried conductive pattern is enclosed by the trench isolation. The buried conductive pattern extends in a second direction crossing the first direction. A top surface of the buried conductive pattern is lower than a bottom surface of the common gate pattern.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 8, 2015
    Inventors: Won-Kyung Park, Ki-Jae Hur, Hyeong-Sun Hong, Se-Young Kim, Jun-Hee Lim
  • Publication number: 20150008528
    Abstract: A method of forming a device is presented. The method includes providing a structure having first and second regions. A diffusion barrier is formed between at least a portion of the first and second regions. The diffusion barrier comprises cavities that reduce diffusion of elements between the first and second regions.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 8, 2015
    Inventors: Shyue Seng TAN, Lee Wee TEO, Yung Fu CHONG, Elgin QUEK, Sanford CHU
  • Patent number: 8927389
    Abstract: A method of fabricating a semiconductor device includes providing a substrate including a first region and a second region, forming a first trench having a first width in the first region and a second trench having a second width in the second region, and the second width is greater than the first width. The method also includes forming a first insulation layer in the first and second trenches, removing the first insulation layer in the second trench to form a first insulation pattern that includes the first insulation layer remaining in the first trench, forming on the substrate a second insulation layer that fills the second trench, and the second insulation layer includes a different material from the first insulation layer.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyungmun Byun, Byoungdeog Choi, Eunkee Hong, Mansug Kang
  • Patent number: 8928111
    Abstract: Transistors are formed using pitch multiplication. Each transistor includes a source region and a drain region connected by strips of active area material separated by shallow trench isolation (STI) structures, which are formed by dielectric material filling trenches formed by pitch multiplication. During pitch multiplication, rows of spaced-apart mandrels are formed and spacer material is deposited over the mandrels. The spacer material is etched to define spacers on sidewalls of the mandrels. The mandrels are removed, leaving free-standing spacers. The spacers constitute a mask, through which an underlying substrate is etched to form the trenches and strips of active area material. The trenches are filled to form the STI structures. The substrate is doped, forming source, drain and channel regions. A gate is formed over the channel region. In some embodiments, the STI structures and the strips of material facilitate the formation of transistors having a high breakdown voltage.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 6, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mike Smith
  • Patent number: 8921188
    Abstract: One illustrative method disclosed herein includes forming a trench within an isolated region of a bulk semiconductor substrate, forming a region of an insulating material in the trench and forming a semiconductor material within the trench and above the upper surface of the region of insulating material. A substrate disclosed herein includes an isolated substrate region in a bulk semiconductor substrate, a region of an insulating material that is positioned within a trench defined in the isolated substrate region and a semiconductor material positioned within the trench and above the upper surface of the region of insulating material.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ram Asra
  • Patent number: 8916433
    Abstract: When forming high-k metal gate electrode structures in an early manufacturing stage, integrity of an encapsulation and, thus, integrity of sensitive gate materials may be improved by reducing the surface topography of the isolation regions. To this end, a dielectric cap layer of superior etch resistivity is provided in combination with the conventional silicon dioxide material.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 23, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thilo Scheiper, Peter Baars, Sven Beyer
  • Patent number: 8916442
    Abstract: A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 23, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vara Govindeswara Reddy Vakada, Laegu Kang, Michael P. Ganz, Yi Qi, Puneet Khanna, Sri Charan Vemula, Srikanth Samavedam
  • Patent number: 8916428
    Abstract: A semiconductor device having dislocations and a method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having an isolation feature therein and two gate stacks overlying the substrate, wherein one of the gate stacks is atop the isolation feature. The method further includes performing a pre-amorphous implantation process on the substrate. The method further includes forming spacers adjoining sidewalls of the gate stacks, wherein at least one of the spacers extends beyond an edge the isolation feature. The method further includes forming a stress film over the substrate. The method also includes performing an annealing process on the substrate and the stress film.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsan-Chun Wang, Chun Hsiung Tsai
  • Publication number: 20140367784
    Abstract: An integrated circuit includes a substrate and at least one NMOS transistor having, in the substrate, an active region surrounded by an insulating region. The insulating region is formed to includes at least one area in which the insulating region has two insulating extents that are mutually separated from each other by a separation region formed by a part of the substrate.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Applicant: STMicroelectronics (Rousset) SAS
    Inventors: Christian Rivero, Giulhem Bouton, Pascal Fornara
  • Patent number: 8912069
    Abstract: A semiconductor device includes: a semiconductor substrate having first and second areas; an STI isolation region being made of an isolation trench formed in the semiconductor substrate and an insulating film burying the isolation trench and defining a plurality of active regions in the first and second areas; a first structure formed on an area from the active region in the first area to a nearby STI isolation region and having a first height; and a second structure formed on an area from the active region in the second area to a nearby STI isolation region and having a second height, wherein the surface of the said STI isolation region in the first area is lower than the surface of said STI isolation region in the second area.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: December 16, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Kazuhiro Mizutani
  • Publication number: 20140363943
    Abstract: The invention relates to a contact structure of a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a semiconductor layer on the sidewalls and bottom of the opening; a dielectric layer on the semiconductor layer; and a metal layer filling an opening of the dielectric layer.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8906771
    Abstract: Some embodiments include methods of forming isolation structures. A semiconductor base may be provided to have a crystalline semiconductor material projection between a pair of openings. SOD material (such as, for example, polysilazane) may be flowed within said openings to fill the openings. After the openings are filled with the SOD material, one or more dopant species may be implanted into the projection to amorphize the crystalline semiconductor material within an upper portion of said projection. The SOD material may then be annealed at a temperature of at least about 400° C. to form isolation structures. Some embodiments include semiconductor constructions that include a semiconductor material base having a projection between a pair of openings. The projection may have an upper region over a lower region, with the upper region being at least 75% amorphous, and with the lower region being entirely crystalline.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Mikhalev, Jim Fulford, Yongjun Jeff Hu, Gordon A. Haller, Lequn Liu
  • Patent number: 8907445
    Abstract: A film formation substrate (200) is a film formation substrate having a plurality of vapor deposition regions (24R and 24G) (i) which are arranged along a predetermined direction and (ii) in which respective vapor-deposited films (23R and 23G) are provided. The vapor-deposited film (24R) has inclined side surfaces 23s which are inclined with respect to a direction normal to the film formation substrate (200). A width, in the predetermined direction, of the vapor-deposited film (23R) is larger than the sum of (i) a width, in the predetermined direction, of the vapor deposition region (24R) and (ii) a width, in the predetermined direction, of a region (29) between the vapor deposition region (24R) and the vapor deposition region (24G).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Publication number: 20140357039
    Abstract: On a substrate formed of a first semiconductor layer, an insulating layer and a second semiconductor layer, a silicon oxide pad layer and a silicon nitride pad layer are deposited and patterned to define a mask. The mask is used to open a trench through the first semiconductor layer and insulating layer and into the second semiconductor layer. A dual liner of silicon dioxide and silicon nitride is conformally deposited within the trench. The trench is filled with silicon dioxide. A hydrofluoric acid etch removes the silicon nitride pad layer along with a portion of the conformal silicon nitride liner. A hot phosphoric acid etch removes the silicon oxide pad layer, a portion of the silicon oxide filling the trench and a portion of the conformal silicon nitride liner. The dual liner protects against substrate etch through at an edge of the trench between the first and second semiconductor layers.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Qing Liu, Nicolas Loubet, Bruce Doris
  • Patent number: 8901644
    Abstract: Disclosed herein is a field effect transistor with a vertical channel and a fabrication method thereof. A channel region of the field effect transistor is a circular ring-shaped Si platform, which is formed over a substrate and perpendicular to the substrate; a source, which is made of polysilicon, is located at an upper end of the Si platform; a drain is disposed at an outside of a lower end of the circular ring-shaped Si platform; a gate is placed on an outer side surface of the circular ring-shaped Si platform; and an inside of the circular ring-shaped Si platform is filled with a dielectric material. In comparison with the conventional vertical structure MOSFET with a Si platform, the circular ring-shaped structure field effect transistor according to the invention can effectively suppress the short channel effect and improve the device performance.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 2, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Yujie Ai, Zhihua Hao, Shuangshuang Pu, Jiewen Fan, Shuai Sun, Runsheng Wang, Xiaoyan Xu
  • Publication number: 20140349458
    Abstract: A device includes a semiconductor fin over a substrate, a gate dielectric on sidewalls of the semiconductor fin, and a gate electrode over the gate dielectric. A source/drain region is on a side of the gate electrode. A dislocation plane is in the source/drain region.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Zhiqiang Wu, Wen-Hsing Hsieh, Hua Feng Chen, Ting-Yun Wu, Carlos H. Diaz, Tzer-Min Shen, Ya-Yun Cheng
  • Patent number: 8895391
    Abstract: The present disclosure relates to a method of manufacturing a semiconductor memory device, the method including: forming isolation layers in trenches dividing active regions of a substrate; depositing a tunnel insulating layer and a charge storing layer on an entire structure including the isolation layers; forming mask patterns on the charge storing layer to cover the active regions and to expose the isolation layers; and etching the charge storing layer by using the mask patterns as an etch barrier, thereby forming charge storing layer patterns on the active regions.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 25, 2014
    Assignee: SK Hynix Inc.
    Inventor: Won Ki Kim
  • Publication number: 20140342524
    Abstract: An integrated circuit including at least one isolating trench that delimits an active area made of a monocrystalline semiconductor material, the or each trench comprising an upper portion including an insulating layer that encapsulates a lower portion of the trench, the lower portion being at least partly buried in the active area and the encapsulation layer comprising nitrogen or carbon.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Grégory Bidal, Laurent Favennec, Raul Andres Bianchi
  • Publication number: 20140332887
    Abstract: Silicon-on-insulator integrated circuits with local oxidation of silicon and methods for fabricating the same are provided. An integrated circuit includes a semiconductor substrate and a plurality of shallow trench isolation (STI) regions, each extending at least a first depth below an upper surface of the semiconductor substrate. The STI regions electrically isolate devices fabricated in the semiconductor substrate. The integrated circuit further includes a transistor that includes source and drain regions located in the semiconductor substrate, a gate dielectric layer located between the source and drain regions, and a local oxide layer located in a second portion of the semiconductor substrate and extending a second depth below the upper surface of the semiconductor substrate. The first depth is greater than the second depth. Still further, the integrated circuit includes a first gate electrode that extends over the gate dielectric layer and the local oxide layer.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shaoqiang Zhang, Purakh Raj Verma, Guan Huei See, Youzhou Hu, Wenli Liu
  • Patent number: 8877580
    Abstract: An intermediate semiconductor structure in fabrication includes a substrate. A plurality of gate structures is disposed over the substrate, with at least two of the gate structures separated by a sacrificial material between adjacent gate structures. A portion of the sacrificial material is removed to form openings within the sacrificial material, which are filled with a filler material having a high aspect ratio oxide. The excess filler material is removed. A portion of the gate structures is removed to form gate openings within the gate structures. The gate openings are filled with gate cap material and the excess gate cap material is removed to create a substantially planar surface overlaying the gate structures and the sacrificial material to control sacrificial oxide recess and gate height.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: November 4, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tsung-Liang Chen, Hsin-Neng Tai, Huey-Ming Wang
  • Patent number: 8881073
    Abstract: Roughly described, a method for approximating stress-induced mobility enhancement in a channel region in an integrated circuit layout, including approximating the stress at each of a plurality of sample points in the channel, converting the stress approximation at each of the sample points to a respective mobility enhancement value, and averaging the mobility enhancement values at all the sample points. The method enables integrated circuit stress analysis that takes into account stresses contributed by multiple stress generation mechanisms, stresses having vector components other than along the length of the channel, and stress contributions (including mitigations) due to the presence of other structures in the neighborhood of the channel region under study, other than the nearest STI interfaces. The method also enables stress analysis of large layout regions and even full-chip layouts, without incurring the computation costs of a full TCAD simulation.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 4, 2014
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Dipankar Pramanik
  • Patent number: 8877606
    Abstract: A semiconductor substrate structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer; an insulator with etch stop characteristics formed on the electrically conductive layer; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A scheme of subsequently building a dual-depth shallow trench isolation with the deeper STI in the back gate layer self-aligned to the shallower STI in the active region in such a semiconductor substrate is also disclosed.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Patent number: 8871597
    Abstract: A method of forming a semiconductor device includes providing a semiconductor substrate and forming a plurality of dummy gate structures in the substrate. The method further includes forming sidewall spacers on sidewalls of the dummy gate structures and forming a plurality of epitaxial growth regions between the dummy gate structures. After forming the plurality of epitaxial growth regions, one of the dummy gate structures is removed to form an isolation trench, which is filled with a dielectric layer to form an isolation feature. The remaining dummy gate structures are removed to form gate trenches, and gate structures are formed in the gate trenches.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Chang-Yun Chang, Hsin-Chih Chen
  • Patent number: 8865555
    Abstract: A base insulating film is formed over a substrate. A first oxide semiconductor film is formed over the base insulating film, and then first heat treatment is performed to form a second oxide semiconductor film. Then, selective etching is performed to form a third oxide semiconductor film. An insulating film is formed over the first insulating film and the third oxide semiconductor film. A surface of the insulating film is polished to expose a surface of the third oxide semiconductor film, so that a sidewall insulating film is formed in contact with at least a side surface of the third oxide semiconductor film. Then, a source electrode and a drain electrode are formed over the sidewall insulating film and the third oxide semiconductor film. A gate insulating film and a gate electrode are formed.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Teruyuki Fujii, Sho Nagamatsu
  • Patent number: 8859362
    Abstract: A method for defining patterns in an integrated circuit comprises defining a plurality of features in a first photoresist layer using photolithography over a first region of a substrate. The method further comprises using pitch multiplication to produce at least two features in a lower masking layer for each feature in the photoresist layer. The features in the lower masking layer include looped ends. The method further comprises covering with a second photoresist layer a second region of the substrate including the looped ends in the lower masking layer. The method further comprises etching a pattern of trenches in the substrate through the features in the lower masking layer without etching in the second region. The trenches have a trench width.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: October 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, John Lee, Zengtao Liu, Eric Freeman, Russell Nielsen
  • Patent number: 8859376
    Abstract: A method and structure of an embedded stressor in a semiconductor transistor device having a sigma-shaped channel sidewall and a vertical isolation sidewall. The embedded stressor structure is made by a first etch to form a recess in a substrate having a gate and first and second spacers. The second spacers are removed and a second etch creates a step in the recess on a channel sidewall. An anisotropic etch creates facets in the channel sidewall of the recess. Where the facets meet, a vertex is formed. The depth of the vertex is determined by the second etch depth (step depth). The lateral position of the vertex is determined by the thickness of the first spacers. A semiconductor material having a different lattice spacing than the substrate is formed in the recess to achieve the embedded stressor structure.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N Adam, Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek
  • Publication number: 20140302657
    Abstract: A substrate having thereon an epitaxial layer is provided. A hard mask having an opening is formed on the epitaxial layer. A sidewall spacer is formed within the opening. A first trench is etched into the epitaxial layer through the opening. A dopant source layer is formed on the surface of the first trench. The dopants are driven into the epitaxial layer to form a doped region within the first trench. The doped region includes a first region adjacent to the surface of the first trench and a second region farther from the surface. The entire dopant source layer and the spacer are removed. A sacrificial layer is then filled into the first trench. The sacrificial layer and the epitaxial layer within the first region are etched away to form a second trench.
    Type: Application
    Filed: May 26, 2013
    Publication date: October 9, 2014
    Applicant: Anpec Electronics Corporation
    Inventor: Yung-Fa Lin
  • Publication number: 20140291738
    Abstract: A semiconductor electronic device structure includes an active area array disposed in a substrate, an isolation structure, a plurality of recessed gate structures, a plurality of word lines, and a plurality of bit lines. The active area array a plurality of active area columns and a plurality of active area rows, defining an array of active areas. The substrate has two recesses formed at the central region thereof. Each recessed gate structure is respectively disposed in the recess. A protruding structure is formed on the substrate in each recess. A STI structure of the isolation structure is arranged between each pair of adjacent active area rows. Word lines are disposed in the substrate, each electrically connecting the gate structures there-under. Bit lines are disposed above the active areas, forming a crossing pattern with the word lines.
    Type: Application
    Filed: September 12, 2013
    Publication date: October 2, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, YAW-WEN HU, HUNG CHANG LIAO, CHUNG-YUAN LEE, HSU CHIANG, SHENG-HSIUNG WU
  • Publication number: 20140291766
    Abstract: Techniques are disclosed for forming a planar-like transistor device on a fin-based field-effect transistor (finFET) architecture during a finFET fabrication process flow. In some embodiments, the planar-like transistor can include, for example, a semiconductor layer which is grown to locally merge/bridge a plurality of adjacent fins of the finFET architecture and subsequently planarized to provide a high-quality planar surface on which the planar-like transistor can be formed. In some instances, the semiconductor merging layer can be a bridged-epi growth, for example, comprising epitaxial silicon. In some embodiments, such a planar-like device may assist, for example, with analog, high-voltage, wide-Z transistor fabrication.
    Type: Application
    Filed: March 30, 2013
    Publication date: October 2, 2014
    Inventors: Walid M. Hafez, Peter J. Vandervoorn, Chia-Hong Jan
  • Patent number: 8847205
    Abstract: By reducing a deposition rate and maintaining a low bias power in a plasma atmosphere, a spacer layer, for example a silicon nitride layer, may be deposited that exhibits tensile stress. The amount of tensile stress is controllable within a wide range, thereby providing the potential for forming sidewall spacer elements that modify the charge carrier mobility and thus the conductivity of the channel region of a field effect transistor.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: September 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hartmut Ruelke, Katja Huy, Markus Lenski
  • Patent number: 8841187
    Abstract: Disclosed is a semiconductor device and a method for fabricating the semiconductor device. The method for fabricating the semiconductor device comprises steps of: forming a side cliff in a substrate in accordance with a gate mask pattern, the side cliff being substantially vertical to a substrate surface; forming a dielectric layer on the substrate that comprises the side cliff; etching the dielectric layer to have the dielectric layer left only on the side cliff, as a dielectric wall; and burying the side cliff by a substrate growth, the burying is performed up to a level higher than the upper end of the dielectric wall.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 23, 2014
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Meng Zhao
  • Publication number: 20140264444
    Abstract: Shallow trench isolation structures are formed within a semiconductor layer of a substrate to define an active area. The active area is recessed relative to a top surface of the shallow trench isolation structure. A shallow trench isolation (STI) spacer is formed on sidewalls of the shallow trench isolation structure around the periphery of the active area. After formation of a gate stack structure and a gate spacer, trenches are formed such that sidewalls of the trenches are vertically coincident with sidewalls of the gate spacer and the STI spacer. Epitaxial semiconductor material can be deposited into the trenches by selective epitaxy to form an embedded source region and an embedded drain region. Because all surfaces of the trenches are semiconductor surfaces, the entire trenches can be filled with the epitaxial semiconductor material, thereby enabling lateral confinement of stress within a channel region of a field effect transistor.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: International Business Machines Corporation
    Inventors: Dechao Guo, Yang Liu, Chengwen Pei, Yue Tan
  • Patent number: 8835279
    Abstract: According to one embodiment, a method of manufacturing a semiconductor device is provided. In the method, a tunnel insulating film and a first conductive film are formed on a semiconductor layer. A trench is formed. A first sacrifice film is buried in the trench. A second sacrifice film having density higher than that of the first sacrifice film is formed on the first sacrifice film in the trench. An insulating film is formed on the first conductive film and the second sacrifice film. A second conductive film is formed on the insulating film. The second sacrifice film is exposed. The first sacrifice film and the second sacrifice film are removed.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keisuke Nakazawa
  • Patent number: 8835242
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure comprises at least two gate structures on a substrate. The gate structures define a recess between the gate structures, and the recess is defined by a depth in a vertical direction. The depth is from a top surface of at least one of the gate structures to below a top surface of the substrate, and the depth extends in an isolation region in the substrate. The semiconductor structure further comprises a filler material in the recess. The filler material has a first thickness in the vertical direction. The semiconductor structure also comprises an inter-layer dielectric layer in the recess and over the filler material. The inter-layer dielectric layer has a second thickness in the vertical direction below the top surface of the at least one of the gate structures. The first thickness is greater than the second thickness.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hung Ko, Jyh-Huei Chen, Ming-Jie Huang