Including Selectively Removing Material To Undercut And Expose Storage Node Layer Patents (Class 438/397)
  • Patent number: 7741215
    Abstract: The present invention provides a method for manufacturing a semiconductor device, including the step of forming a hole penetrating an insulating film over a semiconductor substrate, wherein the step includes the steps of forming a pedestal at a position where a hole to be formed; forming an insulating film to bury the pedestal; forming a first hole in the insulating film so as to expose a top surface of the pedestal; and removing the pedestal to form a second hole continuous with the first hole to form a hole penetrating the insulating film.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 22, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Chiharu Takasaki
  • Patent number: 7736527
    Abstract: Siloxane polymer compositions and methods of manufacturing a capacitor are described. In some embodiments, a mold layer pattern is formed on a substrate having a conductive structure, and the mold layer pattern has an opening to expose the conductive structure. A conductive layer is formed on the substrate. A buffer layer pattern is formed on the conductive layer formed in the opening. The buffer layer pattern includes a siloxane polymer represented by the following Chemical Formula 1. The conductive layer is selectively removed to form a lower electrode. The mold layer pattern and the buffer layer pattern are removed. A dielectric layer and an upper electrode are formed on the substrate to form a capacitor. The methods may simplify manufacturing processes for a capacitor and a semiconductor device, and may improve their efficiencies.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: June 15, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Mi Kim, Myung-Sun Kim, Young-Ho Kim
  • Patent number: 7736971
    Abstract: A method of fabricating a semiconductor device includes forming a first interlayer insulating film including a storage node contact plug over a semiconductor substrate. A second interlayer insulating film is formed over the first interlayer insulating film and the storage node contact plug. A mask pattern is formed over the second interlayer insulating film to expose a storage node region. The second interlayer insulating film and the first interlayer insulating film is selectively etched to form a recess exposing a portion of the storage node contact plug. A lower storage node is formed in the recess. The storage node includes a concave structure that surrounds the exposed storage node contact plug. A dip-out process is performed to remove the second interlayer insulating film. A dielectric film is formed over the semiconductor substrate including the lower storage node. A plate electrode is deposited over the dielectric film to form a capacitor.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 15, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jung Tak Suh
  • Patent number: 7713832
    Abstract: A method of fabricating a semiconductor device includes forming an interlayer insulating pattern over a semiconductor substrate. The interlayer insulating pattern defines a plurality of storage node regions. A lining conductive film is formed over the interlayer insulating pattern including the storage node region. A capping insulating film is formed over the lining conductive film. The capping insulating film over the interlayer insulating film and the lining conductive film are selectively etched between two neighboring storage node regions to form a recess exposing the interlayer insulating pattern on the bottom of the recess and the lining conductive film on sidewalls of the recess. The capping insulating film and the lining conductive film is shaped to be planar so that the lining conductive layer is electrically separated from each other to form a respective lower storage electrode. A supporting pattern is formed to fill the recess.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 11, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Young Deuk Kim
  • Patent number: 7709367
    Abstract: A method for fabricating a storage node contact in a semiconductor device includes forming a landing plug over a substrate, forming a first insulation layer over the landing plug, forming a bit line pattern over the first insulation layer, forming a second insulation layer over the bit line pattern, forming a mask pattern for forming a storage node contact over the second insulation layer, etching the second and first insulation layers until the landing plug is exposed to form a storage node contact hole including a portion having a rounded profile, filling a conductive material in the storage node contact hole to form a contact plug, and forming a storage node over the contact plug.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hae-Jung Lee, Ik-Soo Choi, Chang-Youn Hwang, Mi-Hyune You
  • Patent number: 7687344
    Abstract: A first insulation layer is formed on a substrate structure including an inter-layer insulation layer and a storage node contact plug. The first insulation layer is etched to form a first opening exposing a portion of the storage node contact plug. The first opening is filled with an organic polymer layer. An etch stop layer and a second insulation layer are formed on the organic polymer layer and the first insulation layer. A photoresist pattern is formed on the second insulation layer. The second insulation layer and the etch stop layer are etched to form a second opening exposing a portion of the organic polymer layer. The photoresist pattern and the organic polymer layer are removed, thereby extending a portion of the second opening. A storage node is formed over the extended second opening and the second insulation layer.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung-Kwon Lee
  • Patent number: 7682924
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Covering material is formed over an elevationally outer lateral interface of the conductive material within the trench and the insulative material of the circuitry area. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area and to expose the conductive material within the trench. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Kevin R. Shea, Farrell Good
  • Publication number: 20100047992
    Abstract: A method of fabricating a storage node with a supported structure is provided. A dielectric stacked comprising an etch stop layer, a first dielectric layer, a support layer and a second dielectric layer is formed on a substrate. An opening is etched into the dielectric stacked. A conductive layer is formed on the second dielectric layer and inside the opening. The conductive layer directly above the second dielectric layer is removed to form columnar node structure. The second dielectric layer is then removed. A spacer layer is deposited on the support layer and the columnar node structure. A tilt-angle implant is performed to implant dopants into the spacer layer. The undoped spacer layer is removed to form a hard mask. The support layer not covered by the hard mask is etched away to expose the first dielectric layer. The first dielectric layer and the hard mask are removed.
    Type: Application
    Filed: September 24, 2008
    Publication date: February 25, 2010
    Inventors: Shih-Fan Kuan, Le-Tien Jung
  • Publication number: 20100041204
    Abstract: Some embodiments include methods of making stud-type capacitors utilizing carbon-containing support material. Openings may be formed through the carbon-containing support material to electrical nodes, and subsequently conductive material may be grown within the openings. The carbon-containing support material may then be removed, and the conductive material utilized as stud-type storage nodes of stud-type capacitors. The stud-type capacitors may be incorporated into DRAM, and the DRAM may be utilized in electronic systems.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 18, 2010
    Inventors: Mark Kiehlbauch, Kevin R. Shea
  • Patent number: 7651907
    Abstract: A method for fabricating a semiconductor device, the method includes forming an etch stop layer and an insulation layer over a substrate having a first region and a second region, selectively removing the insulation layer and the etch stop layer in the first region to expose parts of the substrate, thereby forming at least two electrode regions on the exposed substrate and a resultant structure, forming a conductive layer over the resultant structure, removing the conductive layer in the second region, removing the insulation layer in the first region and the second region by using wet chemicals, and removing parts of the conductive layer, which formed between the at least two electrode regions in the first region, to form cylinder type electrodes in the first region.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 26, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7635887
    Abstract: An integrated circuit arrangement includes an undulating capacitor in a conductive structure layer. The surface area of the capacitor is enlarged in comparison with an even capacitor. The capacitor is interlinked with dielectric regions at its top side and/or its underside, so that it can be produced by methods which may not have to be altered in comparison with conventional CMP methods.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: December 22, 2009
    Assignee: Infineon Technologies AG
    Inventor: Anton Steltenpohl
  • Patent number: 7612400
    Abstract: An MIM device includes a lower electrode of a metal nitride film, a hysteresis film of an oxide film containing Nb formed on the lower electrode, and an upper electrode of a metal nitride film formed on the hysteresis film.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: November 3, 2009
    Assignee: Fujitsu Limited
    Inventors: Teruo Kurahashi, Hideharu Shido, Kenji Ishikawa, Takeo Nagata, Yasuyoshi Mishima, Yukie Sakita
  • Patent number: 7592220
    Abstract: In accordance with the objectives of the invention a new method and structure is provided for the creation of a capacitor. A contact pad and a lower capacitor plate have been provided over a substrate. Under the first embodiment of the invention, a layer of etch stop material, serving as the capacitor dielectric is deposited after which a triple layer of passivation is created over a substrate. The compound passivation layer is first etched, using a fuse mask, to define and expose the capacitor dielectric and a fuse area after which the passivation layer is second etched to define and expose the contact pad. A layer of AlCu is then deposited, patterned and etched to create a capacitor upper plate and a contact interconnect over the contact pad. Under a second embodiment of the invention, a triple layer of passivation is created over a layer of etch stop material deposited over a substrate, a contact pad and a lower capacitor plate have been provided over the substrate.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 22, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chuan Chang Lin, James Chiu
  • Patent number: 7588992
    Abstract: A thin-film capacitor assembly includes a first metal bottom electrode, a dielectric layer, a second metal etch-stop layer, and a subsequent metal top electrode. The first metal bottom electrode is in contact with the dielectric layer. The second metal etch-stop layer is in contact with the dielectric layer. The subsequent metal top electrode is in contact with the second metal etch-stop layer. Processing of the thin-film capacitor assembly includes totally removing a stiffener after assembling the first metal bottom electrode as a layer to the dielectric layer and the second metal etch-stop layer. The stiffener is removed from above and on the second metal etch-stop layer. The thin-film capacitor assembly is laminated to a mounting substrate.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: September 15, 2009
    Assignee: Intel Corporation
    Inventor: Yongki Min
  • Publication number: 20090209080
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Application
    Filed: April 27, 2009
    Publication date: August 20, 2009
    Inventors: Gurtej S. Sandhu, D. Mark Durcan
  • Patent number: 7557015
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes within a capacitor array area over a substrate. The capacitor electrodes comprise outer lateral sidewalls. The plurality of capacitor electrodes is supported at least in part with a retaining structure which engages the outer lateral sidewalls. The retaining structure is formed at least in part by etching a layer of material which is not masked anywhere within the capacitor array area to form said retaining structure. The plurality of capacitor electrodes is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 7, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D. Mark Durcan
  • Patent number: 7544580
    Abstract: A method for manufacturing passive components is disclosed. First, a substrate is provided, and a connecting region, a capacitor region and an inductance region are defined in the substrate. The substrate includes a first metal layer and an insulating layer on the first metal layer. Subsequently, the insulating layer is etched, and then the first metal layer is etched. Thus, an outer connecting pad in the connecting region and a bottom electrode in the capacitor region are formed simultaneously, and a part of the insulating layer on the bottom electrode remains. Thereafter, a dielectric layer is deposited, and then a dual damascene copper process is performed to form an inductance structure and a top electrode of a capacitor in the dielectric layer simultaneously. Next, a passive layer is deposited and an etching process is thereafter performed to expose the outer connecting pad.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 9, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Hung-Lin Shih
  • Patent number: 7534694
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 19, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7531420
    Abstract: A semiconductor memory cell and production method provides a storage capacitor connected to a selection transistor. The storage capacitor is formed as a contact hole capacitor in at least one contact hole for a source or drain region. Such a semiconductor memory cell can be produced cost-effectively and allows a high integration density.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 12, 2009
    Assignee: Infineon Technologies AG
    Inventors: Thomas Nirschl, Alexander Olbrich, Martin Ostermayr
  • Publication number: 20090108317
    Abstract: A method of fabricating a semiconductor device includes forming a first interlayer insulating film including a storage node contact plug over a semiconductor substrate. A second interlayer insulating film is formed over the first interlayer insulating film and the storage node contact plug. A mask pattern is formed over the second interlayer insulating film to expose a storage node region. The second interlayer insulating film and the first interlayer insulating film is selectively etched to form a recess exposing a portion of the storage node contact plug. A lower storage node is formed in the recess. The storage node includes a concave structure that surrounds the exposed storage node contact plug. A dip-out process is performed to remove the second interlayer insulating film. A dielectric film is formed over the semiconductor substrate including the lower storage node. A plate electrode is deposited over the dielectric film to form a capacitor.
    Type: Application
    Filed: December 28, 2007
    Publication date: April 30, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Jung Tak SEO
  • Patent number: 7524724
    Abstract: A method of fabricating a storage capacitor includes depositing a first titanium nitride layer on a dielectric layer using a chemical vapor deposition technique or an atomic layer deposition technique performed at a first temperature with reactant gases of titanium chloride (TiCl4) gas and ammonia (NH3) gas at a predetermined flow ratio and depositing a second titanium nitride layer on the first titanium nitride layer using a chemical vapor deposition process performed at a second temperature that is greater than the first temperature with reactant gases of titanium chloride (TiCl4) gas and ammonia (NH3) gas.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rak-Hwan Kim, Hyun-Seok Lim, Young-Joo Cho, In-Sun Park, Hyeon-Deok Lee, Hyun-Suk Lee
  • Patent number: 7524732
    Abstract: A semiconductor device with an L-shape spacer and the method for manufacturing the same are provided. The semiconductor device comprises a substrate, a composite spacer, and a tunnel insulating layer. The substrate comprises a shallow trench isolation structure and a neighboring active area. The composite spacer is formed on the sidewall of the shallow trench isolation structure, and further comprises a first insulating layer and an L-shape second insulating layer spacer, wherein the first insulating layer is located between the L-shape second insulating layer spacer and the substrate. The tunnel insulating layer is located on the substrate of the active area and connects to the first insulating layer of the composite spacer on its corresponding side.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: April 28, 2009
    Assignee: Promos Technologies Inc.
    Inventors: Chung-We Pan, Shi-Cheng Lin, Ching-Hung Fu, Chih-Ping Chung
  • Patent number: 7517753
    Abstract: The invention includes methods of forming pluralities of capacitors. In one implementation, a method of forming a plurality of capacitors includes anodically etching individual capacitor electrode channels within a material over individual capacitor storage node locations on a substrate. The channels are at least partially filled with electrically conductive capacitor electrode material in electrical connection with the individual capacitor storage node locations. The capacitor electrode material is incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7504300
    Abstract: Disclosed is a method for fabricating a semiconductor memory device capable of preventing a bunker defect caused by a pinhole or a crack on a single metal layer used as a storage node. The method includes the steps of: forming a plurality of storage node plugs on a substrate; forming an insulation layer with a plurality of openings exposing surfaces of the plurality of storage node plugs on the substrate; forming a plurality of cylinder-type storage nodes inside of the plurality of opening in a structure that a different kind of conductive layer is formed between the same kinds of conductive layers; selectively removing the insulation layer; forming a dielectric layer on the plurality of cylinder type storage nodes; and forming a plate electrode on the dielectric layer.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: March 17, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Eui-Seong Hwang
  • Patent number: 7491619
    Abstract: Disclosed are methods of fabricating semiconductor devices. A method may include forming a first conductive layer, a first dielectric layer, a second conductive layer, a second dielectric layer, and a third conductive layer. The method may also include forming a mask layer on the third conductive layer, forming a photoresist pattern on the mask layer, and forming at least one middle electrode by patterning the mask layer, the third conductive layer, the second dielectric layer, and the second conductive layer using the photoresist pattern as an etching mask. The method may also include forming a mask pattern by selectively etching a side wall of the patterned mask layer, removing the photoresist pattern, and forming an upper electrode by patterning the third conductive layer using the mask pattern as an etching mask.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: February 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Wook Park, Hyung-Moo Park
  • Patent number: 7482239
    Abstract: In one implementation, an opening within a capacitor electrode forming layer is formed over a substrate. A spacing layer is deposited over the capacitor electrode forming layer to within the opening over at least upper portions of sidewalls of the opening. The spacing layer is formed to be laterally thicker at an elevationally outer portion within the opening as compared to an elevationally inner portion within the opening. A spacer is formed within the opening by anisotropically etching the spacing layer. The spacer is laterally thicker at an elevationally outer portion within the opening as compared to an elevationally inner portion within the opening. After forming a first capacitor electrode layer laterally over the spacer, at least a portion of the spacer is removed and a capacitor dielectric region and a second capacitor electrode layer are formed over the first capacitor electrode layer.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 27, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Publication number: 20090023265
    Abstract: Provided are an anionic surfactant-containing etching solution for removal of an oxide film, preparation methods thereof, and methods of fabricating a semiconductor device using the etching solution. The etching solution includes a hydrofluoric acid (HF), deionized water, and an anionic surfactant. The anionic surfactant is a compound in which an anime salt is added as a counter ion, as represented by R1—OSO3?HA+, R1—CO2?HA+,R1—PO42—(HA+)2,(R1)2—PO4—HA+, or R1—SO3—HA+ where R1 is a straight or branched hydrocarbon group of C4 to C22 and A is ammonia or amine. The etching solution provides a high etching selectivity ratio of an oxide film to a nitride film or a polysilicon film. Therefore, in a semiconductor device fabrication process such as a STI device isolation process or a capacitor formation process, when an oxide film is exposed together with a nitride film or a polysilicon film, the etching solution can be efficiently used in selectively removing only the oxide film.
    Type: Application
    Filed: October 1, 2008
    Publication date: January 22, 2009
    Inventors: CHANG-SUP MUN, Hyung-Ho Ko, Woo-Gwan Shim, Chang-Ki Hong, Sang-Jun Choi
  • Patent number: 7468306
    Abstract: A semiconductor substrate is provided comprising a plurality of contact pads arranged on a horizontal surface of the semiconductor substrate. Pillars of a first sacrificial material are formed on the contact pads. A first dielectric layer is deposited thus covering at least said pillars. A first conductive layer is deposited between said pillars covered with the first dielectric layer. The pillars are removed thus providing trenches in the first conductive layer having walls covered with the dielectric layer. A second conductive layer is deposited on the first dielectric layer in the trench. A second dielectric layer is deposited such that at least the second conductive layer in the trench is covered by the second dielectric layer. A third conductive layer is deposited on the second dielectric layer.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 23, 2008
    Assignee: Qimonds AG
    Inventors: Andreas Thies, Klaus Muemmler
  • Publication number: 20080305608
    Abstract: A method for fabricating a semiconductor device, the method includes forming an etch stop layer and an insulation layer over a substrate having a first region and a second region, selectively removing the insulation layer and the etch stop layer in the first region to expose parts of the substrate, thereby forming at least two electrode regions on the exposed substrate and a resultant structure, forming a conductive layer over the resultant structure, removing the conductive layer in the second region, removing the insulation layer in the first region and the second region by using wet chemicals, and removing parts of the conductive layer, which formed between the at least two electrode regions in the first region, to form cylinder type electrodes in the first region.
    Type: Application
    Filed: December 26, 2007
    Publication date: December 11, 2008
    Inventor: Jun-Hee Cho
  • Patent number: 7456077
    Abstract: A method includes connecting together one or more anode connection members of one or more anode foils and one or more cathode connection members of one or more cathode foils and electrically isolating the one or more anode foils from the one or more cathode foils. A capacitor stack includes a plurality of cathode layers having cathode connection members and a plurality of anode layers having anode connection members. The anode connection members are connected to the cathode connection members and configured such that the anode layers can be electrically separated from the cathode layers by cutting only the anode connection members or the cathode connection members.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: November 25, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Brian L. Schmidt, James M. Poplett, Brian V. Waytashek
  • Patent number: 7449383
    Abstract: In a method of manufacturing a capacitor and a method of manufacturing a dynamic random access memory device, an insulating layer covering an upper portion of a conductive layer may be provided with an ozone gas so as to change the property of the upper portion of the insulating layer. The upper portion of the insulating layer may be chemically removed to expose the upper portion of the conductive layer. The exposed upper portion of the conductive layer may be removed so as to transform the conductive layer into a lower electrode. The remaining portion of the insulating layer may be removed, and an upper electrode may be formed on the lower electrode.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: November 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Sub Yoon, Jung-Hyeon Lee, Bong-Cheol Kim, Se-Young Park
  • Patent number: 7445991
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20080261373
    Abstract: A method of fabricating a semiconductor device includes forming a buffer insulating film over a semiconductor substrate including a conductive pattern. The buffer insulating film is etched using a storage node mask to form a buffer insulating pattern exposing the conductive pattern. The buffer insulating pattern defines a region wider than a storage node region. An etch stop film is formed over the conductive pattern and the buffer insulating pattern. An interlayer insulating film is formed over the etch stop film. The interlayer insulating film is etched using the storage node mask to expose the etch stop film. The exposed etch stop film is etched to form the storage node region exposing conductive pattern. A lower storage node is formed over the storage node region.
    Type: Application
    Filed: December 6, 2007
    Publication date: October 23, 2008
    Inventor: Joong Il Choi
  • Patent number: 7439152
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7435644
    Abstract: Provided is a method of manufacturing a capacitor of a semiconductor device, which can prevent tilting or an electrical short of a lower electrode. In the method, a mesh-type bridge insulating layer is formed above the contact plug on a mold oxide layer. The mold oxide layer and the bridge insulating layer are etched to define an electrode region. The mold oxide layer is removed using an etching gas having an etch selectivity of 500 or greater for the mold oxide layer with respect to the bridge insulating layer.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: October 14, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Gwan Shim, Jung-Min Oh, Chang-Ki Hong, Sang-Jun Choi, Sang-Yong Kim
  • Publication number: 20080242042
    Abstract: A method for fabricating a capacitor in a semiconductor device includes forming a sacrificial layer and a support layer on a substrate. A plurality of openings are formed by etching the support layer and the sacrificial layer. An electrode is formed in inner walls of the openings including sidewalls of the support layer patterned through etching. A portion of the patterned support layer is removed, and the sacrificial layer is also removed.
    Type: Application
    Filed: June 29, 2007
    Publication date: October 2, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Jong-Kuk KIM, Jung-Seock Lee, Phil-Goo Kong, Hyun Ahn
  • Publication number: 20080206950
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive metal nitride-comprising material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Inner sidewalls of the conductive material within the trench are annealed in a nitrogen-comprising atmosphere. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Application
    Filed: February 26, 2007
    Publication date: August 28, 2008
    Inventors: Vishwanath Bhat, Kevin R. Shea
  • Patent number: 7416954
    Abstract: An apparatus including a capacitor formed between metallization layers on a circuit, the capacitor including a bottom electrode coupled to a metal layer and a top electrode coupled to a metal via wherein the capacitor has a corrugated sidewall profile. A method including forming an interlayer dielectric including alternating layers of dissimilar dielectric materials in a multilayer stack over a metal layer of a device structure; forming a via having a corrugated sidewall; and forming a decoupling capacitor stack in the via that conforms to the sidewall of the via.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: August 26, 2008
    Assignee: Intel Corporation
    Inventors: Bruce A. Block, Richard Scott List
  • Publication number: 20080197399
    Abstract: A nanotip capacitor and associated fabrication method are provided. The method provides a bottom electrode and grows electrically conductive nanotips overlying the bottom electrode. An electrically insulating dielectric is deposited overlying the nanotips, and an electrically conductive top electrode is deposited overlying dielectric-covered nanotips. Typically, the dielectric is deposited by forming a thin layer of dielectric overlying the nanotips using an atomic layer deposition (ALD) process. In one aspect, the electrically insulating dielectric covering the nanotips forms a three-dimensional interface of dielectric-covered nanotips. Then, the electrically conductive top electrode overlying the dielectric-covered nanotips forms a three-dimensional top electrode interface, matching the first three-dimensional interface of the dielectric-covered nanotips.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Inventors: Sheng Teng Hsu, Fengyan Zhang
  • Publication number: 20080188056
    Abstract: A method for forming a capacitor of a semiconductor device includes the steps of forming first and second sacrificial insulation layers over a semiconductor substrate divided into first and second regions. The second and first sacrificial insulation layers in the first region are etched to define in the first region of the semiconductor substrate. Storage nodes on surfaces of the holes are formed. A partial thickness of the second sacrificial insulation layer is etched to partially expose upper portions of the storage nodes. A mask pattern is formed to cover the first region while exposing the second sacrificial insulation layer remaining in the second region. The exposed second sacrificial insulation layer in the second region is removed to expose the first sacrificial insulation layer in the second region. The exposed first sacrificial insulation layer in the second region and the first sacrificial insulation layer in the first region is removed. The mask pattern is removed.
    Type: Application
    Filed: December 28, 2007
    Publication date: August 7, 2008
    Inventor: Gyu Hyun KIM
  • Patent number: 7407862
    Abstract: A method for manufacturing a ferroelectric memory device includes the steps of forming an active element on a substrate; forming an interlayer dielectric film on the substrate; forming a contact hole in the interlayer dielectric film; forming, in the contact hole, a contact plug that conductively connects to the active element; reacting trimethyl aluminum with the contact plug; applying an oxidation treatment to the contact plug reacted with the trimethyl aluminum; applying an ammonium plasma treatment to the contact plug treated with the oxidation treatment; forming a film of conductive material having a self-orientation property to form a conductive layer on the contact plug treated with the ammonium plasma treatment; and laminating a first electrode, a ferroelectric layer and a second electrode above the conductive layer.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: August 5, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Hiroaki Tamura
  • Patent number: 7405133
    Abstract: A semiconductor device comprising a semiconductor substrate, and a plurality of capacitors formed on the semiconductor substrate. The capacitors comprise a plurality of lower electrodes formed on the semiconductor substrate, a ferroelectric film formed continuously covering the plurality of lower electrodes, and an upper electrode formed on the surface of the ferroelectric film, wherein each of the capacitors is formed for each of the plurality of lower electrode.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: July 29, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuaki Natori, Tomohiro Saito, Yoshihiro Uozumi
  • Publication number: 20080164565
    Abstract: The semiconductor device according to the present invention includes a lower electrode made of a metallic material, a capacitance film made of an insulating material and laminated on the lower electrode, an upper electrode made of a metallic material, opposed to the lower electrode through the capacitance film, and having an outline smaller than that of the lower electrode in plan view along the opposed direction, and a protective film made of the same material as that of the capacitance film and laminated on the upper electrode.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 10, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Ryotaro Yagi, Yuichi Nakao, Isamu Nishimura
  • Publication number: 20080157093
    Abstract: A capacitor is made by forming a buffer oxide layer, an etching stop layer, and a mold insulation layer over a semiconductor substrate having a storage node contact plug. The mold insulation layer and the etching stop layer are etched to form a hole in an upper portion of the storage node contact plug. A tapering layer is deposited over the mold insulation layer including the hole. The tapering layer and the buffer oxide layer are etched back so that the tapering layer is remained only at the upper end portion of the etched hole. A metal storage node layer formed on the etched hole over the remaining tapering layer. The mold insulation layer and the remaining tapering layer are removed to form a cylindrical storage node having a tapered upper end. A dielectric layer and a plate node are formed over the storage node.
    Type: Application
    Filed: July 17, 2007
    Publication date: July 3, 2008
    Inventors: Ho Jin CHO, Cheol Hwan PARK, Jae Soo KIM, Dong Kyun LEE
  • Patent number: 7393743
    Abstract: The invention includes methods of forming a plurality of capacitors. In one implementation, a plurality of capacitor electrode openings is formed over a substrate. Individual of the capacitor electrode openings are bounded on a first pair of opposing sides by a first capacitor electrode-forming material at one elevation and on a second pair of opposing sides by a different second capacitor electrode-forming material at the one elevation. Individual capacitor electrodes are formed within individual of the capacitor electrode openings. The capacitor electrodes are incorporated into a plurality of capacitors. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Publication number: 20080150077
    Abstract: Disclosed is a semiconductor device comprising a first substrate having a through-electrode and a capacitor cell, a second substrate having a circuit unit, and a connection electrode electrically connecting the capacitor cell with the circuit unit.
    Type: Application
    Filed: September 28, 2007
    Publication date: June 26, 2008
    Inventor: JAE WON HAN
  • Patent number: 7371636
    Abstract: A method for fabricating a storage node contact hole of a semiconductor device includes: forming an inter-layer insulation layer over a substrate; forming a hard mask over the inter-layer insulation layer; etching the inter-layer insulation layer to form a storage node contact hole; forming a passivation layer to fill the storage node contact hole; removing the hard mask with an etch rate of the hard mask faster than that of the inter-layer insulation layer; and removing the passivation layer.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: May 13, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki-Won Nam
  • Patent number: 7364967
    Abstract: Methods of forming a storage capacitor include forming an interlayer insulation layer having an opening therethrough on a semiconductor substrate, forming a contact plug in the opening, forming a molding oxide layer on the interlayer insulation layer and the contact plug, selectively removing portions of the molding oxide layer to form a recess above the contact plug, forming a titanium layer on a bottom surface and side surfaces of the recess, forming a titanium nitride layer on the titanium layer, and forming a titanium oxide nitride layer on the titanium nitride layer. A storage capacitor includes a semiconductor substrate, an interlayer insulation layer having a contact plug therein on the substrate, and a storage electrode on the contact plug including a titanium silicide layer, a titanium nitride layer on the titanium silicide layer, and a titanium oxide nitride layer on the titanium nitride layer.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: April 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rak-Hwan Kim, Young-Joo Cho, Sung-Tae Kim, In-Sun Park, Hyeon-Deok Lee, Hyun-Suk Lee, Jung-Hee Chung, Hyun-Young Kim, Hyun-Seok Lim
  • Patent number: 7361548
    Abstract: Methods for forming a capacitor using an atomic layer deposition process include providing a reactant including an aluminum precursor onto a substrate to chemisorb a portion of the reactant to a surface of the substrate. The substrate has an underlying structure including a lower electrode. An ammonia (NH3) plasma is provided onto the substrate to form a dielectric layer including aluminum nitride on the substrate including the lower electrode. An upper electrode is formed on the dielectric layer. A second dielectric layer may be provided oil the first dielectric layer.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: April 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Soon Lim, Sung-Tae Kim, Young-Sun Kim, Young-Geun Park, Suk-Jin Chung, Seung-Hwan Lee
  • Publication number: 20080081431
    Abstract: A method for fabricating a capacitor includes forming an isolation layer over a substrate. The isolation layer forms a plurality of open regions. Storage nodes are formed on surfaces of the open regions. An upper portion of the isolation layer is etched to expose upper outer walls of the storage nodes. A sacrificial layer is formed over the isolation layer to enclose the upper outer walls of the storage nodes. The isolation layer and the sacrificial layer are then removed.
    Type: Application
    Filed: June 29, 2007
    Publication date: April 3, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Jae-Sung ROH, Kee-Jeung Lee, Han-Sang Song, Seung-Jin Yeom, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim