Including Texturizing Storage Node Layer Patents (Class 438/398)
  • Patent number: 7855113
    Abstract: A method for fabricating a semiconductor memory device includes: forming a lower conductive layer over a semiconductor substrate; forming an insulation layer over the lower conductive layer; etching the insulation layer to form a contact hole that exposes a portion of the lower conductive layer; forming a contact plug in the contact hole; doping the contact plug by performing a plasma doping process while varying a temperature of regions the semiconductor substrate; and forming an upper conductive layer connected with the lower conductive layer through the contact plug.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: December 21, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong Soo Joung, Seung Woo Jin, An Bae Lee, Young Hwan Joo
  • Patent number: 7846809
    Abstract: A method for forming a capacitor of a semiconductor device includes the steps of forming first and second sacrificial insulation layers over a semiconductor substrate divided into first and second regions. The second and first sacrificial insulation layers in the first region are etched to define in the first region of the semiconductor substrate. Storage nodes on surfaces of the holes are formed. A partial thickness of the second sacrificial insulation layer is etched to partially expose upper portions of the storage nodes. A mask pattern is formed to cover the first region while exposing the second sacrificial insulation layer remaining in the second region. The exposed second sacrificial insulation layer in the second region is removed to expose the first sacrificial insulation layer in the second region. The exposed first sacrificial insulation layer in the second region and the first sacrificial insulation layer in the first region is removed. The mask pattern is removed.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: December 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Gyu Hyun Kim
  • Patent number: 7825043
    Abstract: A method for fabricating a capacitor in a semiconductor device includes: forming a bottom electrode; forming a ZrxAlyOz dielectric layer on the bottom electrode using an atomic layer deposition (ALD) method, wherein the ZrxAlyOz dielectric layer comprises a zirconium (Zr) component, an aluminum (Al) component and an oxygen (O) component mixed in predetermined mole fractions of x, y and z, respectively; and forming a top electrode on the ZrxAlyOz dielectric layer.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kee-Jeung Lee
  • Patent number: 7824998
    Abstract: A method includes forming an amorphous carbon layer over a first dielectric layer formed over a substrate, forming a second dielectric layer over the amorphous carbon layer; and forming an opening within the amorphous carbon layer and second dielectric layer by a first etch process to partially expose a top surface of the first dielectric layer. A substantially conformal metal-containing layer is formed over the second dielectric layer and within the opening. The second dielectric layer and a portion of the metal-containing layer are removed. The amorphous carbon layer is removed by an oxygen-containing plasma process to expose a top surface of the first dielectric layer. An insulating layer is formed over the metal-containing layer, and a second metal-containing layer is formed over the insulating layer to form a capacitor.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 2, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yuan-Hung Liu, Ming Chyi Liu, Yeur-Luen Tu, Chi-Hsin Lo, Chia-Shiung Tsai
  • Patent number: 7812450
    Abstract: The present invention relates to an electrode 100 with high capacitance. The electrode includes a conducting substrate 10 with a number of nano-sized structures 13 thereon and a coating 15. The nano-sized structures are concave-shaped and are of a size in the range from 2 nanometers to 50 nanometers. The nano-sized structures are configured for increasing specific surface area of the electrode. The present invention also provides a method for making the above-described electrode. The method includes steps of providing a conducting substrate, forming a number of nano-sized structures on the conducting substrate, and forming a coating on the nano-sized structures.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 12, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Patent number: 7781298
    Abstract: A method for forming a capacitor comprises providing a substrate. A bottom electrode material layer is formed on the substrate. A first mask layer is formed on the bottom electrode material layer. A second mask layer is formed on the first mask layer. The second mask layer is patterned to form a patterned second mask layer in a predetermined region for formation of a capacitor. A plurality of hemispherical grain structures are formed on a sidewall of the patterned second mask layer. The first mask layer is etched by using the hemispherical grain structures and the patterned second mask layer as a mask, thereby forming a patterned first mask layer having a pattern. The pattern of the first mask layer is transferred to the bottom electrode material layer. And, a capacitor dielectric layer and a top electrode layer are formed on the bottom electrode material layer to form the capacitor.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 24, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Hengyuan Lee, Lurng-Shehng Lee, Ching Chiun Wang, Pei-Jer Tzeng
  • Patent number: 7754576
    Abstract: A container capacitor and method of forming the container capacitor are provided. The container capacitor comprises a lower electrode fabricated by forming a layer of doped polysilicon within a container in an insulative layer disposed on a substrate; forming a barrier layer over the polysilicon layer within the container; removing the insulative layer to expose the polysilicon layer outside the container; nitridizing the exposed polysilicon layer at a low temperature, preferably by remote plasma nitridation; removing the barrier layer to expose the inner surface of the polysilicon layer within the container; and forming HSG polysilicon over the inner surface of the polysilicon layer. The capacitor can be completed by forming a dielectric layer over the lower electrode, and an upper electrode over the dielectric layer. The cup-shaped bottom electrode formed within the container defines an interior surface comprising HSG polysilicon, and an exterior surface comprising smooth polysilicon.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: July 13, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Lingyi A. Zheng
  • Patent number: 7749854
    Abstract: A self-converged memory material element is created during the manufacture of a memory cell comprising a base layer, with a bottom electrode, and an upper layer having a third, planarization stop layer over the base layer, a second layer over the third layer, and the first layer over the second layer. A keyhole opening is formed through the upper layer to expose the bottom electrode. The first layer has an overhanging portion extending into the opening. A dielectric material is deposited into the keyhole opening so to create a self-converged void within the keyhole opening. An anisotropic etch forms a sidewall of the dielectric material in the keyhole opening with an electrode hole aligned with the void and exposing the bottom electrode. A memory material is deposited into the electrode hole in contact with the bottom electrode and is planarized down to the third layer to create the memory material element.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 6, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang Lan Lung
  • Patent number: 7745827
    Abstract: Conventionally, the layer of the insulator between a cathode and an anode is formed by a droplet discharge method, vapor deposition, or the like separately from an interlayer insulating film formed over a thin film transistor, which creates problems of increase in cost and the number of manufacturing steps. A memory device of the present invention includes a first conductive film; an insulating film formed over the first conductive film; and a second conductive film formed over the insulating film, and an opening and a contact hole which are formed in the insulating film. Further, the insulating film exists between the first conductive film and the second conductive film formed in the opening, and the first conductive film and the second conductive film are electrically connected in the contact hole.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: June 29, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 7741176
    Abstract: A method for fabricating a semiconductor device is disclosed. The semiconductor device includes a capacitor and a support insulator. The capacitor includes a cylindrical electrode. The cylindrical electrode comprises upper and lower sections. The lower section has a roughened inner surface and an outer surface supported by the support insulator. The upper section upwardly projects from the support insulator. An initial cylindrical electrode is formed, wherein the initial cylindrical electrode comprises an initial upper section and an initial lower section which correspond to the upper section and the lower section of the cylindrical electrode, respectively. The initial upper section is supported by the support insulator. Specific impurities are implanted into the initial upper section, wherein the specific impurities serve to prevent the initial upper section from being roughened.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: June 22, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Tomohiro Uno, Yoshitaka Nakamura
  • Patent number: 7736972
    Abstract: In order to form a storage electrode of a semiconductor memory device, an interlayer dielectric layer is formed on a semiconductor substrate having a bit line thereon. A contact hole exposing the semiconductor substrate is formed by patterning the interlayer dielectric layer. A polysilicon layer is etched to a predetermined thickness using polysilicon etching gas after the polysilicon layer is deposited. An over-etch process is performed relative to the polysilicon layer, and then a storage node contact having a planarized surface is formed in the contact hole by performing an etching process for planarizing the surface of the polysilicon layer. A mold insulating layer is formed on the resultant structure, in which the mold insulating layer exposes an area where the storage node contact is formed. A storage electrode coupled to the storage node contact is formed.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: June 15, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 7727850
    Abstract: A method for forming a capacitor of a semiconductor device includes forming a first capacitor in a storage node contact region to form a two-stage structured capacitor, thereby increasing the height and the capacitance of the capacitor.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: June 1, 2010
    Assignee: Hynix Semiconductor, Inc
    Inventor: Woo Young Chung
  • Publication number: 20100120212
    Abstract: A method of forming a semiconductor memory device includes sequentially forming an etch stop layer and then a mold layer, forming a plurality of line-shaped support structures and a first sacrificial layer filling gaps between the support structures on the mold layer, sequentially forming a plurality of line-shaped first mask patterns, a second sacrificial layer, and then second mask patterns on the support structures and on the first sacrificial layer, removing the second sacrificial layer, the first sacrificial layer, and the mold layer using the first mask patterns, the second mask patterns, and the support structures as masks, removing the first mask patterns and second mask patterns, filling the storage node electrode holes with a conductive material and etching back the conductive material to expose the support structures, and removing the first sacrificial layer and the mold layer to form pillar-type storage node electrodes supported by the support structures.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 13, 2010
    Inventors: Dong-kwan Yang, Seong-ho Kim, Won-mo Park, Gil-sub Kim
  • Patent number: 7709367
    Abstract: A method for fabricating a storage node contact in a semiconductor device includes forming a landing plug over a substrate, forming a first insulation layer over the landing plug, forming a bit line pattern over the first insulation layer, forming a second insulation layer over the bit line pattern, forming a mask pattern for forming a storage node contact over the second insulation layer, etching the second and first insulation layers until the landing plug is exposed to form a storage node contact hole including a portion having a rounded profile, filling a conductive material in the storage node contact hole to form a contact plug, and forming a storage node over the contact plug.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hae-Jung Lee, Ik-Soo Choi, Chang-Youn Hwang, Mi-Hyune You
  • Patent number: 7700454
    Abstract: A method of fabricating a uniformly wrinkled capacitor lower electrode without the need to perform a high-temperature heat treatment and a method of fabricating a capacitor including the uniformly wrinkled capacitor lower electrode are provided. A first conductive layer is formed. Then, a second conductive layer including about 20% to about 50% of impurities is formed on the first conductive layer. Next, at least some of the impurities are exhausted from the second conductive layer by heat treating the second conductive layer. A surface of the second conductive layer is wrinkled due to the exhaustion of the impurities from the second conductive layer. A dielectric layer and an upper capacitor electrode may then be formed.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Wan-don Kim, Jae-hyun Joo, Seok-jun Won, Jung-hee Chung, Jin-yong Kim, Suk-jin Chung
  • Patent number: 7700433
    Abstract: A method of fabricating an MIM type capacitor includes at least one of: Forming a first trench within an insulating interlayer formed on a semiconductor substrate. Forming a lower electrode layer of a metal nitride layer substance to fill an inside of the first trench. Forming a second trench on a surface of the lower electrode layer to have a depth less than the first trench. Forming a capacitor dielectric layer conformal along a surface of the lower electrode layer including the second trench. Forming an upper electrode layer of a metal nitride layer substance on the capacitor dielectric layer. Sequentially patterning the upper electrode layer and the capacitor dielectric layer by photolithography.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: April 20, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang-Il Hwang
  • Patent number: 7670921
    Abstract: A method of forming a metal-insulator-metal (MIM) capacitor includes forming a first planar dielectric layer with a first metallization layer therein; forming a first passivation layer on top thereof; forming a planar conductive layer above the first passivation layer; patterning and selectively removing the conductive layer up to the first passivation layer in designated areas to form a set of conductive features; patterning and conformally coating the set of conductive features and the exposed first passivation layer with a high strength dielectric coating; disposing a second dielectric layer above the first passivation layer and enclosing the set of conductive features; patterning and selectively removing portions of the second substrate to form channels and trenches; performing a dual-Damascene process to form a second metallization layer in the trenches and channels and to form an upper conductive surface above the high strength dielectric coating.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Timothy J. Dalton, Ebenezer E. Eshun, Jeffrey P. Gambino, Anthony K. Stamper, Richard P. Volant
  • Patent number: 7667257
    Abstract: Method for solving the problem caused when forming a crown-structure capacitor in a trench which is formed in an insulating film, and having difficulty in electrical by connecting a first upper electrode formed on the inside wall of the trench and a second upper electrode which is to be a plate because of the intervention of dielectric between the first and second upper electrodes. The conducting state of the first upper electrode and the plate upper electrode is ensured by utilizing a tantalum oxide film formed on a titanium nitride film, which is brought to a completely conducting state when heat treated. A crown structure is formed without removing the insulating film, in which a trench has been formed, by wet etching, whereby a stacked trench capacitor, which has double the capacity is provided while eliminating the collapse of the lower electrode or pair bit defect.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: February 23, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Shinpei Iijima
  • Patent number: 7666738
    Abstract: The present invention relates to a method for fabricating a capacitor of a semiconductor device. The method includes the steps of: forming a first amorphous silicon layer doped with an impurity in a predetermined first doping concentration suppressing dopants from locally agglomerating; forming an impurity undoped second amorphous silicon layer on the first amorphous silicon layer in an in-situ condition; forming a storage node by patterning the first amorphous silicon layer and the second amorphous silicon layer; forming silicon grains on a surface of the storage node; and doping the impurity to the storage node and the silicon grains until reaching a second predetermined concentration for providing conductivity required by the storage node.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: February 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong-Woo Shin, Hyung-Bok Choi, Jong-Min Lee, Jin-Woong Kim
  • Patent number: 7662694
    Abstract: The capacitance of a capacitor is adjusted by forming openings in one of a pair of electrodes of the capacitor, the openings having different sizes d1, d2, d3, . . . , wherein d1>d2>d3> . . . and being arranged in numbers n1, n2, n3, . . . , respectively; and sequentially filling a necessary number of the openings with an electroconductive material in descending order of the size so as to adjust the capacitance gradually with an increasing degree of precision. The resulting capacitor is mounted to a printed wiring board.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 16, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Hajime Sakamoto, Takashi Kariya, Yasuhiko Mano
  • Publication number: 20090246931
    Abstract: Methods of forming a roughened metal surface on a substrate are provided, along with structures comprising such roughened surfaces. In preferred embodiments roughened surfaces are formed by selectively depositing metal or metal oxide on a substrate surface to form discrete, three-dimensional islands. Selective deposition may be obtained, for example, by modifying process conditions to cause metal agglomeration or by treating the substrate surface to provide a limited number of discontinuous reactive sites. The roughened metal surface may be used, for example, in the manufacture of integrated circuits.
    Type: Application
    Filed: February 10, 2009
    Publication date: October 1, 2009
    Applicant: ASM International N.V.
    Inventors: Hannu Huotari, Suvi Haukka
  • Patent number: 7560036
    Abstract: The invention relates to a method of fabricating a microneedle array in a substrate, a drug delivery device comprising one or more microneedles extending upwards from the front surface of the substrate, the microneedles having a generally conical-shaped body defined by a plurality of surfaces sloping upwards from a relatively broad base to a tip, and one or more substances coating the microneedles, the one or more substances being operable to be administered to a patient, wherein the tips of the one or more microneedles are sufficiently sharp to penetrate an outer layer of the skin of the patient, and a method of administering one or more substances to a patient using the device.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 14, 2009
    Assignee: Apogee Technology, Inc.
    Inventors: Nevenka Golubovic-Liakopoulos, Glenn Fricano, Michael Danielson
  • Patent number: 7560351
    Abstract: An integrated circuit arrangement and fabrication method is presented. The integrated circuit arrangement contains a semiconductor and a metal electrode. The contact area between a semiconductor and the electrode is increased without increasing the lateral dimensions using partial regions of the semiconductor and/or of the electrode that extend through a transition layer between the semiconductor and electrode.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: July 14, 2009
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Richard Johannes Luyken, Wolfgang Roesner, Michael Specht
  • Patent number: 7544580
    Abstract: A method for manufacturing passive components is disclosed. First, a substrate is provided, and a connecting region, a capacitor region and an inductance region are defined in the substrate. The substrate includes a first metal layer and an insulating layer on the first metal layer. Subsequently, the insulating layer is etched, and then the first metal layer is etched. Thus, an outer connecting pad in the connecting region and a bottom electrode in the capacitor region are formed simultaneously, and a part of the insulating layer on the bottom electrode remains. Thereafter, a dielectric layer is deposited, and then a dual damascene copper process is performed to form an inductance structure and a top electrode of a capacitor in the dielectric layer simultaneously. Next, a passive layer is deposited and an etching process is thereafter performed to expose the outer connecting pad.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 9, 2009
    Assignee: United Microelectronics Corp.
    Inventor: Hung-Lin Shih
  • Patent number: 7491601
    Abstract: An electronic device may include a substrate, a conductive layer on the substrate, and an insulating spacer. The conductive electrode may have an electrode wall extending away from the substrate. The insulating spacer may be provided on the electrode wall with portions of the electrode wall being free of the insulating spacer between the substrate and the insulating spacer, and portions of the electrode most distant from the substrate may be free of the insulating spacer. Related methods and structures are also discussed.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-joon Yeo, Tae-hyuk Ahn, Kwang-wook Lee, Jung-woo Seo, Jeong-sic Jeon
  • Patent number: 7482239
    Abstract: In one implementation, an opening within a capacitor electrode forming layer is formed over a substrate. A spacing layer is deposited over the capacitor electrode forming layer to within the opening over at least upper portions of sidewalls of the opening. The spacing layer is formed to be laterally thicker at an elevationally outer portion within the opening as compared to an elevationally inner portion within the opening. A spacer is formed within the opening by anisotropically etching the spacing layer. The spacer is laterally thicker at an elevationally outer portion within the opening as compared to an elevationally inner portion within the opening. After forming a first capacitor electrode layer laterally over the spacer, at least a portion of the spacer is removed and a capacitor dielectric region and a second capacitor electrode layer are formed over the first capacitor electrode layer.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 27, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Patent number: 7473951
    Abstract: A magnetic random access memory (MRAM), and a method of manufacturing the same, includes a cell including a transistor and a magnetic tunneling junction (MTJ) layer connected to the transistor, wherein the MTJ layer includes a lower electrode, a lower magnetic film, a tunneling film having a uniform thickness and a substantially flat upper surface, and an upper magnetic film, wherein the lower electrode includes a first lower electrode and an amorphous second lower electrode. An amorphous flattening film may be further formed between the lower electrode and the lower magnetic film.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: January 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-wan Kim, Sang-jin Park
  • Patent number: 7468306
    Abstract: A semiconductor substrate is provided comprising a plurality of contact pads arranged on a horizontal surface of the semiconductor substrate. Pillars of a first sacrificial material are formed on the contact pads. A first dielectric layer is deposited thus covering at least said pillars. A first conductive layer is deposited between said pillars covered with the first dielectric layer. The pillars are removed thus providing trenches in the first conductive layer having walls covered with the dielectric layer. A second conductive layer is deposited on the first dielectric layer in the trench. A second dielectric layer is deposited such that at least the second conductive layer in the trench is covered by the second dielectric layer. A third conductive layer is deposited on the second dielectric layer.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 23, 2008
    Assignee: Qimonds AG
    Inventors: Andreas Thies, Klaus Muemmler
  • Patent number: 7456065
    Abstract: A method of manufacturing dynamic random access memory (DRAM) cylindrical capacitor is provided. A substrate having a polysilicon plug formed therein is provided. A dielectric layer having an opening is disposed on the substrate, wherein the opening exposes the polysilicon plug. Thereafter, an amorphous silicon spacer is formed on the sidewall of the opening to expose a portion of the polysilicon plug. Next, a top portion of the exposed polysilicon plug is removed and a seeding method is used to grow a hemispherical silicon grain (HSG) layer on a surface of the amorphous silicon spacer. A capacitor dielectric layer is formed on the surface of the HSG layer and a conductive layer is then formed on the capacitor dielectric layer. As no HSG is formed on the polysilicon plug, and therefore the contact area of the capacitor is not decreased.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: November 25, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Heng-Yuan Lee, Chieh-Shuo Liang, Lurng-Shehng Lee
  • Publication number: 20080278886
    Abstract: Capacitive coupling devices and methods of fabricating a capacitive coupling device are disclosed. The coupling device could include a stack of layers forming electrodes and at least one insulator. The insulator could include a a region of doped silicon. The silicon could be doped with a species selected from Ce, Cr, Co, Cu, Dy, Er, Eu, Ho, Ir, Li, Lu, Mn, Pr, Rb, Sm, Sr, Tb, Tm, Yb, Y, Ac, Am, Ba, Be, Cd, Gd, Fe, La, Pb, Ni, Ra, Sc, Th, Hf, Tl, Sn, Np, Rh, U, Zn, Ag, and Yb in relief and forming roughnesses relative to the neighbouring regions of the same level in the stack. The electrodes and the insulator form conformal layers above the doped silicon region.
    Type: Application
    Filed: February 29, 2008
    Publication date: November 13, 2008
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: Benoit Froment
  • Patent number: 7449412
    Abstract: Methods of electroless plating metal on a dielectric material includes dipping the dielectric in a solution containing attractive catalytic metal particles and a metal salt solution. A thicker metallic layer can be deposited on top of the resulting layer by electroplating. Electrical circuits and multichip modules including such circuits can be formed having one or more dielectric layers comprised of latex and one or more layers of conductive leads, one or more dielectric layers comprised of a flexible dielectric material, and one or more layers of electrically conductive material patterned to interconnect such ICs. Frames that hold ICs against a substrate may be employed to planarize their top surfaces against the substrate, as well as standard photolithographic techniques in creating conductive paths on the dielectric material between the ICs.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: November 11, 2008
    Assignee: Custom One Design, Inc.
    Inventors: Peter R. Nuytkens, Ilya E. Popeko, Joseph M. Kulinets
  • Patent number: 7432152
    Abstract: A polysilicon film is formed with enhanced selectivity by flowing chlorine during the formation of the film. The chlorine acts as an etchant to insulative areas adjacent polysilicon structures on which the film is desired to be formed. Bottom electrodes for capacitors are formed using this process, followed by an anneal to create hemishperical grain (HSG) polysilicon. Multilayer capacitor containers are formed in a non-oxidizing ambient so that no oxide is formed between the layers. The structure formed is planarized to form separate containers made from doped and undoped amorphous silicon layers. Selected ones of undoped layers are seeded in a chlorine containing environment and annealed to form HSG. A dielectric layer and second electrode are formed to complete the cell capacitor.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: October 7, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, James Pan
  • Patent number: 7427545
    Abstract: The present invention relates to semiconductor devices, preferably dynamic random access memory (DRAM) cells, each of which contains at least one trench capacitor with a buried isolation collar. The trench capacitor is located in a trench in a semiconductor substrate, and it comprises inner and outer electrodes and a dielectric layer. The buried isolation collar is recessed into a sidewall of the trench and has a substantially uniform thickness. Such a buried isolation collar is preferably formed by oxygen implantation before trench etching.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 23, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Jack A. Mandelman
  • Patent number: 7416954
    Abstract: An apparatus including a capacitor formed between metallization layers on a circuit, the capacitor including a bottom electrode coupled to a metal layer and a top electrode coupled to a metal via wherein the capacitor has a corrugated sidewall profile. A method including forming an interlayer dielectric including alternating layers of dissimilar dielectric materials in a multilayer stack over a metal layer of a device structure; forming a via having a corrugated sidewall; and forming a decoupling capacitor stack in the via that conforms to the sidewall of the via.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: August 26, 2008
    Assignee: Intel Corporation
    Inventors: Bruce A. Block, Richard Scott List
  • Patent number: 7407854
    Abstract: The present invention relates to a method for fabricating a capacitor of a semiconductor device. The method includes the steps of: forming a first amorphous silicon layer doped with an impurity in a predetermined first doping concentration suppressing dopants from locally agglomerating; forming an impurity undoped second amorphous silicon layer on the first amorphous silicon layer in an in-situ condition; forming a storage node by patterning the first amorphous silicon layer and the second amorphous silicon layer; forming silicon grains on a surface of the storage node; and doping the impurity to the storage node and the silicon grains until reaching a second predetermined concentration for providing conductivity required by the storage node.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: August 5, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong-Woo Shin, Hyung-Bok Choi, Jong-Min Lee, Jin-Woong Kim
  • Patent number: 7407862
    Abstract: A method for manufacturing a ferroelectric memory device includes the steps of forming an active element on a substrate; forming an interlayer dielectric film on the substrate; forming a contact hole in the interlayer dielectric film; forming, in the contact hole, a contact plug that conductively connects to the active element; reacting trimethyl aluminum with the contact plug; applying an oxidation treatment to the contact plug reacted with the trimethyl aluminum; applying an ammonium plasma treatment to the contact plug treated with the oxidation treatment; forming a film of conductive material having a self-orientation property to form a conductive layer on the contact plug treated with the ammonium plasma treatment; and laminating a first electrode, a ferroelectric layer and a second electrode above the conductive layer.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: August 5, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Hiroaki Tamura
  • Patent number: 7400008
    Abstract: An objective of this invention is to provide a semiconductor device comprising a less bias-dependent capacitative element with a large capacity per a unit area, having a configuration which can be manufactured using an existing structure in a semiconductor device. There is provided a semiconductor device 100, comprising a semiconductor substrate; a lower interconnection 101 on the semiconductor substrate, in whose upper surface a concave is formed; dielectrics 102a, 102b, 102c, 102d covering the inner surface of the concave; and a upper interconnection 104 on the dielectrics 102a, 102b, 102c, 102d.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: July 15, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Hideaki Horii
  • Patent number: 7393742
    Abstract: In a semiconductor device having a capacitor and a method of fabricating the same, the semiconductor device comprises a semiconductor substrate and an insulating layer on the semiconductor substrate, a contact plug electrically connected to the semiconductor substrate and formed in the contact hole, a buffer conductive layer pattern electrically connected to the contact plug and formed on the insulating layer and the contact plug, an etching stopping layer formed on the buffer conductive layer pattern, a gap between the buffer conductive layer pattern and the etching stopping layer, a capacitor lower electrode electrically connected to the buffer conductive layer pattern and formed on the buffer conductive layer pattern. The gap is filled by a portion of the capacitor lower electrode.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-Mo Park
  • Publication number: 20080145997
    Abstract: A method of forming a metal-insulator-metal capacitor has the following steps. A stack dielectric structure is formed by alternately depositing a plurality of second dielectric layers and a plurality of third dielectric layers. A wet etch selectivity of the second dielectric layer relative to said third dielectric layer is of at least 5:1. An opening is formed in the stack dielectric structure, and then a wet etch process is employed to remove relatively-large portions of the second dielectric layers and relatively-small portions of the third dielectric layers to form a plurality of lateral recesses in the second dielectric layers along sidewalls of the opening. A bottom electrode layer is formed to extend along the serrate sidewalls, a capacitor dielectric layer is formed on the bottom electrode layer, and a top electrode layer is formed on the capacitor dielectric layer.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventor: Kuo-Chi Tu
  • Patent number: 7387260
    Abstract: A RF MOS- or nonlinear device-based surveillance and/or identification tag, and methods for its manufacture and use. The tag generally includes (a) an inductor, (b) a first capacitor plate coupled to the inductor, (c) a dielectric film on the first capacitor plate, (d) a semiconductor component on the dielectric film, and (e) a conductor that provides electrical communication between the semiconductor component and the inductor. The method of manufacture generally includes (1) depositing a semiconductor material (or precursor) on a dielectric film; (2) forming a semiconductor component from the semiconductor material/precursor; (3) forming a conductive structure at least partly on the semiconductor component; and (4) etching the electrically functional substrate to form (i) an inductor and/or (ii) a second capacitor plate.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: June 17, 2008
    Assignee: Kovio, Inc.
    Inventors: J. Devin MacKenzie, James Montague Cleeves, Vik Pavate, Christopher Gudeman, Fabio Zurcher, Max Davis, Dan Good, Joerg Rockenberger
  • Patent number: 7374954
    Abstract: The present invention discloses a ferroelectric register and a method for manufacturing a capacitor of the same. The ferroelectric register is configured to reduce probability of data storage failure due to a weak state capacitor, by connecting a plurality of capacitors in parallel in a ferroelectric capacitor unit for storing data, instead of using a single capacitor, thereby improving storage reliability and stability. In addition, the ferroelectric register obtains a data sensing margin by pumping a cell plate signal into not a power voltage level but a pumping voltage level.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: May 20, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 7375003
    Abstract: In a method of manufacturing a semiconductor device including a capacitor, a first mold layer is formed on a semiconductor substrate. The first mold layer is partially etched to form a first mold layer pattern including an opening for a capacitor. A first lower electrode layer is formed on the first mold layer pattern. A second lower electrode layer including a plurality of first pores is formed on the first lower electrode layer and in the opening. Upper portions of the first lower electrode layer and the second lower electrode layer are removed to form a first lower electrode and a second lower electrode in the opening. A dielectric layer and an upper electrode are successively formed on the first lower electrode and the second lower electrode. Therefore, a capacitor having an enhanced capacitance may be obtained.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: May 20, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-Byoung Yoon, Jin-Sung Kim, Kyung-Woo Lee, Yeong-Cheol Lee, Sang-Jun Park, Hwan-Shik Park
  • Patent number: 7368401
    Abstract: In one aspect of the invention, a method for forming an integrated circuit having an at least substantially doped porous dielectric includes forming a semiconductor device. The semiconductor device includes at least a portion of a semiconductor substrate. The method also includes forming a dielectric layer disposed outwardly from the semiconductor substrate and surrounding at least a portion of the semiconductor device. The dielectric layer includes an at least substantially porous dielectric material doped with at least one dopant. In addition, the method includes forming a contact layer disposed outwardly from the dielectric layer and operable to provide electrical connection to the semiconductor device.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: May 6, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Robert H. Havemann
  • Patent number: 7355234
    Abstract: A stacked capacitor formed in a capacitor hole includes a bottom electrode, capacitor insulation film and a top electrode. The bottom electrode includes a plurality of islands formed on an underlying insulating film, and a metallic film covering the islands on the underlying insulating film. The larger surface of the bottom electrode increases the capacitance of the stacked capacitor.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: April 8, 2008
    Assignee: Elpida Memory, Inc.
    Inventor: Akira Hoshino
  • Patent number: 7332391
    Abstract: A method for forming storage node contacts in a semiconductor device includes forming an interlayer dielectric layer on a semiconductor substrate provided with transistors; forming a hydrogen diffusion preventing layer on the interlayer dielectric layer; forming a hard mask layer containing hydrogen atoms on the hydrogen diffusion preventing layer; forming storage node contact holes, which pass through the hydrogen diffusion preventing layer and the interlayer dielectric layer and expose impurity regions of the transistors, by etching the hydrogen diffusion preventing layer and the interlayer dielectric layer using the hard mask layer as an etching barrier layer; and forming the storage node contacts by filling the storage node contact holes with a conductive layer.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 19, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Il Cheol Roh, Choon Hwan Kim
  • Patent number: 7332393
    Abstract: A cylindrical capacitor comprising at least a substrate, a cylindrical bottom electrode, a structure layer, a top electrode and a capacitor dielectric layer is provided. The substrate has several plugs. The cylindrical bottom electrodes are disposed on the substrate and electrically connected to the respective plugs. The structure layer surrounds the periphery of each cylindrical bottom electrode. The structure layers that surround the two opposing cylindrical bottom electrodes have no mutual contact while the structure layers that surround two neighboring cylindrical bottom electrodes contact each other. Furthermore, the top electrodes cover the respective cylindrical bottom electrodes and the capacitor dielectric layer is disposed between each top electrode and corresponding cylindrical bottom electrode. Due to the structure layers, the mechanical strength of the whole cylindrical capacitor is improved and the density of the capacitor can be increased.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 19, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Heng-Yuan Lee, Ching-Yuan Ho, Lurng-Shehng Lee, Chieh-Shuo Liang
  • Patent number: 7320924
    Abstract: A chip-type solid electrolytic capacitor comprises capacitor elements. A cathode terminal comprising a plate-like conductor is interposed between cathode layers of the capacitor elements. The capacitor elements are bonded to each other by a bonding agent such as a solder or a conductive adhesive. The cathode terminal is provided with a through hole formed at a portion to be brought into contact with each of the capacitor elements. Bonding surfaces of the capacitor elements are directly connected at the through hole.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 22, 2008
    Assignees: NEC TOKIN Corporation, NEC TOKIN Toyama, Ltd.
    Inventors: Fumio Kida, Makoto Nakano
  • Patent number: 7314795
    Abstract: An electronic device may include a substrate, a conductive layer on the substrate, and an insulating spacer. The conductive electrode may have an electrode wall extending away from the substrate. The insulating spacer may be provided on the electrode wall with portions of the electrode wall being free of the insulating spacer between the substrate and the insulating spacer. Related methods and structures are also discussed.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: January 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-joon Yeo, Tae-hyuk Ahn, Kwang-wook Lee, Jung-woo Seo, Jeong-sic Jeon
  • Patent number: 7303927
    Abstract: A ferroelectric capacitor is provided in which the surface area of a ferroelectric thin film is expanded to increase the amount of polarization. In the ferroelectric capacitor, hemi-spherical protruding parts 31 are formed with HSG-growth on the surface of a polycrystalline silicon film 30. On the polycrystalline silicon film 30 having the hemi-spherical protruding parts 31 are sequentially laminated an adhesive layer 32, lower electrode 33, ferroelectric film 34, and upper electrode 35. The ferroelectric film 34 is shaped to overlap the shape of hemi-spherical protruding parts 31 of the polycrystalline silicon film 30, and the surface area thereof is expanded.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: December 4, 2007
    Assignee: Sony Corporation
    Inventors: Chiharu Isobe, Yoshio Sakai
  • Patent number: 7298000
    Abstract: Container structures for use in integrated circuits and methods of their manufacture. The container structures have a dielectric cap on the top of a conductive container to reduce the risk of container-to-container shorting by insulating against bridging of conductive debris across the tops of adjacent container structures. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: November 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Singh Sandhu, Alan R. Reinberg