Having Specified Scribe Region Structure (e.g., Alignment Mark, Plural Grooves, Etc.) Patents (Class 438/462)
  • Patent number: 9275924
    Abstract: A semiconductor package includes a passivation layer overlying a semiconductor substrate, a bump overlying the passivation layer, and a molding compound layer overlying the passivation layer and covering a lower portion of the bump. A sidewall of the passivation layer is covered by the molding compound layer.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: March 1, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Ding Wang, Jung Wei Cheng, Bo-I Lee
  • Patent number: 9275902
    Abstract: Approaches for front side laser scribe plus backside bump formation and laser scribe and plasma etch dicing process are described. For example, a method of dicing a semiconductor wafer having integrated circuits on a front side thereof involves forming first scribe lines on the front side, between the integrated circuits, with a first laser scribing process. The method also involves forming arrays of metal bumps on a backside of the semiconductor wafer, each array corresponding to one of the integrated circuits. The method also involves forming second scribe lines on the backside, between the arrays of metal bumps, with a second laser scribing process, wherein the second scribe lines are aligned with the first scribe lines. The method also involves plasma etching the semiconductor wafer through the second scribe lines to singulate the integrated circuits.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: March 1, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, James S. Papanu, Aparna Iyer, Brad Eaton, Ajay Kumar
  • Patent number: 9269604
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of reducing edge warping in a supported semiconductor wafer involves adhering a backside of a semiconductor wafer to an inner portion of a carrier tape of a substrate carrier comprising a tape frame mounted above the carrier tape. The method also involves adhering an adhesive tape to a front side of the semiconductor wafer and to at least a portion of the substrate carrier. The adhesive tape includes an opening exposing an inner region of the front side of the semiconductor wafer.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 23, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Patent number: 9263362
    Abstract: A method includes providing a first semiconductor chip comprising a ring-shaped metal structure extending along a contour of a first main surface of the semiconductor chip. The method includes encapsulating the first semiconductor chip with an encapsulation body thereby defining a second main surface and depositing a metal layer over the first semiconductor chip and the encapsulation body. A plurality of external contact pads are placed over the second main surface of the encapsulation body, the metal layer electrically coupling at least one external contact pad of the plurality of external contact pads to the ring-shaped metal structure. A seal ring is placed between the ring-shaped metal structure and the contour of the first main surface of the first semiconductor chip.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 16, 2016
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Lachner, Josef Boeck, Klaus Aufinger, Herbert Knapp
  • Patent number: 9236284
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a tape frame lift assembly for a plasma processing chamber includes a capture single ring having an upper surface for supporting a tape frame of a substrate support and for cooling the tape frame. The tape frame lift assembly also includes one or more capture lift arms for moving the capture single ring to and from transfer and processing positions. The tape frame assembly also includes one or more captured lift plate portions, one captured lift plate portion corresponding to one capture lift arm, the one or more captured lift plate portions for coupling the one or more capture lift arms to the capture single ring.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 12, 2016
    Assignee: Applied Materials, Inc.
    Inventor: Alan Hiroshi Ouye
  • Patent number: 9236290
    Abstract: A method for producing a semiconductor device having a sidewall insulation includes providing a semiconductor body having a first side and a second side lying opposite the first side. At least one first trench is at least partly filled with insulation material proceeding from the first side in the direction toward the second side into the semiconductor body. The at least one first trench is produced between a first semiconductor body region for a first semiconductor device and a second semiconductor body region for a second semiconductor device. An isolating trench extends from the first side of the semiconductor body in the direction toward the second side of the semiconductor body between the first and second semiconductor body regions in such a way that at least part of the insulation material of the first trench adjoins at least a sidewall of the isolating trench. The second side of the semiconductor body is partly removed as far as the isolating trench.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 12, 2016
    Assignee: Infineon Technologies AG
    Inventors: Carsten Ahrens, Rudolf Berger, Manfred Frank, Uwe Hoeckele, Bernhard Knott, Ulrich Krumbein, Wolfgang Lehnert, Berthold Schuderer, Juergen Wagner, Stefan Willkofer
  • Patent number: 9231018
    Abstract: A wafer level packaging structure for image sensors and a wafer level packaging method for image sensors are provided. The wafer level packaging structure includes: a wafer to be packaged including multiple chip regions and scribe line regions between the chip regions; pads and image sensing regions located on a first surface of the wafer and located in the chip regions; first dike structures covering surfaces of the pads; a packaging cover arranged facing the first surface of the wafer; and second dike structures located on a surface of the packaging cover. Projections of the second dike structures onto the first surface of the wafer are included in the scribe line regions. The packaging cover and the wafer are jointed fixedly via the second dike structures, while tops of the first dike structures and the surface of the packaging cover are contacted.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: January 5, 2016
    Assignee: China Wafer Level CSP Co., Ltd.
    Inventors: Zhiqi Wang, Qiong Yu, Wei Wang
  • Patent number: 9224625
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The semiconductor wafer is disposed on a water-soluble die attach film. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The water-soluble die attach film is then patterned with an aqueous solution.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 29, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Madhava Rao Yalamanchili, Brad Eaton, Saravjeet Singh, Ajay Kumar
  • Patent number: 9218992
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The semiconductor wafer is supported by a substrate carrier. The mask is then patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits while supported by the substrate carrier.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 22, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Brad Eaton, Ajay Kumar, Wei-Sheng Lei, James M. Holden, Madhava Rao Yalamanchili, Todd J. Egan
  • Patent number: 9214423
    Abstract: In one embodiment, a method of forming a HEMT device may include plating a conductor or a plurality of conductors onto an insulator that overlies a plurality of current carrying electrodes of the HEMT device. The method may also include attaching a connector onto the conductor or attaching a plurality of connectors onto the plurality of conductors.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: December 15, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Ali Salih, Chun-Li Liu, Gordon M. Grivna
  • Patent number: 9209143
    Abstract: An apparatus comprises a first integrated circuit (IC) die that includes a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, a second IC die including a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, wherein the second IC die is arranged adjacent to the first IC die, and includes an electrically conductive bond in contact with at least one of the top surface or the side surface of the multi-surface contact pad of the first IC die and the top surface of the multi-surface contact pad of the second IC die.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 8, 2015
    Assignee: Intel IP Corporation
    Inventors: Georg Seidemann, Sven Albers, Teodora Ossiander, Michael Skinner, Hans-Joachim Barth, Harald Gossner, Reinhard Mahnkopf, Christian Mueller, Wolfgang Molzer
  • Patent number: 9206037
    Abstract: A MEMS device chip manufacturing method including a grinding step of grinding a device forming area of a wafer to thereby form a recess and an annular reinforcing portion surrounding the recess, a MEMS device forming step of performing any processing including etching to the wafer after performing the grinding step to thereby form a plurality of MEMS devices partitioned by a plurality of crossing division lines in the device forming area, and a dividing step of dividing the wafer along the division lines after performing the MEMS device forming step to thereby manufacture a plurality of MEMS device chips.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: December 8, 2015
    Assignee: Disco Corporation
    Inventors: Aris Bernales, Devin Martin, Mark Brown
  • Patent number: 9202787
    Abstract: A substrate member includes a substrate and a plurality of chip regions formed on the substrate across a scribe line. Each of the plurality of chip regions includes a first region that has contact with the scribe line and in which a plurality of first pattern elements are formed, and a second region that is surrounded by the first region and in which a plurality of second pattern elements are formed. A minimum value of a size of the first pattern elements is greater than a minimum value of a size of the second pattern elements and/or a minimum value of an interval between adjacent first pattern elements is greater than a minimum value of an interval between adjacent second pattern elements.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: December 1, 2015
    Assignee: CANON COMPONENTS, INC.
    Inventors: Hideo Kiyota, Keisuke Inoue
  • Patent number: 9202868
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: December 1, 2015
    Assignee: Advanced Silicon Group, Inc.
    Inventors: Brent Buchine, Marcie R. Black, Faris Modawar
  • Patent number: 9190428
    Abstract: A first semiconductor substrate is used which has a structure in which a peeling layer is not formed in a section subjected to a first dividing treatment, so that the peeling layer is not exposed at the end surface of a second semiconductor substrate when the second semiconductor substrate is cut out of the first semiconductor substrate. In addition, a supporting material is provided on a layer to be peeled of the second semiconductor substrate before the second semiconductor substrate is subjected to a second dividing treatment.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: November 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihiro Chida, Yoshiaki Oikawa, Chiho Kawanabe
  • Patent number: 9190206
    Abstract: A vertical PCB inductive device is adapted to be surface mount soldered to a substrate. The inductive device may comprise a transformer having a plurality of windings or one or more discrete inductive devices. The inductive device, being amenable to volume production, may also provide cost savings by reducing the number of layers and the PCB area otherwise required by planar magnetics in a power converter. A power converter may be fashioned to be vertically oriented and surface mount soldered to a substrate such as a customer PCB.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 17, 2015
    Assignee: VLT, Inc.
    Inventor: Sergey Luzanov
  • Patent number: 9177861
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with an elliptical or a spatio-temporal controlled laser beam profile laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 3, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jungrae Park, Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9158425
    Abstract: A touch panel includes a substrate, a touch device layer, a sensing circuit structure, and a planarization layer. The substrate includes a sensing region and a peripheral region that surrounds the sensing region. The touch device layer is disposed on the sensing region of the substrate. The sensing circuit structure is disposed on the peripheral region of the substrate, and the sensing circuit structure includes a plurality of sensing lines. The sensing lines are electrically connected to the touch device layer. The planarization layer is located on the substrate. Here, the planarization layer includes a color-resist material that has a dielectric coefficient ranging from about 3 to about 5, and the planarization layer covers the sensing lines located in the peripheral region.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: October 13, 2015
    Assignee: Au Optronics Corporation
    Inventors: Yan-Yu Peng, Yu-Feng Chien
  • Patent number: 9159621
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of scribing a semiconductor wafer having a plurality of integrated circuits involves adhering a backside of a semiconductor wafer to an inner portion of a carrier tape of a substrate carrier that includes a tape frame mounted above the carrier tape. The method also involves overlaying a protective frame above a front side of the semiconductor wafer and above an exposed outer portion of the carrier tape, the protective frame having an opening exposing an inner region of the front side of the semiconductor wafer. The method also involves laser scribing the front side of the semiconductor wafer with the protective frame in place.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: October 13, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Ajay Kumar
  • Patent number: 9136173
    Abstract: In one embodiment, die are singulated from a wafer having a back layer by placing the wafer onto a first carrier substrate with the back layer adjacent the carrier substrate, forming singulation lines through the wafer to expose the back layer within the singulation lines, and using a mechanical device to apply localized pressure to the wafer to separate the back layer in the singulation lines. The localized pressure can be applied through the first carrier substrate proximate to the back layer, or can be applied through a second carrier substrate attached to a front side of the wafer opposite to the back layer.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 15, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 9126285
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The patterned mask is then separated from the singulated integrated circuits.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 8, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Patent number: 9129904
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a pulse train laser scribing process using multiple-pulse bursts to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 8, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Patent number: 9099482
    Abstract: Methods of processing a device substrate are disclosed herein. In one embodiment, a method of processing a device substrate can include bonding a first surface of a device substrate to a carrier with a polymeric material. The device substrate may have a plurality of first openings extending from the first surface towards a second surface of the device substrate opposite from the first surface. Then, material can be removed at the second surface of the device substrate, wherein at least some of the first openings communicate with the second surface at least one of before or after performing the removal of the material. Then, at least a portion of the polymeric material disposed between the first surface and the carrier substrate can be exposed to a substance through at least some first openings to debond the device substrate from the carrier substrate.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: August 4, 2015
    Assignee: Invensas Corporation
    Inventor: Pezhman Monadgemi
  • Patent number: 9093518
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a wafer involves providing a semiconductor wafer having integrated circuits on a front side thereof, and having a wafer-level underfill material layer disposed on the integrated circuits. The method also involves laser irradiating the semiconductor wafer from a backside of the semiconductor wafer to generate defects along dicing streets of the semiconductor wafer, the dicing streets oriented between the integrated circuits. The method also involves, subsequent to the laser irradiating, mechanically singulating the integrated circuits along the dicing streets.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, James S. Papanu, Brad Eaton, Ajay Kumar
  • Patent number: 9087914
    Abstract: A wafer is divided into a plurality of individual devices along a plurality of crossing division lines formed on the front side of the wafer. The wafer has a substrate, a functional layer formed on the front side of the substrate, and an SiO2 film formed on the front side of the functional layer. The individual devices are formed from the functional layer and partitioned by the division lines. The functional layer is removed by applying a laser beam to the wafer along each division line to thereby remove the functional layer along each division line. The laser beam has an absorption wavelength to the SiO2 film with high absorptivity due to the stretching vibration of an O—H bond or a C—H bond remaining in the SiO2 film. The wafer is then divided into the individual devices.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: July 21, 2015
    Assignee: Disco Corporation
    Inventor: Keiji Nomaru
  • Patent number: 9070747
    Abstract: Structures and methods provide a dielectric bridge for use in electroplating. A method comprises: providing a semiconductor wafer with a plurality of die, wherein a first die is adjacent to a second die, and the first die and second die are separated by a dicing street area; forming a patterned dielectric layer overlying the semiconductor wafer, the dielectric layer including a dielectric bridge that crosses the dicing street area; forming a conductive layer (e.g., a metal seed layer) overlying the dielectric layer, wherein a portion of the conductive layer is overlying the dielectric bridge to provide a current pathway from the first die to the second die; and electroplating targeted areas of the conductive layer by providing current to the second die using the current pathway. Other such bridges formed from the dielectric layer provide current pathways to other die on the wafer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 30, 2015
    Assignee: Flipchip International LLC
    Inventors: Eugene A. Stout, Douglas M. Scott, Anthony P. Curtis, Theodore G. Tessier, Guy F. Burgess
  • Patent number: 9064928
    Abstract: A method includes forming a first epitaxial layer over a semiconductor substrate and etching the first epitaxial layer to form multiple separated first epitaxial regions. The method also includes forming a second epitaxial layer over the etched first epitaxial layer. Each epitaxial layer includes at least one Group III-nitride, and the epitaxial layers collectively form a buffer. The method further includes forming a device layer over the buffer and fabricating a semiconductor device using the device layer. The second epitaxial layer could include second epitaxial regions substantially only on the first epitaxial regions. The second epitaxial layer could also cover the first epitaxial regions and the substrate, and the second epitaxial layer may or may not be etched. The device layer could be formed during the same operation used to form the second epitaxial layer.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: June 23, 2015
    Assignee: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Sandeep R. Bahl, Jamal Ramdani
  • Patent number: 9059365
    Abstract: A method for manufacturing solar cell chips having an active surface area configured to directly convert solar energy into electrical energy. The method including cutting the solar cell chips out of a wafer using a laser such that the solar cell chips include a non-rectangular geometry. The non-rectangular geometry facilitate continuous cutting by the laser and maximizing a number of solar cell chips cut from the wafer.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: June 16, 2015
    Assignee: Concentrix Solar GmbH
    Inventors: Sascha Van Riesen, Andreas Gombert
  • Patent number: 9059333
    Abstract: A method of forming a stacked assembly of semiconductor chips can include juxtaposing and metallurgically joining kerf metal elements exposed in kerf regions of a first wafer with corresponding kerf metal elements exposed in kerf regions of a second wafer, and affixing undiced semiconductor chips of the first wafer with corresponding undiced semiconductor chips of the second wafer. The assembled wafers are then cut along the dicing lanes thereof into a plurality of individual assemblies of stacked semiconductor chips, each assembly including an undiced semiconductor chip of the first wafer and an undiced semiconductor chip of the second wafer affixed therewith.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Erdem Kaltalioglu, Wei Lin, Spyridon Skordas, Kevin R. Winstel
  • Patent number: 9053972
    Abstract: A pillar bump, such as a copper pillar bump, is formed on an integrated circuit chip by applying a metallic powder over a conductive pad on a surface of the chip. The metallic powder is selectively spot-lasered to form the pillar bump. Any remaining unsolidified metallic powder may be removed from the surface of the chip. This process may be repeated to increase the bump height. Further, a solder cap may be formed on an outer surface of the pillar bump.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: June 9, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Chee Seng Foong, Lan Chu Tan
  • Patent number: 9054176
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching are disclosed. A method includes laser ablating material layers, the ablating leading with a first irradiance and following with a second irradiance, lower than the first. Multiple passes of a beam adjusted to have different fluence level or multiple laser beams having various fluence levels may be utilized to ablate mask and IC layers to expose a substrate with the first fluence level and then clean off redeposited materials from the trench bottom with the second fluence level. A laser scribe apparatus employing a beam splitter may provide first and second beams of different fluence from a single laser.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: June 9, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, James M. Holden
  • Publication number: 20150145149
    Abstract: A method of manufacturing a semiconductor device package includes encapsulating at least partially a plurality of semiconductor chips with encapsulating material to form an encapsulation body. The encapsulation body has a first main surface and a second main surface. At least one of a metal layer and an organic layer is formed over the first main surface of the encapsulation body. At least one trace of the at least one of the metal layer and the organic layer is removed by laser ablation. The encapsulation body is then separated into a plurality of semiconductor device packages along the at least one trace.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Ulrich Wachter, Eva Wagner, Gottfried Beer
  • Publication number: 20150144968
    Abstract: A method of dicing semiconductor devices includes depositing a continuous first layer over the substrate, such that the first layer imparts a compressive stress to the substrate, and etching grooves in the first layer to increase local stress at the grooves compared to stress at the remainder of the first layer located over the substrate. The method also includes generating a pattern of defects in the substrate with a laser beam, such that a location of the defects in the pattern of defects substantially corresponds to a location of at least some of the grooves in the in the first layer, and applying pressure to the substrate to dice the substrate along the grooves.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventors: Scott Brad Herner, Linda Romano, Daniel Bryce Thompson, Martin Schubert
  • Publication number: 20150145136
    Abstract: In some examples, an integrated circuit (IC) includes a semiconductor substrate defining a perimeter of the integrated circuit and a castellation formed at the perimeter. The IC also may include a layer including an electrically conductive material formed on a surface of the castellation. In some examples, the layer including the electrically conductive material is not substantially parallel to adjacent portions of the perimeter of the IC. The integrated circuit may be used in a system, in which the metallized castellation may be used to electrically connect the IC to an external structure, such as another IC or a printed board.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Honeywell International Inc.
    Inventor: Ronald J. Jensen
  • Patent number: 9041198
    Abstract: Maskless hybrid laser scribing and plasma etching wafer dicing processes are described. In an example, a method of dicing a semiconductor wafer having a front surface with a plurality of integrated circuits thereon and having a passivation layer disposed between and covering metal pillar/solder bump pairs of the integrated circuits involves laser scribing, without the use of a mask layer, the passivation layer to provide scribe lines exposing the semiconductor wafer. The method also involves plasma etching the semiconductor wafer through the scribe lines to singulate the integrated circuits, wherein the passivation layer protects the integrated circuits during at least a portion of the plasma etching. The method also involves thinning the passivation layer to partially expose the metal pillar/solder bump pairs of the integrated circuits.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: May 26, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, James S. Papanu, Ajay Kumar
  • Patent number: 9040387
    Abstract: Embodiments of a method for fabricating stacked microelectronic packages are provided, as are embodiments of a stacked microelectronic package. In one embodiment, the method includes arranging microelectronic device panels in a panel stack. Each microelectronic device panel includes a plurality of microelectronic devices and a plurality of package edge conductors extending therefrom. Trenches are formed in the panel stack exposing the plurality of package edge conductors. An electrically-conductive material is deposited into the trenches and contacts the plurality of package edge conductors exposed therethrough. The panel stack is then separated into partially-completed stacked microelectronic packages. For at least one of the partially-completed stacked microelectronic packages, selected portions of the electrically-conductive material are removed to define a plurality of patterned sidewall conductors interconnecting the microelectronic devices included within the stacked microelectronic package.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 26, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Zhiwei Gong, Michael B Vincent, Scott M Hayes, Jason R Wright
  • Patent number: 9041162
    Abstract: A wafer includes a plurality of chips, each of the chips being spaced from each other by kerf-line regions including a reduced width.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: May 26, 2015
    Assignee: Infineon Technologies AG
    Inventors: Giuseppe Miccoli, Bhaskaran Jayachandran, Friedrich Steffen, Alfred Vater
  • Publication number: 20150140784
    Abstract: A wafer processing method for dividing a wafer into individual devices along a plurality of crossing division lines, including a frame preparing step of preparing a frame having a plurality of crossing partitions corresponding to the division lines of the wafer, a resin covering step of spreading a resin powder on the wafer and positioning the partitions of the frame in alignment with the division lines, thereby covering with the resin powder the regions of the wafer other than the regions corresponding to the division lines, a masking step of melting and curing the resin powder supplied to the wafer processed by the resin covering step and next removing the frame, thereby masking the regions other than the regions corresponding to the division lines, and an etching step of plasma-etching the wafer processed by the masking step to thereby divide the wafer into the individual devices along the division lines.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Inventors: Kazuma Sekiya, Tomotaka Tabuchi
  • Patent number: 9034731
    Abstract: An integrated, integrated circuit singulation system is provided including scribing a substrate using mechanical cutting or a plurality of passes of laser cutting, and dicing the substrate using mechanical cutting or laser cutting.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: May 19, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Seung Wook Park
  • Patent number: 9034733
    Abstract: In one embodiment, semiconductor die are singulated from a semiconductor wafer having a backmetal layer by placing the semiconductor wafer onto a carrier tape with the backmetal layer adjacent the carrier tape, forming singulation lines through the semiconductor wafer to expose the backmetal layer within the singulation lines, and separating portions of the backmetal layer within the singulation lines using a pressurized fluid applied to the carrier tape.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 19, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: William F. Burghout, Dennis Lee Conner, Michael J. Seddon, Jay A. Yoder, Gordon M. Grivna
  • Patent number: 9034720
    Abstract: A method and a device are provided for diffracting incident light from a lithographic scanner in an IC process flow. Embodiments include forming a diffraction grating in a first layer on a semiconductor substrate; and forming a plurality of lithographic alignment marks in a second layer, overlying the first layer, wherein the diffraction grating has a width and a length greater than or equal to a width and length, respectively, of the plurality of lithographic alignment marks.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: May 19, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Hui Liu, Wen Zhan Zhou, Zheng Zou, Qun Ying Lin, Alex Kai Hung See
  • Patent number: 9034734
    Abstract: Methods are provided for using masking techniques and plasma etching techniques to dice a compound semiconductor wafer into dies. Using these methods allows compound semiconductor die to be obtained that have smooth side walls, a variety of shapes and dimensions, and a variety of side wall profiles. In addition, by using these techniques to perform the dicing operations, the locations of features of the die relative to the side walls are ascertainable with certainty such that one or more of the side walls can be used as a passive alignment feature to precisely align one or more of the die with an external device.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 19, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Chee Siong Peh, Chiew Hai Ng, David G. McIntyre
  • Patent number: 9029200
    Abstract: A method for manufacturing semiconductor devices is disclosed. In one embodiment a semiconductor substrate having a first surface, a second surface opposite to the first surface and a plurality of semiconductor components is provided. The semiconductor substrate has a device thickness. At least one metallization layer is formed on the second surface of the semiconductor substrate. The metallization layer has a thickness which is greater than the device thickness.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: May 12, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Rudolf Zelsacher, Paul Ganitzer
  • Patent number: 9029195
    Abstract: A method of manufacturing a semiconductor device includes mounting at least one of a first semiconductor chip and a second semiconductor chip over a die pad of a leadframe, and inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, wherein the leadframe includes first mark formed to the die pad, for indicating a first mounting region for the first semiconductor chip, and second mark formed to the die pad, for indicating a second mounting region for the second semiconductor chip, the first mark is different from the second mark, in at least either one of size and geometry, wherein, in the inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, a mounting position of the first semiconductor chip is inspected when the first semiconductor chip is mounted.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: May 12, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Kenji Nishikawa
  • Patent number: 9029986
    Abstract: Semiconductor devices are provided with dual passivation layers. A semiconductor layer is formed on a substrate and covered by a first passivation layer (PL-1). PL-1 and part of the semiconductor layer are etched to form a device mesa. A second passivation layer (PL-2) is formed over PL-1 and exposed edges of the mesa. Vias are etched through PL-1 and PL-2 to the semiconductor layer where source, drain and gate are to be formed. Conductors are applied in the vias for ohmic contacts for the source-drain and a Schottky contact for the gate. Interconnections over the edges of the mesa couple other circuit elements. PL-1 avoids adverse surface states near the gate and PL-2 insulates edges of the mesa from overlying interconnections to avoid leakage currents. An opaque alignment mark is desirably formed at the same time as the device to facilitate alignment when using transparent semiconductors.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 12, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Bruce M. Green, Haldane S. Henry
  • Patent number: 9029242
    Abstract: Methods and apparatuses for dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating by a laser beam with a centrally peaked spatial power profile to form an ablated trench in the substrate below thin film device layers which is positively sloped. In an embodiment, a femtosecond laser forms a positively sloped ablation profile which facilitates vertically-oriented propagation of microcracks in the substrate at the ablated trench bottom. With minimal lateral runout of microcracks, a subsequent anisotropic plasma etch removes the microcracks for a cleanly singulated chip with good reliability.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 12, 2015
    Assignee: Applied Materials, Inc.
    Inventors: James M. Holden, Nir Merry, Todd Egan
  • Publication number: 20150123264
    Abstract: In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a contact layer over a first major surface of a substrate. The substrate includes device regions separated by kerf regions. The contact layer is disposed in the kerf region and the device regions. A structured solder layer is formed over the device regions. The contact layer is exposed at the kerf region after forming the structured solder layer. The contact layer and the substrate in the kerf regions are diced.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Inventors: Evelyn Napetschnig, Ulrike Fastner, Alexander Heinrich, Thomas Fischer
  • Patent number: 9023717
    Abstract: To provide a semiconductor device having improved reliability. A method of manufacturing a semiconductor device according to one embodiment includes a step of cutting, in a dicing region arranged between two chip regions adjacent to each other, a wafer along an extending direction of the dicing region. The dicing region has therein a plurality of metal patterns in a plurality of columns. In the step of cutting the wafer, one or more of the columns of metal patterns formed in a plurality of columns are removed, and the metal patterns of the column(s) different from the above-mentioned one or more of the columns are not removed.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: May 5, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyuki Nakagawa, Shunichi Abe
  • Publication number: 20150118827
    Abstract: A method of manufacturing a semiconductor device includes: forming electrodes on a first major surface of a semiconductor substrate having first and second major surfaces facing in opposite directions; and forming a cleavage-inducing pattern on the first major surface of the semiconductor substrate. The cleavage-inducing pattern extends over a target cleavage position located between the electrodes, has a recess extending over the target cleavage position, and is made of a material different from the material of the semiconductor substrate. The method includes forming a scribed groove in the second major surface of the semiconductor substrate and in a position facing the target cleavage position; and cleaving the semiconductor substrate having the scribed groove and the cleavage-inducing pattern by applying pressure, through a cleaving blade, to the first major surface of the semiconductor substrate.
    Type: Application
    Filed: July 3, 2014
    Publication date: April 30, 2015
    Inventors: Chikara Watatani, Masato Negishi
  • Patent number: 9018079
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. Subsequent to patterning the mask, the exposed regions of the semiconductor wafer are cleaned with a plasma process reactive to the exposed regions of the semiconductor wafer. Subsequent to cleaning the exposed regions of the semiconductor wafer, the semiconductor wafer is plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: April 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Ajay Kumar