Packaging (e.g., With Mounting, Encapsulating, Etc.) Or Treatment Of Packaged Semiconductor Patents (Class 438/51)
  • Publication number: 20150146894
    Abstract: A semiconductor device includes a microphone module implemented on a first semiconductor die and a signal processing module implemented on a second semiconductor die. The microphone module includes a movable microphone element arranged at a main side of the first semiconductor die and the second semiconductor die is mounted to the main side of the first semiconductor die.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Infineon Technologies AG
    Inventor: Chee Yang Ng
  • Publication number: 20150145077
    Abstract: A method of stacking a plurality of first dies to a respective plurality of second dies, each one of the first dies having a surface including a surface coupling region which is substantially flat, each one of the second dies having a respective surface including a respective surface coupling region which is substantially flat, the method comprising the steps of: forming, by means of a screen printing technique, an adhesive layer on the first dies at the respective surface coupling regions; and arranging the surface coupling region of each second die in direct physical contact with a respective adhesive layer of a respective first die among said plurality of first dies.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Conrad Cachia, Kenneth Fonk
  • Publication number: 20150145076
    Abstract: There is provided a semiconductor package including: an application specific integrated circuit (ASIC) chip including a first bump ball and a second bump ball formed inwardly of the first bump ball; a micro electro mechanical system (MEMS) sensor electrically connected to the second bump ball; a lead frame electrically connected to the first bump ball and including a through hole formed therein; and a molded part covering the ASIC chip, the MEMS sensor, and the lead frame, wherein the ASIC chip is disposed above the lead frame.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 28, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Tae Hyun KIM, Heung Woo PARK, Sun Ho KIM
  • Patent number: 9040334
    Abstract: A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 9040337
    Abstract: Provided are a stretchable electronic device and a method of manufacturing the same. The manufacturing method includes forming coil interconnection on a first substrate, forming a first stretchable insulating layer that covers the coil interconnection, forming a second substrate on the first stretchable insulating layer, separating the first substrate from the coiling interconnection and the first stretchable insulating layer, and forming a transistor on the coil interconnection.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Chan Woo Park, Jae Bon Koo, Sang Chul Lim, Ji-Young Oh, Soon-Won Jung
  • Publication number: 20150137283
    Abstract: MEMS devices, packaged MEMS devices, and methods of manufacture thereof are disclosed. In one embodiment, a microelectromechanical system (MEMS) device includes a first MEMS functional structure and a second MEMS functional structure. An interior region of the second MEMS functional structure has a pressure that is different than a pressure of an interior region of the first MEMS functional structure.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 21, 2015
    Inventors: Kai-Chih Liang, Chun-Wen Cheng
  • Publication number: 20150137276
    Abstract: Embodiments of mechanisms for forming a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a CMOS substrate, a cap substrate, and a MEMS substrate bonded between the CMOS substrate and the cap substrate. The MEMS substrate includes a first movable element and a second movable element. The MEMS device also includes a first closed chamber and a second closed chamber, which are between the MEMS substrate and the cap substrate. The first movable element is in the first closed chamber, and the second movable element is in the second closed chamber. A first pressure of the first closed chamber is higher than a second pressure of the second closed chamber.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen CHENG, Chia-Hua CHU
  • Publication number: 20150137279
    Abstract: A semiconductor device includes a lead frame having a flag and leads that surround the flag. The leads include a dummy lead that has first and second wire bonding areas. A first die is attached on the flag and electrically connected to the first wire bonding area. The first die and the first wire bonding area are encapsulated with a molding material and a cavity with an opening is formed above the first die. The second wire bonding area is exposed in the cavity. A second die is placed in the cavity and electrically connected to the second wire bonding area such that the second die is electrically connected to the first die by way of the dummy lead.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Inventors: Kong Bee Tiu, Teck Beng Lau, Wai Yew Lo
  • Publication number: 20150137280
    Abstract: A structure and a formation method of a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a cap substrate and a MEMS substrate bonded with the cap substrate. The MEMS substrate includes a first movable element and a second movable element. The MEMS device also includes a first enclosed space surrounded by the MEMS substrate and the cap substrate, and the first movable element is in the first enclosed space. The MEMS device further includes a second enclosed space surrounded by the MEMS substrate and the cap substrate, and the second movable element is in the second enclosed space. In addition, the MEMS device includes a pressure-changing layer in the first enclosed space.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 21, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hua CHU, Chun-Wen CHENG, Shang-Ying TSAI, Chin-Wei LIANG
  • Patent number: 9035451
    Abstract: The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of cavities with different pressures on a wafer package system, and an associated apparatus. In some embodiments, the method is performed by providing a work-piece having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the work-piece in a first ambient environment having a first pressure. The bonding forms a plurality of cavities abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of cavities leading to a gas flow path that could be held at a pressure level different from the first pressure. The one or more openings in the one or more of the plurality of cavities are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of cavities to be held at the different pressure.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Kuei-Sung Chang, Chun-Wen Cheng
  • Patent number: 9034681
    Abstract: An embodiment of the invention provides a chip package, which includes: a substrate having an upper surface and a lower surface; a passivation layer located overlying the upper surface of the substrate; a plurality of conducting pad structures disposed overlying the upper surface of the substrate, wherein at least portions of upper surfaces of the conducting pad structures are exposed; a plurality of openings extending from the upper surface towards the lower surface of the substrate; and a plurality of movable bulks located between the openings and connected with the substrate, respectively, wherein each of the movable bulks is electrically connected to one of the conducting pad structures.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 19, 2015
    Assignee: Xintec Inc.
    Inventor: Chia-Ming Cheng
  • Publication number: 20150129991
    Abstract: An integrated MEMS device comprises two substrates where the first and second substrates are coupled together and have two enclosures there between. One of the first and second substrates includes an outgassing source layer and an outgassing barrier layer to adjust pressure within the two enclosures. The method includes depositing and patterning an outgassing source layer and a first outgassing barrier layer on the substrate, resulting in two cross-sections. In one of the two cross-sections a top surface of the outgassing source layer is not covered by the outgassing barrier layer and in the other of the two cross-sections the outgassing source layer is encapsulated in the outgassing barrier layer. The method also includes depositing conformally a second outgassing barrier layer and etching the second outgassing barrier layer such that a spacer of the second outgassing barrier layer is left on sidewalls of the outgassing source layer.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Daesung LEE, Jongwoo SHIN, Jong Il SHIN, Peter SMEYS, Martin LIM
  • Publication number: 20150128703
    Abstract: A micromechanical sensor device includes an evaluation circuit formed in a first substrate, and an MEMS structure which is situated in a cavity delimited by a second substrate and a third substrate, the MEMS structure and the second substrate being situated on top of each other, the MEMS structure being functionally connected to the evaluation circuit via a contact area, the contact area between the MEMS structure and the first substrate being situated essentially centrally on the second substrate and essentially centrally on the first substrate and has an essentially punctiform configuration, proceeding radially from the contact area, a clearance being formed between the first substrate and the second substrate.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 14, 2015
    Inventors: Arnd KAELBERER, Jochen REINMUTH
  • Patent number: 9029968
    Abstract: An optical sensor element is mounted in a package which includes a glass substrate having a cavity, and a glass lid substrate bonded to the other substrate to close the cavity. The glass substrate with the cavity has metalized wiring patterns on front and rear surfaces thereof, and a through hole filled with metal to form a through-electrode interconnecting the wiring patterns on the front and rear surfaces. A metalized wiring pattern on the rear surface of the glass lid substrate is electrically connected to the wiring pattern on the front surface of the other substrate with an adhesive containing conductive particles. The glass lid substrate is made either of glass having a filter function or glass having a light shielding property with an opening therethrough filled with glass having a filter function.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Seiko Instruments Inc.
    Inventors: Koji Tsukagoshi, Hitoshi Kamamori, Sadao Oku, Hiroyuki Fujita, Keiichiro Hayashi
  • Patent number: 9029960
    Abstract: The semiconductor device has a sensor unit including a sensing part, and a semiconductor substrate. The semiconductor substrate is bonded to the sensor unit through an insulation film such that the sensing part is disposed in an air-tightly sealed chamber provided between a recessed portion of the semiconductor substrate and the sensor unit. A surface of the semiconductor substrate provided on a periphery of the recessed portion includes a boundary region at a perimeter of the recessed portion and a bonding region on a periphery of the boundary region. The bonding region has an area greater than an area of the boundary region. The bonding region of the semiconductor substrate is bonded to the sensor unit through the insulation film.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 12, 2015
    Assignee: DENSO CORPORATION
    Inventor: Yumi Maruyama
  • Publication number: 20150123220
    Abstract: A low-profile packaging structure for a microelectromechanical-system (MEMS) resonator system includes an electrical lead having internal and external electrical contact surfaces at respective first and second heights within a cross-sectional profile of the packaging structure and a die-mounting surface at an intermediate height between the first and second heights. A resonator-control chip is mounted to the die-mounting surface of the electrical lead such that at least a portion of the resonator-control chip is disposed between the first and second heights and wire-bonded to the internal electrical contact surface of the electrical lead.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Pavan Gupta, Aaron Partridge, Markus Lutz
  • Publication number: 20150125003
    Abstract: An embodiment as described herein includes a microelectromechanical system (MEMS) with a first MEMS transducer element, a second MEMS transducer element, and a semiconductor substrate. The first and second MEMS transducer elements are disposed at a top surface of the semiconductor substrate and the semiconductor substrate includes a shared cavity acoustically coupled to the first and second MEMS transducer elements.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Inventors: Andreas Wiesbauer, Christian Mandl, Marc Fueldner, Shu-Ting Hsu
  • Publication number: 20150123221
    Abstract: A micromechanical sensor device and a corresponding manufacturing method are described. The micromechanical sensor device includes a CMOS wafer having a front side and a rear side, a rewiring device formed on the front side of the CMOS wafer including a plurality of stacked printed conductor levels and insulation layers, an MEMS wafer having a front side and a rear side, a micromechanical sensor device formed across the front side of the MEMS wafer, a bond connection between the MEMS wafer and the CMOS wafer, a cavern between the MEMS wafer and the CMOS wafer, in which the sensor device is hermetically enclosed, and an exposed getter layer area applied to at least one of the plurality of stacked printed conductor levels and insulation layers.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Jochen REINMUTH, Julian GONSKA
  • Patent number: 9023675
    Abstract: A process for encapsulating a microelectronic device, comprising the following steps: make the microelectronic device on a first substrate; make one portion of a first material not permeable to the ambient atmosphere and permeable to a noble gas in a second substrate comprising a second material not permeable to the ambient atmosphere and the noble gas; secure the second substrate to the first substrate, forming at least one cavity inside which the microelectronic device is encapsulated such that said portion of the first material forms part of a wall of the cavity; inject the noble gas into the cavity through the portion of the first material; hermetically seal the cavity towards the ambient atmosphere and the noble gas.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 5, 2015
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventor: Stephane Nicolas
  • Publication number: 20150115377
    Abstract: An apparatus for providing localized heating as well as protection for a vibrating MEMS device. A cap over a MEMS gyroscope includes an embedded temperature sensor and a heater. The temperature sensor is a trace made of a material with a known temperature/resistance coefficient, which loops back along itself to reduce electromagnetic interference. The heater is a resistive metal trace which also loops back along itself. The temperature sensor and the heater provide localized temperature stabilization for the MEMS gyroscope to reduce temperature drift in the MEMS gyroscope.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Inventors: Jeffrey F. DeNatale, Philip A. Stupar
  • Publication number: 20150117681
    Abstract: A microelectromechanical system (MEMS) microphone includes a base having a port extending there through. A MEMS die is coupled to the base, and the MEMS die includes a diaphragm and a back plate. An application specific integrated circuit (ASIC) is coupled to the base and the MEMS die. A cover is coupled to the base, and the cover includes customer pads. The customer pads on the cover are connected electrically to the ASIC, and the cover is arranged to form an air tight seal with the base and enclose the MEMS die and the ASIC. The microphone is connected to a customer board at the cover and arranged such that sound enters through the port in the base.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Inventors: Joshua Watson, John Szczech, Greg Servis
  • Publication number: 20150115376
    Abstract: A capped micromachined device has a movable micromachined structure in a first hermetic chamber and one or more interconnections in a second hermetic chamber that is hermetically isolated from the first hermetic chamber, and a barrier layer on its cap where the cap faces the first hermetic chamber, such that the first hermetic chamber is isolated from outgassing from the cap.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: Analog Devices, Inc.
    Inventors: Li Chen, Thomas Kieran Nunan, Kuang L. Yang
  • Publication number: 20150118780
    Abstract: A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: Solid State System Co., Ltd.
    Inventors: Cheng-Wei Tsai, Chien-Hsing Lee, Jhyy-Cheng Liou
  • Publication number: 20150115378
    Abstract: A method for manufacturing a die assembly, including the steps of: bonding a first wafer of semiconductor material to a second wafer, the second wafer including a respective semiconductor body having a respective initial thickness and forming an integrated electronic circuit; and subsequently reducing the initial thickness of the semiconductor body of the second wafer; and subsequently bonding the second wafer to a third wafer, the third wafer forming a micro-electromechanical sensing structure.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Inventors: Giorgio Allegato, Marco Ferrera, Matteo Garavaglia, Lorenzo Corso
  • Patent number: 9018040
    Abstract: A method including a printed circuit board electrically coupled to a bottom of a laminate substrate, the laminate substrate having an opening extending through the entire thickness of the laminate substrate, a main die electrically coupled to a top of the laminate substrate, a die stack electrically coupled to a bottom of the main die, the die stack including one or more chips stacked vertically and electrically coupled to one another, the die stack extending into the opening of the laminate substrate, and an interposer positioned between and electrically coupled to a topmost chip and the printed circuit board, the interposer providing an electrical path from the printed circuit board to the topmost chip of the die stack.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Lamorey, Janak G. Patel, Peter Slota, Jr., David B. Stone
  • Patent number: 9018029
    Abstract: Embodiments of methods of fabricating a sensor device include attaching first and second die to one another to define first and second cavities in which first and second sensors of the sensor device are disposed, respectively. The second die has an opening in communication with the second cavity. The methods further include obstructing the opening, attaching a third die to the second die. The first cavity is hermetically sealed by attaching the first and second die. The second cavity is hermetically sealed by attaching the third die to the second die.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 28, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Lianjun Liu, Raymond M. Roop
  • Patent number: 9018030
    Abstract: A transparent force sensor for use in touch panel displays (touch screens) and method for fabricating the same are disclosed. The transparent force sensor is capable of detecting touch by measuring local pressure applied by a touch input to a display area of the touch screen.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 28, 2015
    Assignee: Symbol Technologies, Inc.
    Inventors: Hao Li, Papu Maniar, Yi Wei
  • Publication number: 20150111332
    Abstract: A method for fabricating an integrated MEMS device and the resulting structure therefore. A control process monitor comprising a MEMS membrane cover can be provided within an integrated CMOS-MEMS package to monitor package leaking or outgassing. The MEMS membrane cover can separate an upper cavity region subject to leaking from a lower cavity subject to outgassing. Differential changes in pressure between these cavities can be detecting by monitoring the deflection of the membrane cover via a plurality of displacement sensors. An integrated MEMS device can be fabricated with a first and second MEMS device configured with a first and second MEMS cavity, respectively. The separate cavities can be formed via etching a capping structure to configure each cavity with a separate cavity volume. By utilizing an outgassing characteristic of a CMOS layer within the integrated MEMS device, the first and second MEMS cavities can be configured with different cavity pressures.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 23, 2015
    Inventor: TE-HSI "TERRENCE" LEE
  • Publication number: 20150108591
    Abstract: A vibrator includes a base, a lid, and a functional element that is stored in a cavity formed by the base and the lid, in which the lid is provided with a sealing hole that penetrates through the lid and a sealing member that air-tightly seals the sealing hole, and in which the functional element includes a diffusion object shielding portion having a region of an accommodation opening which overlaps at least part of a region of a first opening of the sealing hole on a surface of the lid on the cavity side in a plan view of the functional element and the lid.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 23, 2015
    Inventor: Teruo TAKIZAWA
  • Publication number: 20150107353
    Abstract: A technique capable of suppressing performance variation of every flow sensor and achieving performance improvement is provided. For example, in an arbitrary cross-sectional surface in parallel to a moving direction of a gas flowing on an exposed flow detecting unit FDU which is formed in a semiconductor chip CHP1, a sealing body is released from the lower mold BM by thrusting up, from a lower mold BM, an ejection pin EJPN arranged in an outer region of the semiconductor chip CHP1 so as not to overlap with the semiconductor chip CHP1 arranged in the vicinity of the center part. Thus, according to the first embodiment, the deformation applied to the sealing body at the time of mold releasing can be smaller than that in a case in which the sealing body is released from the lower mold BM by arranging the ejection pin EJPN in a region overlapping with the semiconductor chip CHP1.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 23, 2015
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Tsutomu Kono, Keiji Hanzawa, Noboru Tokuyasu, Shinobu Tashiro
  • Patent number: 9012255
    Abstract: A method of manufacturing a MEMS package includes initially providing a substrate formed of a first material and defining a bore therein. The bore is substantially completely lined with a second material that is different from the first material. A micromachined component having a fluid passageway formed therein is affixed to the substrate such that the bore and the fluid passageway are in fluid communication.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 21, 2015
    Assignee: DunAn Microstaq, Inc.
    Inventors: Parthiban Arunasalam, Joe Albert Ojeda, Sr.
  • Publication number: 20150102390
    Abstract: A MEMS device includes a MEMS substrate with a movable element. Further included is a CMOS substrate with a cavity, the MEMS substrate disposed on top of the CMOS substrate. Additionally, a back cavity is connected to the CMOS substrate, the back cavity being formed at least partially by the cavity in the CMOS substrate and the movable element being acoustically coupled to the back cavity.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 16, 2015
    Applicant: Invensense, Inc.
    Inventors: Fang Liu, Michael Julian Daneman, Brian Kim, Anthony Minervini
  • Publication number: 20150104895
    Abstract: A method for forming an integrated circuit having Micro-electromechanical Systems (MEMS) includes forming at least two recesses into a first layer, forming at least two recesses into a second layer, the at least two recesses of the second layer being complementary to the recesses of the first layer. An intermediate layer is bonded onto the second layer, the intermediate layer includes through-holes corresponding to the recesses of the second layer. The first layer is bonded to the intermediate layer such that cavities are formed, the cavities to act as operating environments for MEMS devices. The two cavities have different pressures.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Shyh-Wei Cheng, Jui-Chun Jui-Chen, Hsi-Cheng Hsu, Chih-Yu Wang, Jung-Kuo Tu, Che-Jung Chu, Yu-Ting Hsu
  • Publication number: 20150102835
    Abstract: A substrate plate is provided for at least one MEMS device to be mounted thereon. The MEMS device has a certain footprint on the substrate plate, and the substrate plate has a pattern of electrically conductive leads to be connected to electric components of the MEMS device. The pattern forms contact pads within the footprint of the MEMS device and includes at least one lead structure that extends on the substrate plate outside of the footprint of the MEMS device and connects a number of the contact pads to an extra contact pad. The lead structure is a shunt bar that interconnects a plurality of contact pads of the MEMS device and is arranged to be removed by means of a dicing cut separating the substrate plate into a plurality of chip-sized units. At least a major part of the extra contact pad is formed within the footprint of one of the MEMS devices.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Applicant: OCE-TECHNOLOGIES B.V.
    Inventors: Maikel A.J. HUYGENS, René J. VAN DER MEER, Reinier PANNEKOEK, Alex N. WESTLAND
  • Publication number: 20150102434
    Abstract: A microelectromechanical device includes: a substrate; a semiconductor die, bonded to the substrate and incorporating a microstructure; an adhesive film layer between the die and the substrate; and a protective layer between the die and the adhesive film layer. The protective layer has apertures, and the adhesive film layer adheres to the die through the apertures of the protective layer.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 16, 2015
    Inventors: Luca Maggi, Sebastiano Conti
  • Patent number: 9006877
    Abstract: A package for a micro-electromechanical device (MEMS package) includes an inner enclosure having an inner cavity defined therein, and a fill port channel communicating with the inner cavity and of sufficient length to allow a quantity of adhesive to enter the fill port channel while preventing the adhesive from entering the inner cavity.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 14, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Don Michael, Mari J. Rossman, Bradley Bower, Charles Craig Haluzak, John R. Sterner, Quan Qi, John Kane
  • Patent number: 9006016
    Abstract: The present invention provides a method and apparatus for fabricating piezoresistive polysilicon on a substrate by low-temperature metal induced crystallization by: (1) providing the substrate having a passivation layer; (2) performing, at or near room temperature in a chamber without breaking a vacuum or near-vacuum within the chamber, the steps of: (a) creating a metal layer on the passivation layer, and (b) creating an amorphous silicon layer on the metal layer, wherein the metal layer and the amorphous silicon layer have approximately the same thickness; (3) annealing the substrate, the passivation layer, the metal layer and the amorphous silicon layer at a temperature equal to or less than 600° C. and a period of time equal to or less than three hours to form a doped polysilicon layer below a residual metal layer; and (4) removing the residual metal layer to expose the doped polysilicon layer.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 14, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Zeynep Celik-Butler, Suraj K. Patil, Donald Philip Butler
  • Publication number: 20150097215
    Abstract: Embodiments of mechanisms for forming a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a CMOS substrate and a MEMS substrate bonded with the CMOS substrate. The CMOS substrate includes a semiconductor substrate, a first dielectric layer formed over the semiconductor substrate, and a plurality of conductive pads formed in the first dielectric layer. The MEMS substrate includes a semiconductor layer having a movable element and a second dielectric layer formed between the semiconductor layer and the CMOS substrate. The MEMS substrate also includes a closed chamber surrounding the movable element. The MEMS substrate further includes a blocking layer formed between the closed chamber and the first dielectric layer of the CMOS substrate. The blocking layer is configured to block gas, coming from the first dielectric layer, from entering the closed chamber.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Hua CHU, Chun-Wen CHENG
  • Publication number: 20150097253
    Abstract: A MEMS apparatus has a substrate, a cap forming first and second chambers with the base, and movable microstructure within the first and second chambers. To control pressures, the MEMS apparatus also has a first outgas structure within the first chamber. The first outgas structure produces a first pressure within the first chamber, which is isolated from the second chamber, which, like the first chamber, has a second pressure. The first pressure is different from that in the second pressure (e.g., a higher pressure or lower pressure).
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: Analog Devices, Inc.
    Inventors: Christine H. Tsau, Li Chen, Kuang L. Yang
  • Patent number: 9000544
    Abstract: A MEMS package structure, including a substrate, an interconnecting structure, an upper metallic layer, a deposition element and a packaging element is provided. The interconnecting structure is disposed on the substrate. The MEMS structure is disposed on the substrate and within a first cavity. The upper metallic layer is disposed above the MEMS structure and the interconnecting structure, so as to form a second cavity located between the upper metallic layer and the interconnecting structure and communicates with the first cavity. The upper metallic layer has at least a first opening located above the interconnecting structure and at least a second opening located above the MEMS structure. Area of the first opening is greater than that of the second opening. The deposition element is disposed above the upper metallic layer to seal the second opening. The packaging element is disposed above the upper metallic layer to seal the first opening.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: April 7, 2015
    Assignee: Pixart Imaging Inc.
    Inventors: Hsin-Hui Hsu, Sheng-Ta Lee, Chuan-Wei Wang
  • Publication number: 20150090042
    Abstract: A pressure sensor package includes a lead and a semiconductor die spaced apart from the lead and including a terminal and a diaphragm disposed at a first side of the die. The die is configured to change an electrical parameter responsive to a pressure difference across the diaphragm. The package further includes an electrical conductor connecting the terminal to the lead, a molding compound encasing the electrical conductor, the die and part of the lead, a cavity in the molding compound exposing the diaphragm, and a sealing ring disposed on a side of the molding compound with the cavity. The sealing ring surrounds the cavity and has a lower elastic modulus than the molding compound. Alternatively, the sealing ring can be a ridge of the molding compound that protrudes from the side of the molding compound with the cavity and surrounds the cavity. A package manufacturing method is also provided.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventors: Mathias Vaupel, Horst Theuss, Helmut Wietschorke
  • Publication number: 20150091108
    Abstract: The present disclosure provides a package structure and a manufacturing method. The package structure includes a substrate, a cover, a conductive pattern, and a sensing component. The cover is disposed on the substrate. The cover and the substrate define an accommodation space. The conductive pattern includes a conductive line. The conductive line is disposed on an internal surface of the cover exposed by the accommodation space, and is electrically connected to the substrate. The sensing component is disposed on the internal surface of the cover, and is electrically connected to the conductive line.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Ching-Han HUANG, Lu-Ming LAI
  • Publication number: 20150091107
    Abstract: A micro-electromechanical pressure transducer formed from a silicon die centers itself on a pedestal, formed from either a metal or a dielectric, by applying a predetermined amount of liquid epoxy adhesive to the square, top surface of the pedestal and allowing the liquid adhesive to distribute itself over the top surface. A MEMS die placed atop the liquid adhesive is centered on the top surface by surface tension between sides of the die and the top surface.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Inventor: Joe Pin Wang
  • Patent number: 8993362
    Abstract: A method and structure for fabricating a monolithic integrated MEMS device. The method includes providing a substrate having a surface region and forming at least one conduction material and at least one insulation material overlying at least one portion of the surface region. At least one support structure can be formed overlying at least one portion of the conduction and insulation surface regions, and at least one MEMS device can be formed overlying the support structure(s) and the conduction and insulation surface regions. In a variety of embodiments, the support structure(s) can include dielectric or oxide materials. The support structure(s) can then be removed and a cover material can be formed overlying the MEMS device(s), the conduction and insulation materials, and the substrate. In various embodiments, the removal of the support structure(s) can be accomplished via a vapor etching process.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 31, 2015
    Assignee: mCube Inc.
    Inventor: Anthony F. Flannery, Jr.
  • Patent number: 8993388
    Abstract: A method of manufacturing a liquid crystal display having a touch sensor, the method including forming a plurality of thin film transistors on a first substrate, forming a plurality of pixel electrodes each coupled to a corresponding one of the thin film transistors, forming an insulating layer on the pixel electrodes, and forming, on the insulating layer, a plurality of first touch electrodes each having openings formed therein and a plurality of driving lines coupled to the first touch electrodes.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 31, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Young Kim, Ji-Ryun Park, Se-Il Cho, Ki-Hoon Kim, Jung-Sun Kim, Hee-Sang Park
  • Publication number: 20150086050
    Abstract: A micro-electromechanical chip includes a substrate, a micro-electromechanical structure formed in the substrate, and a covering element that is positioned on a surface of the substrate and that is configured to protect the micro-electromechanical structure from at least one of outside contaminants and mechanical influences.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 26, 2015
    Inventor: Ando Feyh
  • Patent number: 8987029
    Abstract: A method of protecting a substrate during fabrication of semiconductor, MEMS devices. The method includes application of a protective thin film which typically has a thickness ranging from 3 angstroms to about 1,000 angstroms, wherein precursor materials used to deposit the protective thin film are organic-based precursors which include at least one fluorine-comprising functional group at one end of a carbon back bone and at least one functional bonding group at the opposite end of a carbon backbone, and wherein the carbon backbone ranges in length from 4 carbons through about 12 carbons. In many applications at least a portion of the protective thin film is removed during fabrication of the devices.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 24, 2015
    Assignee: Applied Microstructures, Inc.
    Inventors: Jeffrey D. Chinn, Boris Kobrin, Romuald Nowak
  • Patent number: 8987030
    Abstract: A method is provided for manufacturing a plurality of packages. The method comprises the steps of: applying a means for adhering two or more covers to a substrate; positioning the two or more covers onto the substrate to create one or more channels bounded by the two or more covers and the substrate; coupling the covers to the substrate; depositing a material into the one or more channels; performing a process on the material to affix the material; and singulating along the channels to create the plurality of packages.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: March 24, 2015
    Assignee: Knowles Electronics, LLC
    Inventors: Peter V. Loeppert, Denise P. Czech, Lawrence A. Grunert, Kurt B. Friel, Qing Wang
  • Publication number: 20150076628
    Abstract: An integrated device package includes a housing having a first opening and a second opening in fluid communication with an interior volume of the housing. A package substrate(s) has a first port and a second port. A first device die is mounted to the substrate(s) over the first port. A second device die is mounted to the substrate(s) over the second port. The substrate(s) is coupled to the housing to cover the first and second openings such that the first device die is disposed within the interior volume through the first opening and the second device die is disposed within the interior volume through the second opening.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: Analog Devices, Inc.
    Inventors: David Bolognia, Vikram Venkatadri
  • Publication number: 20150076630
    Abstract: A semiconductor sensor device has a pressure sensing die and at least one other die mounted on a substrate, and electrical interconnections that interconnect the pressure sensing die and the at least one other die. An active region of the pressure sensing die is covered with a pressure sensitive gel material, and a cap having a cavity is mounted over the pressure sensing die such that the pressure sensing die is positioned within the cavity. The cap has a side vent hole that exposes the gel covered active region of the pressure sensing die to ambient atmospheric pressure outside the sensor device. Molding compound on an upper surface of the substrate encapsulates the at least one other die and at least a portion of the cap.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Inventors: Boon Yew Low, Chee Seng Foong, Lau Teck Beng