Packaging (e.g., With Mounting, Encapsulating, Etc.) Or Treatment Of Packaged Semiconductor Patents (Class 438/51)
  • Patent number: 8981387
    Abstract: A light emitting diode assembly includes a base, a light emitting chip mounted on the base, an elastic lens covering the light emitting chip, two rotation members rotatably arranged on the base, and two stopper poles fixed on the base. The two rotation members are capable of driving the elastic lens to rotate with respect to the two stopper poles. The stopper poles compress the elastic lens to cause the elastic lens to deform resiliently when the elastic lens is rotated by the rotation members to engage with the stopper poles.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 17, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hou-Te Lin, Chao-Hsiung Chang
  • Patent number: 8980669
    Abstract: The present invention discloses an adhesive-free method for preparation of micro electro-mechanical structure, comprising forming a micro electro-mechanical structure on a first substrate, forming an enclosing space for immersing liquid on the first or second substrate, and applying pressure to fix the first and second substrate. Before applying the pressure, the assembly including the two substrates is flipped, to make the contact surface immersed by the immersing liquid.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 17, 2015
    Assignee: Sagatek Co., Ltd.
    Inventors: Jung-Hsiang Chen, Cheng-Szu Chen, Bo-Ting Chen
  • Patent number: 8980668
    Abstract: There are many inventions described and illustrated herein. In one aspect, present invention is directed to a thin film encapsulated MEMS, and technique of fabricating or manufacturing a thin film encapsulated MEMS including an integrated getter area and/or an increased chamber volume, which causes little to no increase in overall dimension(s) from the perspective of the mechanical structure and chamber. The integrated getter area is disposed within the chamber and is capable of (i) “capturing” impurities, atoms and/or molecules that are out-gassed from surrounding materials and/or (ii) reducing and/or minimizing the adverse impact of such impurities, atoms and/or molecules (for example, reducing the probability of adding mass to a resonator which would thereby change the resonator's frequency).
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: March 17, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Aaron Partridge
  • Patent number: 8980698
    Abstract: A method of manufacturing a MEMS device comprises forming a MEMS device element 14. A sacrificial layer 20 is provided over the device element and a package cover layer 24 is provided over the sacrificial layer. A spacer layer 13 is formed over the sacrificial layer and is etched to define spacer portions adjacent an outer side wall of the sacrificial layer. These improve the hermetic sealing of the side walls of the cover layer 24.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 17, 2015
    Assignee: NXP, B.V.
    Inventors: Greja Johanna Adriana Verheijden, Gerhard Koops
  • Publication number: 20150069539
    Abstract: The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by increasing an area in which a getter layer is deposited, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having one or more residual gases. A cavity is formed within a top surface of the substrate. The cavity has a bottom surface and sidewalls extending from the bottom surface to the top surface. A getter layer, which absorbs the one or more residual gases, is deposited over the substrate at a position extending from the bottom surface of the cavity to a location on the sidewalls. By depositing the getter layer to extend to a location on the sidewalls of the cavity, the area of the substrate that is able to absorb the one or more residual gases is increased.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Jen Chan, Lee-Chuan Tseng, Shih-Wei Lin, Che-Ming Chang, Chung-Yen Chou, Yuan-Chih Hsieh
  • Publication number: 20150069537
    Abstract: A semiconductor sensor device has a MCU die and an acceleration-sensing die mounted on a die paddle of a lead frame. The MCU die is connected to leads of the lead frame with first bond wires and the acceleration-sensing die is connected to the MCU die with second bond wires. An interposer is flip-chip mounted on a top surface of the MCU die. The MCU die, acceleration-sensing die and a portion of the interposer are covered with a molding compound. A pre-packaged pressure sensor is flip-chip mounted on a top, exposed surface of the interposer. The interposer provides electrical connection between the pre-packaged pressure sensor and the MCU die.
    Type: Application
    Filed: September 8, 2013
    Publication date: March 12, 2015
    Inventors: Wai Yew Lo, Stanley Job Doraisamy, Lan Chu Tan
  • Patent number: 8975104
    Abstract: A method of providing microelectromechanical structures (MEMS) that are compatible with silicon CMOS electronics is provided. The method providing for processes and manufacturing sequences limiting the maximum exposure of an integrated circuit upon which the MEMS is manufactured to below 350° C., and potentially to below 250° C., thereby allowing direct manufacturing of the MEMS devices onto electronics, such as Si CMOS circuits. The method further providing for the provisioning of MEMS devices with multiple non-conductive structural layers such as silicon carbide separated with small lateral gaps. Such silicon carbide structures offering enhanced material properties, increased environmental and chemical resilience while also allowing novel designs to be implemented taking advantage of the non-conductive material of the structural layer.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: March 10, 2015
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Mourad El-Gamal, Frederic Nabki, Paul-Vahe Cicek
  • Patent number: 8975106
    Abstract: A method for forming a chip package includes: providing a substrate having a first and a second surfaces; removing a portion of the substrate to form openings in the substrate, wherein the openings extend from the first surface towards the second surface or from the second surface towards the first surface; after forming the openings, at least a first portion of the substrate serves as a first movable bulk, and at least a second portion of the substrate serves as a second movable bulk, wherein the first movable bulk and the second movable bulk are respectively located between the openings; disposing a protecting substrate on the second surface of the substrate; forming a through-hole in the protecting substrate; and forming a conducting layer on the protecting substrate, wherein the conducting layer extends from a surface of the protecting substrate into the through-hole to electrically connect the second movable bulk.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 10, 2015
    Inventor: Chien-Hung Liu
  • Patent number: 8975118
    Abstract: An advantageous method and system for realizing electrically very reliable and mechanically extremely stable vias for components whose functionality is realized in a layer construction on a conductive substrate. The via (Vertical Interconnect Access), which is led to the back side of the component and which is used for the electrical contacting of functional elements realized in the layer construction, includes a connection area in the substrate that extends over the entire thickness of the substrate and is electrically insulated from the adjoining substrate by a trench-like insulating frame likewise extending over the entire substrate thickness. According to the present system, the trench-like insulating frame is filled up with an electrically insulating polymer.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 10, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Julian Gonska, Jens Frey, Heribert Weber, Eckhard Graf, Roman Schlosser
  • Patent number: 8975107
    Abstract: In one embodiment, a method of manufacturing a semiconductor device includes oxidizing a substrate to form local oxide regions that extend above a top surface of the substrate. A membrane layer is formed over the local oxide regions and the top surface of the substrate. A portion of the substrate under the membrane layer is removed. The local oxide regions under the membrane layer is removed.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 10, 2015
    Assignee: Infineon Techologies AG
    Inventors: Alfons Dehe, Stefan Barzen, Wolfgang Friza, Wolfgang Klein
  • Patent number: 8975105
    Abstract: Hermetically sealed semiconductor wafer packages that include a first bond ring on a first wafer facing a complementary surface of a second bond ring on a second wafer. The package includes first and second standoffs of a first material, having a first thickness, formed on a surface of the first bond ring. The package also includes a eutectic alloy (does not have to be eutectic, typically it will be an alloy not specific to the eutectic ratio of the elements) formed from a second material and the first material to create a hermetic seal between the first and second wafer, the eutectic alloy formed by heating the first and second wafers to a temperature above a reflow temperature of the second material and below a reflow temperature of the first material, wherein the eutectic alloy fills a volume between the first and second standoffs and the first and second bond rings, and wherein the standoffs maintain a prespecified distance between the first bond ring and the second bond ring.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 10, 2015
    Assignee: Raytheon Company
    Inventor: Cody B. Moody
  • Publication number: 20150061048
    Abstract: A packaged MEMS device may include an embedding arrangement, a MEMS device disposed in the embedding arrangement, a sound port disposed in the embedding arrangement and acoustically coupled to the MEMS device, and a grille within the sound port. Some embodiments relate to a sound transducer component including an embedding material and a substrate-stripped MEMS die embedded into the embedding material. The MEMS die may comprise a diaphragm for sound transduction. The sound transducer component may further comprise a sound port within the embedding material in fluidic or acoustic contact with the diaphragm. Further embodiments relate to a method for packaging a MEMS device or to a method for manufacturing a sound transducer component.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Inventors: Irmgard Escher-Poeppel, Edward Fuergut, Alfons Dehe
  • Publication number: 20150061047
    Abstract: A capacitive pressure sensor is provided. The capacitive pressure sensor includes a substrate; and a first electrode formed in one surface of the substrate and vertical to the surface of the substrate. The capacitive pressure sensor also includes a second electrode with a portion facing the first sub-electrode, a portion facing the second sub-electrode and a portion formed in the other surface of the substrate. Further, the capacitive pressure sensor includes a first chamber between the first electrode and the second electrode and a second chamber formed in the second electrode. Further, the pressure sensor also includes a first sealing layer formed on the second electrode; and a second sealing layer formed on the other surface of the substrate.
    Type: Application
    Filed: January 23, 2014
    Publication date: March 5, 2015
    Applicants: Semiconductor Manufacturing International (Shanghai) Corporation, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: QIYANG HE, CHENGLONG ZHANG
  • Publication number: 20150061044
    Abstract: Embodiments of methods of fabricating a sensor device includes attaching a first wafer to a sensor wafer with a first bond material, and attaching a second wafer to the sensor wafer with a second bond material, the second bond material having a lower bonding temperature than the first bond material. After attaching the second wafer, an opening (e.g., a trench cut) through the second wafer is formed, and an adhesive material is provided through the opening to further secure the second wafer to the sensor wafer. Embodiments of sensor devices formed using such methods include a first device cavity having a first pressure, and a second device cavity having a second pressure.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Stephen R. Hooper
  • Publication number: 20150061046
    Abstract: The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of chambers with different pressures on a substrate, and an associated apparatus. In some embodiments, the method is performed by providing a device wafer having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the device wafer in a first ambient environment having a first pressure. The bonding forms a plurality of chambers abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of chambers. The one or more openings in the one or more of the plurality of chambers are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of chambers to be held at the different pressure.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Chia-Hua Chu, Yu-Chia Liu
  • Patent number: 8969109
    Abstract: A method of forming a light-emitting diode including determining a first level of tensile stress to be applied to a base substrate including a plurality of quantum well layers to adjust a band-gap of the base substrate to a predetermined band-gap. The first level of tensile stress is generated in the base substrate by forming a tensile-stressing layer on the base substrate.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Davood Shahrjerdi
  • Publication number: 20150054099
    Abstract: A semiconductor sensor device is assembled using a pre-molded lead frame having first and second die flags. The first die flag includes a cavity. A pressure sensor die (P-cell) is mounted within the cavity and a master control unit die (MCU) is mounted to the second flag. The P-cell and MCU are electrically connected to leads of the lead frame with bond wires. The die attach and wire bonding steps are each done in a single pass. A mold pin is placed over the P-cell and then the MCU is encapsulated with a mold compound. The mold pin is removed leaving a recess that is next filled with a gel material. Finally a lid is placed over the P-cell and gel material. The lid includes a hole that that exposes the gel-covered active region of the pressure sensor die to ambient atmospheric pressure outside the sensor device.
    Type: Application
    Filed: August 25, 2013
    Publication date: February 26, 2015
    Inventors: Kai Yun Yow, Poh Leng Eu, Chee Seng Foong, Navas Khan Oratti Kalandar, Lan Chu Tan
  • Publication number: 20150054101
    Abstract: A micromechanical component comprising a substrate having a main plane of extension, comprising a movable element, and comprising a spring arrangement assemblage is provided, the movable element being attached to the substrate by way of the spring arrangement assemblage, the movable element being deflectable out of a rest position into a deflection position, the movable element encompassing a first sub-element and a second sub-element connected to the first sub-element, the first sub-element extending mainly along the main plane of extension of the substrate, the second sub-element extending mainly along a functional plane, the functional plane being disposed substantially parallel to the main plane of extension of the substrate, the functional plane being spaced away from the main plane of extension.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Applicant: Robert Bosch GmbH
    Inventor: Jochen REINMUTH
  • Publication number: 20150056733
    Abstract: The invention provides a manufacturing method of a MEMS device, which includes: providing an integrated circuit device including a substrate and an electrical structure on the substrate, the electrical structure includes at least one sensing region and at least one first connection section; providing a structure layer, and forming at least one second connection section on the structure layer; bonding the at least one first connection section and the at least one second connection section; etching the structure layer for forming at least one movable structure, the movable structure being located at a position corresponding to a position of the sensing region, and the movable structure being connected to the at least one first connection section via the at least one second connection section; and thereafter, providing a cap to cover the movable structure and the sensing region, wherein the movable structure is not directly connected to the cap.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 26, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chiung-Cheng Lo, Kuan-Lin Chen
  • Publication number: 20150054098
    Abstract: The present invention concerns a MEMS microphone assembly (1) comprising a MEMS transducer element (2) comprising a MEMS die (3), a back plate (4) and a diaphragm (5) displaceable in relation to the back plate (4), and a sound inlet (16) for acoustically coupling the MEMS transducer element (2) to the exterior of the MEMS microphone assembly (1), wherein the MEMS die (3) comprises an indentation (17) that forms at least a part of the sound inlet (16). Further, the present invention concerns a method of manufacturing said MEMS microphone assembly (1).
    Type: Application
    Filed: May 2, 2012
    Publication date: February 26, 2015
    Applicant: Epcos AG
    Inventor: Jan Tue Ravnkilde
  • Patent number: 8962367
    Abstract: The present disclosure provides a method of fabricating a micro-electro-mechanical systems (MEMS) device. In an embodiment, a method includes providing a substrate including a first sacrificial layer, forming a micro-electro-mechanical systems (MEMS) structure above the first sacrificial layer, and forming a release aperture at substantially a same level above the first sacrificial layer as the MEMS structure. The method further includes forming a second sacrificial layer above the MEMS structure and within the release aperture, and forming a first cap over the second sacrificial layer and the MEMS structure, wherein a leg of the first cap is disposed between the MEMS structure and the release aperture. The method further includes removing the first sacrificial layer, removing the second sacrificial layer through the release aperture, and plugging the release aperture. A MEMS device formed by such a method is also provided.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Hsien Lin, Chia-Hua Chu, Chun-Wen Cheng
  • Patent number: 8963120
    Abstract: An optoelectronic semiconductor component includes a semiconductor layer sequence having at least one active layer, and a photonic crystal that couples radiation having a peak wavelength out of or into the semiconductor layer sequence, wherein the photonic crystal is at a distance from the active layer and formed by superimposition of at least two lattices having mutually different reciprocal lattice constants normalized to the peak wavelength.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 24, 2015
    Assignees: OSRAM Opto Semiconductors GmbH, The University Court of the University of St. Andrews
    Inventors: Krister Bergenek, Christopher Wiesmann, Thomas F. Krauss
  • Patent number: 8956904
    Abstract: A method of forming a MEMS device provides first and second wafers, where at least one of the first and second wafers has a two-dimensional array of MEMS devices. The method deposits a layer of first germanium onto the first wafer, and a layer of aluminum-germanium alloy onto the second wafer. To deposit the alloy, the method deposits a layer of aluminum onto the second wafer and then a layer of second germanium to the second wafer. Specifically, the layer of second germanium is deposited on the layer of aluminum. Next, the method brings the first wafer into contact with the second wafer so that the first germanium in the aluminum-germanium alloy contacts the second germanium. The wafers then are heated when the first and second germanium are in contact, and cooled to form a plurality of conductive hermetic seal rings about the plurality of the MEMS devices.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: February 17, 2015
    Assignee: Analog Devices, Inc.
    Inventors: John R. Martin, Timothy J. Frey, Christine H. Tsau, Michael W. Judy
  • Patent number: 8955219
    Abstract: The invention relates to a method for fabricating a bond by providing a body including a metallic surface provided with an inorganic, dielectric protective layer. The protective layer covers at least one surface zone of the metallic surface in which the metallic surface is to be electrically conductive bonded to a contact conductor. To fabricate the bond, a portion of a provided contact conductor above the surface zone is pressed on to the protective layer and the body so that the protective layer is destroyed above the surface zone in achieving an electrically conductive bond between the metallic surface and the contact conductor.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Roman Roth, Dirk Siepe
  • Patent number: 8955212
    Abstract: A micro-electro-mechanical microphone and manufacturing method thereof are provided. The micro-electro-mechanical microphone includes a diaphragm, which is formed on a surface of one side of a semiconductor substrate, exposed to the outside surroundings, and can vibrate freely under the pressure generated by sound waves; an electrode plate with air holes, which is under the diaphragm; an isolation structure for fixing the diaphragm and the electrode plate; an air gap cavity between the diaphragm and the electrode plate, and a back cavity under the electrode plate and in the semiconductor substrate; and a second cavity formed on the surface of the same side of the semiconductor substrate and in an open manner The air gap cavity is connected with the back cavity through the air holes of the electrode plate The back cavity is connected with the second cavity through an air groove formed in the semiconductor substrate.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 17, 2015
    Assignee: Lexvu Opto Microelectronics Technology (Shanghai) Ltd
    Inventors: Jianhong Mao, Deming Tang
  • Patent number: 8956914
    Abstract: An integrated circuit package system comprising: forming a substrate having a solder mask with a support structure formed from the solder mask; mounting a first integrated circuit device over the support structure; connecting the substrate and the first integrated circuit device; and encapsulating the first integrated circuit device and the support structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Ja Eun Yun, Jong Wook Ju
  • Publication number: 20150044807
    Abstract: A sensor assembly including one or more capacitive micromachined ultrasonic transducer (CMUT) microarray modules which are provided with a number of individual transducers. The transducers include silicon device and backing layers joined by a fused benzocyclobutene (BCB) layer which defines the transducer air gap, and which are arranged to simulate or orient individual transducers in a hyperbolic paraboloid geometry. The transducers/sensor are arranged in a matrix and are activatable to emit and receive reflected beam signals at a frequency of between about 100 to 170 kHz.
    Type: Application
    Filed: July 15, 2014
    Publication date: February 12, 2015
    Inventors: Sazzadur CHOWDHURY, Aref Bakhtazad
  • Publication number: 20150044808
    Abstract: A method of fabricating an integrated semiconductor device, comprising: providing a substrate having a first region and a second region; and forming a semiconductor unit on the first region and forming a micro electro mechanical system (MEMS) unit on the second region in one process.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 12, 2015
    Inventors: Hsueh-I Huang, Ming-Tung Lee, Shuo-Lun Tu
  • Publication number: 20150041928
    Abstract: A cavity is formed within a first substrate together with trenches that separate first and second portions of the first substrate from each other and from the remainder of the first substrate. The first portion of the first substrate is disposed within the cavity and constitutes a microelectromechanical structure, while the second portion of the substrate is disposed at least partly within the cavity and constitutes a first portion of an electrical contact. A second substrate is secured to the first substrate over the cavity to define a chamber containing the microelectromechanical structure. The second substrate has a first portion that constitutes a second portion of the electrical contact and is disposed in electrical contact with the second portion of the first substrate such that the electrical contact extends from within the chamber to an exterior of the chamber.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Aaron Partridge, Markus Lutz, Pavan Gupta
  • Publication number: 20150041929
    Abstract: A packaged microphone has a base and a lid that at least in part form a package having a plurality of exterior sides and an interior chamber. The packaged microphone also has a flexible substrate having a first portion within the interior chamber, and a second portion, extending from the interior chamber, having at least two sets of pads. A MEMS microphone die is mounted to the first portion of the flexible substrate, and each set of pads is in electrical communication with the microphone die. One set of pads is on a first exterior side of the package, and a second set of pads is on a second exterior side of the package.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: Invensense, Inc.
    Inventor: David Bolognia
  • Publication number: 20150037921
    Abstract: A method for manufacturing acoustic wave devices includes forming power supply lines along boundaries between chip regions on a main surface of a collective substrate on which interdigital transducer (IDT) electrodes and pad electrodes are formed; providing substantially frame-shaped first support members, each including a first opening in which one of the IDT electrodes is located and including first through-holes in a region in which the pad electrodes are formed; providing second support members outside the first support members; providing a lid member including second through-holes at positions overlapping the first through-holes on top surfaces of the first support members; and forming terminal electrodes in the first through-holes and the second through-holes by electroplating. The collective substrate, the first support members, the second support members, and the lid member form enclosed spaces in which the power supply lines are sealed.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Yohei KONAKA, Seiji KAI
  • Publication number: 20150035387
    Abstract: A MEMS switch device including: a substrate layer; an insulating layer formed over the substrate layer; and a MEMS switch module having a plurality of contacts formed on the surface of the insulating layer, wherein the insulating layer includes a number of conductive pathways formed within the insulating layer, the conductive pathways being configured to interconnect selected contacts of the MEMS switch module.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: Analog Devices Technology
    Inventors: John G. Macnamara, Padraig L. Fitzgerald, Raymond C. Goggin, Bernard P. Stenson
  • Publication number: 20150035091
    Abstract: In order to manufacture a packaged device, a die having a sensitive region is bonded to a support, and a packaging mass of moldable material is molded on the support so as to surround the die. During molding of the packaging mass, a chamber is formed, which faces the sensitive region and is connected to the outside environment. To this end, a sacrificial mass of material that may evaporate/sublimate is dispensed on the sensitive region; the packaging mass is molded on the sacrificial mass; a through hole is formed in the packaging mass to extend as far as the sacrificial mass; the sacrificial mass is evaporated/sublimated through the hole.
    Type: Application
    Filed: July 25, 2014
    Publication date: February 5, 2015
    Inventor: Federico Giovanni Ziglioli
  • Publication number: 20150035093
    Abstract: In one embodiment, the process flow for a capacitive pressures sensor is combined with the process flow for an inertial sensor. In this way, an inertial sensor is realized within the membrane layer of the pressure sensor. The device layer is simultaneously used as z-axis electrode for out-of-plane sensing in the inertial sensor, and/or as the wiring layer for the inertial sensor. The membrane layer (or cap layer) of the pressure sensor process flow is used to define the inertial sensor sensing structures. Insulating nitride plugs in the membrane layer are used to electrically decouple the various sensing structures for a multi-axis inertial sensor, allowing for fully differential sensing.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: Ando Feyh, Gary O'Brien
  • Publication number: 20150035090
    Abstract: In a packaging structure for a microelectromechanical-system (MEMS) resonator system, a resonator-control chip is mounted on a lead frame having a plurality of electrical leads, including electrically coupling a first contact on a first surface of the resonator-control chip to a mounting surface of a first electrical lead of the plurality of electrical leads through a first electrically conductive bump. A MEMS resonator chip is mounted to the first surface of the resonator-control chip, including electrically coupling a contact on a first surface of the MEMS resonator chip to a second contact on the first surface of the resonator-control chip through a second electrically conductive bump. The MEMS resonator chip, resonator-control chip and mounting surface of the first electrical lead are enclosed within a package enclosure that exposes a contact surface of the first electrical lead at an external surface of the packaging structure.
    Type: Application
    Filed: February 27, 2014
    Publication date: February 5, 2015
    Applicant: SiTime Corporation
    Inventors: Pavan Gupta, Aaron Partridge, Markus Lutz
  • Patent number: 8945969
    Abstract: A method of fabricating electrical connections in an integrated MEMS device is disclosed. The method comprises forming a MEMS wafer. Forming a MEMS wafer includes forming one cavity in a first semiconductor layer, bonding the first semiconductor layer to a second semiconductor layer with a dielectric layer disposed between the first semiconductor layer and the second semiconductor layer, and etching at least one via through the second semiconductor layer and the dielectric layer and depositing a conductive material on the second semiconductor layer and filling the at least one via. Forming a MEMS wafer also includes patterning and etching the conductive material to form one standoff and depositing a germanium layer on the conductive material, patterning and etching the germanium layer, and patterning and etching the second semiconductor layer to define one MEMS structure. The method also includes bonding the MEMS wafer to a base substrate.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 3, 2015
    Assignee: InvenSense, Inc.
    Inventors: Kegang Huang, Jongwoo Shin, Martin Lim, Michael Julian Daneman, Joseph Seeger
  • Publication number: 20150028435
    Abstract: A method of packaging integrated circuits includes providing a molded substrate that has a plurality of first semiconductor dies and a plurality of second semiconductor dies laterally spaced apart from one another and covered by a molding compound. The molding compound is thinned to expose at least some of the second semiconductor dies. The exposed second semiconductor dies are removed to form cavities in the molded substrate. A plurality of third semiconductor dies are inserted in the cavities formed in the molded substrate, and electrical connections are formed to the first semiconductor dies and to the third semiconductor dies.
    Type: Application
    Filed: August 7, 2014
    Publication date: January 29, 2015
    Inventors: Ulrich Wachter, Dominic Maier, Thomas Kilger
  • Publication number: 20150028432
    Abstract: A Micro Electro Mechanical systems (MEMS) device includes a solder bump on a substrate, a CMOS-MEMS die comprising a CMOS die and a MEMS die, and stud bumps on the CMOS die. The MEMS die is disposed between the CMOS die and the substrate. The stud bumps and the solder bumps are positioned to provide an electrical connection between the CMOS die and the substrate.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Brian H. Kim, Haijun She, Mozafar Maghsoudnia
  • Publication number: 20150028433
    Abstract: A structure (100) for encapsulating at least one microdevice (104) produced on and/or in a substrate (102) and positioned in at least one cavity (110) formed between the substrate and a cap (106) rigidly attached to the substrate, in which the cap includes at least: one layer (112) of a first material, one face of which (114) forms an inner wall of the cavity, and mechanical reinforcement portions (116) rigidly attached at least to the said face of the layer of the first material, partly covering the said face of the layer of the first material, and having gas absorption and/or adsorption properties, and in which the Young's modulus of a second material of the mechanical reinforcement portions is higher than that of the first material.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 29, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Xavier BAILLIN, Bernard DIEM, Jean-Philippe POLIZZI, Andre ROUZAUD
  • Patent number: 8941193
    Abstract: A simple and cost-effective manufacturing method for hybrid integrated components including at least one MEMS element, a cap for the micromechanical structure of the MEMS element, and at least one ASIC substrate, using which a high degree of miniaturization may be achieved. The micromechanical structure of the MEMS element and the cap are manufactured in a layered structure, proceeding from a shared semiconductor substrate, by applying at least one cap layer to a first surface of the semiconductor substrate, and by processing and structuring the semiconductor substrate proceeding from its other second surface, to produce and expose the micromechanical MEMS structure. The semiconductor substrate is then mounted with the MEMS-structured second surface on the ASIC substrate.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 27, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Jens Frey, Frank Fischer
  • Publication number: 20150021718
    Abstract: A method and apparatus for coupling a MEMS device to a substrate is disclosed. The method includes providing a substrate with a conductor disposed over the substrate, adhering the MEMS device to the substrate, wherein a first elastomer adheres the MEMS device to the substrate. The MEMS device is electrically connected to the conductor using a wire bond.
    Type: Application
    Filed: April 3, 2014
    Publication date: January 22, 2015
    Applicant: INVENSENSE, INC.
    Inventor: ANTHONY D. MINERVINI
  • Publication number: 20150024535
    Abstract: A semiconductor sensor device is packaged using a footed lid instead of a pre-molded lead frame. A semiconductor sensor die is attached to a first side of a lead frame. The die is then electrically connected to leads of the lead frame. A gel material is dispensed onto the sensor die. The footed lid is attached to the substrate such that the footed lid covers the sensor die and the electrical connections between the die and the lead frame. A molding compound is then formed over the substrate and the footed lid such that the molding compound covers the substrate, the sensor die and the footed lid.
    Type: Application
    Filed: October 8, 2014
    Publication date: January 22, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventor: Wai Yew Lo
  • Publication number: 20150021721
    Abstract: A method of forming a packaged electronic device includes fabricating a MEMS structure, such as a BAW structure, on a first semiconductor wafer substrate; forming a cavity in a second semiconductor wafer substrate; and mounting the second substrate on the first substrate such that the MEMS structure is positioned inside the cavity in the second substrate. A wafer level assembly and an integrated circuit package are also described.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Matthew David Romig, Marie-Solange Anne Milleron, Benjamin Michael Sutton
  • Publication number: 20150021720
    Abstract: A device comprising a substrate comprising at least one microelectronic and/or nanoelectronic structure comprising at least one sensitive portion and one fluid channel (2) defined between said substrate and a cap (6), where said fluid channel (2) comprises at least two apertures to provide a flow in said channel, where said microelectronic and/or nanoelectronic structure is located within the fluid channel, where said cap is assembled with the substrate at an assembly interface, where said device comprises electrical connections between said microelectronic and/or nanoelectronic structure and the exterior of the fluid channel (2), where said electrical connections (8) are formed by vias made through the substrate (4) directly below the microelectronic and/or nanoelectronic structure, and in electrical contact with said microelectronic and/or nanoelectronic structure.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 22, 2015
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Eric OLLIER, Carine MARCOUX
  • Publication number: 20150024536
    Abstract: MEMS devices with a rigid backplate and a method of making a MEMS device with a rigid backplate are disclosed. In one embodiment, a device includes a substrate and a backplate supported by the substrate. The backplate includes elongated protrusions.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 22, 2015
    Inventor: Alfons Dehe
  • Publication number: 20150014793
    Abstract: A semiconductor sensor device has a lead frame having an outer frame with wire bond pads and a die pad to which a pressure sensor die is mounted. The die pad is vertically offset from the outer frame and wire bond pads by tie bars that have down set structures. The die pad has an opening, and the sensor die is mounted on the first die attach pad such that the opening provides access to an active region of the sensor die. Pressure sensitive gel is applied over the active region of the sensor die. Molding compound covers the sensor die and gel. The molding compound has a hole corresponding to the opening in the die pad to enable ambient atmospheric pressure outside of the sensor device to reach the sensor die via the pressure sensitive gel.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Kai Yun Yow, Poh Leng Eu
  • Patent number: 8931347
    Abstract: A fluid pressure measurement sensor (11) comprises a microelectromechanical system (MEMS) chip (23). The MEMS chip (23) comprises two lateral walls (56), a sensitive membrane (49) connected to said lateral walls (56) and sealed cavity (9). The exterior surfaces of the lateral walls (56) and the sensitive membrane (49) are exposed to the fluid pressure. The lateral walls (56) are designed to subject the sensitive membrane (49) to a compression stress transmitted by the opposite lateral walls (56) where said lateral walls (56) are connected to the sensitive membrane (49) such that the sensitive membrane (49) works in compression only. The MEMS chip (23) also comprises a stress detection circuit (31) to measure the compression state of the sensitive membrane (49) which is proportional to the fluid pressure.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: January 13, 2015
    Assignee: Openfield SAS
    Inventors: Eric Donzier, Emmanuel Tavernier
  • Patent number: 8932893
    Abstract: A method of fabricating a microelectromechanical (MEMS) device includes bonding a transducer wafer to a substrate wafer along a bond interface. An unpatterned transducer layer included within the transducer wafer is patterned. A release etch process is then performed during which a sacrificial layer is exposed to a selected release etchant to remove at a least a portion of the sacrificial layer through the openings in the patterned transducer layer. A release etch stop layer is formed between the sacrificial layer and the bond interface prior to exposing the sacrificial layer to the release etchant. The release etch stop layer prevents the ingress of the selected release etchant into the region of the MEMS device containing the bond interface during the release etch process.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: January 13, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Matthieu Lagouge
  • Publication number: 20150008542
    Abstract: A micromechanical component includes a substrate having a cavern structured into the same, an at least partially conductive diaphragm, which at least partially spans the cavern, and a counter electrode, which is situated on an outer side of the diaphragm oriented away from the substrate so that a clearance is present between the counter electrode and the at least partially conductive diaphragm, the at least partially conductive diaphragm being spanned onto or over at least one electrically insulating material which at least partially covers the functional top side of the substrate, and at least one pressure access being formed on the cavern so that the at least partially conductive diaphragm is bendable into the clearance when a gaseous medium flows from an outer surroundings of the micromechanical component into the cavern. Also described is a manufacturing method for a micromechanical component.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Arnd KAELBERER, Jochen Reinmuth, Johannes Classen
  • Patent number: 8928129
    Abstract: A semiconductor device includes a substrate, a semiconductor chip, a first molding member and a metal layer. The substrate includes a first ground pad formed therein, the first ground pad having a first exposed surface exposed at a first surface of the substrate. The semiconductor chip is formed on the first surface of the substrate. The first molding member is formed on the first surface of the substrate and covers the semiconductor chip while not covering the first exposed surface. The metal layer covers the first molding member and extends to lateral surfaces of the substrate while contacting the first exposed surface.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: In-Sang Song