Silicide Patents (Class 438/583)
-
Patent number: 9385042Abstract: This invention provides a technique advantageous to improve the operating speed of an integrated circuit. In a semiconductor device in which an n-type transistor and a p-type transistor are formed on the (551) plane of silicon, the thickness of a silicide layer which is in contact with a diffusion region of the n-type transistor is smaller than that of a silicide layer which is in contact with a diffusion region of the p-type transistor.Type: GrantFiled: April 4, 2011Date of Patent: July 5, 2016Assignee: NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITYInventors: Tadahiro Ohmi, Hiroaki Tanaka
-
Patent number: 9000540Abstract: The performances of semiconductor elements disposed in a multilayer wiring layer are improved. A semiconductor device includes: a first wire disposed in a first wiring layer; a second wire disposed in a second wiring layer stacked over the first wiring layer; a gate electrode arranged between the first wire and the second wire in the direction of stacking of the first wiring layer and the second wiring layer, and not coupled with the first wire and the second wire; a gate insulation film disposed over the side surface of the gate electrode; and a semiconductor layer disposed over the side surface of the gate electrode via the gate insulation film, and coupled with the first wire and the second wire.Type: GrantFiled: January 10, 2013Date of Patent: April 7, 2015Assignee: Renesas Electronics CorporationInventors: Hiroshi Sunamura, Naoya Inoue, Kishou Kaneko
-
Patent number: 8859408Abstract: Generally, the present disclosure is directed to methods of stabilizing metal silicide contact regions formed in a silicon-germanium active area of a semiconductor device, and devices comprising stabilized metal silicides. One illustrative method disclosed herein includes performing an activation anneal to activate dopants implanted in an active area of a semiconductor device, wherein the active area comprises germanium. Additionally, the method includes, among other things, performing an ion implantation process to implant ions into the active area after performing the activation anneal, forming a metal silicide contact region in the active area, and forming a conductive contact element to the metal silicide contact region.Type: GrantFiled: April 14, 2011Date of Patent: October 14, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Clemens Fitz, Tom Herrmann
-
Patent number: 8846527Abstract: A method is provided for fabricating an MOS transistor. The method includes providing a semiconductor substrate, and forming a gate structure having a gate dielectric layer and a gate metal layer on the semiconductor substrate. The method also includes forming offset sidewall spacers at both sides of the gate structure, and forming lightly doped regions in semiconductor substrate at both sides of the gate structure. Further, the method includes forming a first metal silicide region in each of the lightly doped regions, and forming main sidewall spacers at both sides of the gate structure. Further, the method includes forming heavily doped regions in semiconductor substrate at both sides of the gate structure and the main sidewall spacers, and forming a second metal silicide region in each of the heavily doped regions.Type: GrantFiled: May 6, 2013Date of Patent: September 30, 2014Assignee: Semiconductor Manufacturing International Corp.Inventor: Neil Zhao
-
Patent number: 8815724Abstract: Embodiments of the invention described herein generally provide methods and apparatuses for forming cobalt silicide layers, metallic cobalt layers, and other cobalt-containing materials. In one embodiment, a method for forming a cobalt silicide containing material on a substrate is provided which includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, depositing a metallic cobalt material on the cobalt silicide material, and depositing a metallic contact material on the substrate. In another embodiment, a method includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, expose the substrate to an annealing process, depositing a barrier material on the cobalt silicide material, and depositing a metallic contact material on the barrier material.Type: GrantFiled: April 20, 2012Date of Patent: August 26, 2014Assignee: Applied Materials, Inc.Inventors: Seshadri Ganguli, Schubert S. Chu, Mei Chang, Sang-ho Yu, Kevin Moraes, See-Eng Phan
-
Patent number: 8809914Abstract: A method for manufacturing a solid-state image sensor having a pixel region, a peripheral circuit region, and an intermediate region interposed between the pixel region and the peripheral circuit region, includes forming a high melting point metal compound in active regions of the peripheral circuit region and the intermediate region, forming an etch stop film on the high melting point metal compound formed in the active regions of the peripheral circuit region and the intermediate region, forming an interlayer insulating film on the etch stop film, and forming, by using the etch stop film, a contact plug to contact the high melting point metal compound in the active region of the peripheral circuit region.Type: GrantFiled: June 6, 2013Date of Patent: August 19, 2014Assignee: Canon Kabushiki KaishaInventors: Kentarou Suzuki, Yusuke Onuki
-
Patent number: 8785310Abstract: A method is provided for forming a metal silicide layer on a substrate. According to one embodiment the method includes providing the substrate in a process chamber, exposing the substrate at a first substrate temperature to a plasma generated from a deposition gas containing a metal precursor, where the plasma exposure forms a conformal metal-containing layer on the substrate in a self-limiting process. The method further includes exposing the metal-containing layer at a second substrate temperature to a reducing gas in the absence of a plasma, where the exposing steps are alternatively performed at least once to form the metal silicide layer, and the deposition gas does not contain the reducing gas. The method provides conformal metal silicide formation in deep trenches with high aspect ratios.Type: GrantFiled: March 22, 2012Date of Patent: July 22, 2014Assignee: Tokyo Electron LimitedInventors: Toshio Hasegawa, Kunihiro Tada, Hideaki Yamasaki, David L. O'Meara, Gerrit J. Leusink
-
Patent number: 8709885Abstract: A method of manufacturing Schottky diodes in a CMOS process includes forming wells, including first wells (16) for forming CMOS devices and second wells (18) for forming Schottky devices. Then, transistors are formed in the first wells, the second wells protected with a protection layer (20) and suicide contacts (40) formed to source and drain regions in the first wells. The protection layer is then removed, a Schottky material deposited and etched away except in a contact region in each second well to form a Schottky contact between the Schottky material (74) and each second well (18).Type: GrantFiled: November 17, 2010Date of Patent: April 29, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Georgios Vellianitis, Gilberto Curatola, Kyriaki Fotopoulou, Nader Akil
-
Patent number: 8658483Abstract: A method of fabricating an integrated circuit device is provided. The method includes forming a replacement gate structure with a dummy polysilicon layer on a first surface of a substrate. The method further includes depositing a dielectric layer by a thermal process to form offset spacers on two opposing sides of the replacement gate structure, wherein the dielectric layer is deposited on the first surface and a second surface opposing the first surface of the substrate. The method further includes removing the dummy polysilicon layer from the replacement gate structure, wherein the dielectric layer on the second surface of the substrate protects the second surface of the substrate during the removing step.Type: GrantFiled: November 19, 2012Date of Patent: February 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jung-Tzu Hsu, Ching-Chung Pai, Yu-Hsien Lin, Jyh-Huei Chen
-
Patent number: 8647971Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.Type: GrantFiled: January 23, 2012Date of Patent: February 11, 2014Assignee: Intersil Americas Inc.Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
-
Patent number: 8569837Abstract: A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a deep source/drain region adjacent the gate electrode; a silicide region over the deep source/drain region; and an elevated metallized source/drain region between the silicide region and the gate electrode. The elevated metallized source/drain region adjoins the silicide region.Type: GrantFiled: May 7, 2007Date of Patent: October 29, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsin Ko, Hung-Wei Chen, Chung-Hu Ke, Ta-Ming Kuan, Wen-Chin Lee
-
Patent number: 8551874Abstract: A MOSFET is described incorporating a common metal process to make contact to the source, drain and the metal gate respectively which may be formed concurrently with the same metal or metals.Type: GrantFiled: May 8, 2010Date of Patent: October 8, 2013Assignee: International Business Machines CorporationInventors: Soon-Cheon Seo, Bruce B. Doris, Chih-Chao Yang
-
Patent number: 8529776Abstract: A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.Type: GrantFiled: July 25, 2011Date of Patent: September 10, 2013Assignee: Applied Materials, Inc.Inventors: Kyeong Tae Lee, Sang Wook Kim, Daehee Weon, Sang-jun Choi, Sreekar Bhaviripudi, Jahyong Kuh
-
Patent number: 8517769Abstract: Disclosed herein are various methods of forming copper-based conductive structures on integrated circuit devices. In one example, the method includes the steps of forming a trench/via in a layer of insulating material, forming a copper-based seed layer above the layer of insulating material and in the trench/via, performing a heating process on the copper-based seed layer to increase an amount of the copper-based seed layer positioned proximate a bottom of the trench/via, performing an etching process on said copper-based seed layer and performing an electroless copper deposition process to fill the trench/via with a copper-based material.Type: GrantFiled: March 16, 2012Date of Patent: August 27, 2013Assignee: GlobalFoundries Inc.Inventors: Sean X. Lin, Ming He, Xunyuan Zhang, Larry Zhao
-
Patent number: 8513765Abstract: A device and method for forming a semiconductor device include growing a raised semiconductor region on a channel layer adjacent to a gate structure. A space is formed between the raised semiconductor region and the gate structure. A metal layer is deposited on at least the raised semiconductor region. The raised semiconductor region is silicided to form a silicide into the channel layer which extends deeper into the channel layer at a position corresponding to the space.Type: GrantFiled: July 19, 2010Date of Patent: August 20, 2013Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam G. Shahidi
-
Patent number: 8476154Abstract: The present invention provides a charge trapping non-volatile semiconductor memory device and a method of making the device. The charge trapping non-volatile semiconductor memory device comprises a semiconductor substrate, a source region, a drain region, and, consecutively formed over the semiconductor substrate, a channel insulation layer, a charge trapping layer, a blocking insulation layer, and a gate electrode. The drain region includes a P-N junction, and the source region includes a metal-semiconductor junction formed between the semiconductor substrate and a metal including titanium, cobalt, nickel, platinum or one of their various combinations. The charge trapping non-volatile semiconductor memory device according to the present disclosure has low programming voltage, fast programming speed, low energy consumption, and relatively high device reliability.Type: GrantFiled: January 4, 2011Date of Patent: July 2, 2013Assignee: Fudan UniversityInventors: Dongping Wu, Shi-Li Zhang
-
Patent number: 8466051Abstract: A method for fabricating a Schottky device includes the following sequences. First, a substrate with a first conductivity type is provided and an epitaxial layer with the first conductivity type is grown on the substrate. Then, a patterned dielectric layer is formed on the epitaxial layer, and a metal silicide layer is formed on a surface of the epitaxial layer. A dopant source layer with a second conductivity type is formed on the metal silicide layer, followed by applying a thermal drive-in process to diffuse the dopants inside the dopant source layer into the epitaxial layer. Finally, a conductive layer is formed on the metal silicide layer.Type: GrantFiled: December 28, 2011Date of Patent: June 18, 2013Assignee: Anpec Electronics CorporationInventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Chia-Hao Chang, Chia-Wei Chen
-
Patent number: 8460996Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.Type: GrantFiled: October 31, 2007Date of Patent: June 11, 2013Assignee: Freescale Semiconductor, Inc.Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
-
Patent number: 8450196Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.Type: GrantFiled: October 25, 2007Date of Patent: May 28, 2013Assignee: Infineon Technologies Austria AGInventors: Roland Rupp, Thomas Gutt, Michael Treu
-
Publication number: 20130130485Abstract: A method for fabricating a Schottky device includes the following sequences. First, a substrate with a first conductivity type is provided and an epitaxial layer with the first conductivity type is grown on the substrate. Then, a patterned dielectric layer is formed on the epitaxial layer, and a metal silicide layer is formed on a surface of the epitaxial layer. A dopant source layer with a second conductivity type is formed on the metal silicide layer, followed by applying a thermal drive-in process to diffuse the dopants inside the dopant source layer into the epitaxial layer. Finally, a conductive layer is formed on the metal silicide layer.Type: ApplicationFiled: December 28, 2011Publication date: May 23, 2013Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Chia-Hao Chang, Chia-Wei Chen
-
Patent number: 8431453Abstract: The embodiments of methods and structures disclosed herein provide mechanisms of performing doping an inter-level dielectric film, ILD0, surrounding the gate structures with a dopant to reduce its etch rates during the processes of removing dummy gate electrode layer and/or gate dielectric layer for replacement gate technologies. The ILD0 film may be doped with a plasma doping process (PLAD) or an ion beam process. Post doping anneal is optional.Type: GrantFiled: March 31, 2011Date of Patent: April 30, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Lien Huang, Chia-Pin Lin, Sheng-Hsiung Wang, Fan-Yi Hsu, Chun-Liang Tai
-
Patent number: 8367508Abstract: A method for forming a field effect transistor includes forming a gate stack, a spacer adjacent to opposing sides of the gate stack, a silicide source region and a silicide drain region on opposing sides of the spacer, epitaxially growing silicon on the source region and the drain region; forming a liner layer on the gate stack and the spacer, removing a portion of the liner layer to expose a portion of the hardmask layer, removing the exposed portions of the hardmask layer to expose a silicon layer of the gate stack, removing exposed silicon to expose a portion of a metal layer of the gate stack, the source region, and the drain region; and depositing a conductive material on the metal layer of the gate stack, the silicide source region, and the silicide drain region.Type: GrantFiled: April 9, 2010Date of Patent: February 5, 2013Assignee: International Business Machines CorporationInventors: Dechao Guo, Wilfried E. Haensch, Xinhui Wang, Keith Kwong Hon Wong
-
Patent number: 8361851Abstract: Tensile stress is applied to the channel region of an N-type metal oxide semiconductor (NMOS) transistor by directly forming a material having a tensile stress, for example, tungsten, in the contact holes on the source region and drain region of the NMOS. Then, the dummy gate layer in the gate stack of the NMOS transistor is removed, so as to further reduce the counter force of the gate stack on the channel region, thereby increasing the tensile stress in the channel region, enhancing the drift mobility of the carrier, and improving the performance of the transistor. The present invention avoids using a separate stress layer to create tensile stress in the channel region of an NMOS transistor, which advantageously simplifies the transistor manufacturing process and improves sizes and performance of the transistor.Type: GrantFiled: June 21, 2010Date of Patent: January 29, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
-
Patent number: 8349718Abstract: According to certain embodiments, a silicide layer is formed after the fabrication of a functional gate electrode using a gate-last scheme. An initial semiconductor structure has at least one impurity regions formed on a semiconductor substrate, a sacrifice film formed over the impurity region, an isolation layer formed over the sacrifice film and a dielectric layer formed over the isolation film. A via is patterned into the dielectric layer of the initial semiconductor structure and through the thickness of the isolation layer such that a contact opening is formed in the isolation layer. The sacrifice film underlying the isolation layer is then removed leaving a void space underlying the isolation layer. Then, a metal silicide precursor is placed within the void space, and the metal silicide precursor is converted to a silicide layer through an annealing process.Type: GrantFiled: March 24, 2011Date of Patent: January 8, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Yoshihiro Uozumi
-
Patent number: 8350290Abstract: Provided is a light-receiving device which has light-receiving sensitivity superior to that of a conventional Schottky diode type light-receiving device and also has sufficiently-strengthened junction of a Schottky electrode. A first contact layer formed of AlGaN and having conductivity, a light-receiving layer formed of AlGaN, and a second contact layer formed of AlN and having a thickness of 5 nm are epitaxially formed on a predetermined substrate in the stated order, and a second electrode is brought into Schottky junction with the second contact layer, to thereby form MIS junction. Further, after the Schottky junction, heat treatment is performed under a nitrogen gas atmosphere at 600° C. for 30 seconds.Type: GrantFiled: August 19, 2009Date of Patent: January 8, 2013Assignee: NGK Insulators, Ltd.Inventors: Makoto Miyoshi, Mitsuhiro Tanaka
-
Patent number: 8343864Abstract: A semiconductor circuit and method of fabrication is disclosed. In one embodiment, the semiconductor circuit comprises a metal-insulator-metal trench capacitor in a silicon substrate. A field effect transistor is disposed on the silicon substrate adjacent to the metal-insulator-metal trench capacitor, and a silicide region is disposed between the field effect transistor and the metal-insulator-metal trench capacitor. Electrical connectivity between the transistor and capacitor is achieved without the need for a buried strap.Type: GrantFiled: March 28, 2011Date of Patent: January 1, 2013Assignee: International Business Machines CorporationInventors: Puneet Goyal, Herbert Lei Ho, Pradeep Jana, Jin Liu
-
Patent number: 8338906Abstract: An integrated circuit structure has a metal silicide layer formed on an n-type well region, a p-type guard ring formed on the n-type well region and encircling the metal silicide layer. The outer portion of the metal silicide layer extends to overlap the inner edge of the guard ring, and a Schottky barrier is formed at the junction of the internal portion of the metal silicide layer and the well region. A conductive contact is in contact with the internal portion and the outer portion of the metal silicide layer.Type: GrantFiled: December 8, 2008Date of Patent: December 25, 2012Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ping-Chun Yeh, Der-Chyang Yeh, Ruey-Hsin Liu, Mingo Liu
-
Patent number: 8338242Abstract: The disclosure provides methods and structures for preventing exposing polysilicon layer and silicon substrate on the substrate backside to polysilicon etching chemistry during removal of the dummy polysilicon layer in replacement gate structures. A thermal deposition process or processes are used to deposit a dielectric layer for offset spacers and/or a contact etch stop layer (CESL) to cover the polysilicon layer on the substrate backside. Such mechanisms reduce or eliminate particles originated at bevel of substrate backside, due to complete removal of the polysilicon layer at the backside bevel and the resultant etching of silicon substrate.Type: GrantFiled: March 31, 2011Date of Patent: December 25, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jung-Tzu Hsu, Ching-Chung Pai, Yu-Hsien Lin, Jyh-Huei Chen
-
Publication number: 20120292733Abstract: The present invention relates to the field of microelectronic technology. It discloses a mixed Schottky/P-N junction diode and a method of making the same. The mixed Schottky/P-N junction diode comprises a semiconductor substrate having a bulk region and a doped region, and a conductive layer on the semiconductor substrate. The doped region has opposite doping from that of the bulk region. A P-N junction is formed between the bulk region and the doped region, a Schottky junction is formed between the conductive layer and the semiconductor substrate, and an ohmic contact is formed between the conductive layer and the doped region. The mixed Schottky/P-N junction diode of the present invention has high operating current, fast switching speed, small leakage current, high breakdown voltage, ease of fabrication and other advantages.Type: ApplicationFiled: January 4, 2011Publication date: November 22, 2012Applicant: FUDAN UNIVERSITYInventors: Dongping Wu, Shi-Li Zhang, Yinghua Pu
-
Patent number: 8304841Abstract: A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.Type: GrantFiled: April 16, 2010Date of Patent: November 6, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jeff J. Xu, Cheng-Tung Lin, Hsiang-Yi Wang, Wen-Chin Lee, Betty Hsieh
-
Patent number: 8283244Abstract: A one-transistor dynamic random access memory (DRAM) cell includes a transistor which has a first source/drain region, a second source/drain region, a body region between the first and second source/drain regions, and a gate over the body region. The first source/drain region includes a Schottky diode junction with the body region and the second source/drain region includes an n-p diode junction with the body region.Type: GrantFiled: September 11, 2009Date of Patent: October 9, 2012Assignee: Freescale Semiconductor, Inc.Inventors: James D. Burnett, Brian A. Winstead
-
Patent number: 8247319Abstract: Techniques for silicide, germanide or germanosilicide formation in extremely small structures are provided. In one aspect, a method for forming a silicide, germanide or germanosilicide in a three-dimensional silicon, germanium or silicon germanium structure having extremely small dimensions is provided. The method includes the following steps. At least one element is implanted into the structure. At least one metal is deposited onto the structure. The structure is annealed to intersperse the metal within the silicon, germanium or silicon germanium to form the silicide, germanide or germanosilicide wherein the implanted element serves to prevent morphological degradation of the silicide, germanide or germanosilicide. The implanted element can include at least one of carbon, fluorine and silicon.Type: GrantFiled: February 7, 2011Date of Patent: August 21, 2012Assignee: International Business Machines CorporationInventors: Benjamin Luke Fletcher, Christian Lavoie, Siegfried Lutz Maurer, Zhen Zhang
-
Publication number: 20120175724Abstract: A Schottky diode with a small footprint and a high-current carrying ability is fabricated by forming an opening that extends into an n-type semiconductor material. The opening is then lined with a metallic material such as platinum. The metallic material is then heated to form a salicide region where the metallic material touches the n-type semiconductor material.Type: ApplicationFiled: January 6, 2011Publication date: July 12, 2012Inventors: Sheldon D. Haynie, Ann Gabrys
-
Patent number: 8202799Abstract: A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.Type: GrantFiled: July 9, 2010Date of Patent: June 19, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Tung Lin, Chih-Wei Chang, Chii-Ming Wu, Mei-Yun Wang, Chaing-Ming Chuang, Shau-Lin Shue
-
Patent number: 8143655Abstract: A fabrication process for a trench Schottky diode with differential oxide thickness within the trenches includes forming a first nitride layer on a substrate surface and subsequently forming a plurality of trenches in the substrate including, possibly, a termination trench. Following a sacrificial oxide layer formation and removal, sidewall and bottom surfaces of the trenches are oxidized. A second nitride layer is then applied to the substrate and etched such that the second nitride layer covers the oxide layer on the trench sidewalls but exposes the oxide layer on the trench bottom surfaces. The trench bottom surfaces are then re-oxidized and the remaining second nitride layer then removed from the sidewalls, resulting in an oxide layer of varying thickness being formed on the sidewall and bottom surfaces of each trench. The trenches are then filled with a P type polysilicon, the first nitride layer removed, and a Schottky barrier metal applied to the substrate surface.Type: GrantFiled: October 11, 2007Date of Patent: March 27, 2012Assignee: International Rectifier CorporationInventor: Davide Chiola
-
Patent number: 8110489Abstract: Embodiments of the invention described herein generally provide methods and apparatuses for forming cobalt silicide layers, metallic cobalt layers, and other cobalt-containing materials. In one embodiment, a method for forming a cobalt silicide containing material on a substrate is provided which includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, depositing a metallic cobalt material on the cobalt silicide material, and depositing a metallic contact material on the substrate. In another embodiment, a method includes exposing a substrate to at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material on the silicon-containing surface, expose the substrate to an annealing process, depositing a barrier material on the cobalt silicide material, and depositing a metallic contact material on the barrier material.Type: GrantFiled: April 11, 2007Date of Patent: February 7, 2012Assignee: Applied Materials, Inc.Inventors: Seshadri Ganguli, Schubert S. Chu, Mei Chang, Sang-Ho Yu, Kevin Moraes, See-Eng Phan
-
Patent number: 8105946Abstract: A method of forming the conductive lines of a semiconductor memory device comprises forming a first polysilicon layer over an underlying layer, forming first polysilicon patterns by patterning the first polysilicon layer, filling the space between the first polysilicon patterns with an insulating layer, etching a top portion of the first polysilicon patterns to form recess regions, forming spacers on the sidewalls of the recess regions, filling the recess regions with a second polysilicon layer to form second polysilicon patterns, and performing a metal silicidation process to convert the second polysilicon patterns to metal silicide patterns.Type: GrantFiled: December 17, 2010Date of Patent: January 31, 2012Assignee: Hynix Semiconductor Inc.Inventor: Won Sic Woo
-
Patent number: 8101511Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.Type: GrantFiled: May 6, 2010Date of Patent: January 24, 2012Assignee: Intersil Americas Inc.Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
-
Publication number: 20120009771Abstract: A method for formation of a segregated interfacial dopant layer at a junction between a semiconductor material and a silicide layer includes depositing a doped metal layer over the semiconductor material; annealing the doped metal layer and the semiconductor material, wherein the anneal causes a portion of the doped metal layer and a portion of the semiconductor material to react to form the silicide layer on the semiconductor material, and wherein the anneal further causes the segregated interfacial dopant layer to form between the semiconductor material and the silicide layer, the segregated interfacial dopant layer comprising dopants from the doped metal layer; and removing an unreacted portion of the doped metal layer from the silicide layer.Type: ApplicationFiled: July 9, 2010Publication date: January 12, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Cyril Cabral, JR., John M. Cotte, Dinesh R. Koli, Laura L. Kosbar, Mahadevaiyer Krishnan, Christian Lavoie, Stephen M. Rossnagel, Zhen Zhang
-
Patent number: 8084342Abstract: A CMOS device and method of manufacture is provided for producing an integrated circuit that is not susceptible to various soft errors such as single-event upsets, multi-bit upsets or single-event latchup. The CMOS device and method utilizes a new and novel well architecture in conjunction with metal source/drain electrodes to eliminate soft errors. In one embodiment, the CMOS device uses a first metal source/drain material for the NMOS device and a second metal source/drain material for the PMOS device. The CMOS device further uses a multi-layered well-structure with a shallow N-well and a buried P-well for the PMOS device and a shallow P-well and a buried N-well for the NMOS device.Type: GrantFiled: October 20, 2010Date of Patent: December 27, 2011Assignee: Avolare 2, LLCInventors: John P. Snyder, John M. Larson
-
Patent number: 8071482Abstract: A manufacturing method for a silicon carbide semiconductor device is disclosed. It includes an etching method in which an Al film and Ni film are laid on an SiC wafer in this order and wet-etched, whereby a two-layer etching mask is formed in which Ni film portions overhang Al film portions. Mesa grooves are formed by dry etching by using this etching mask.Type: GrantFiled: May 20, 2008Date of Patent: December 6, 2011Assignee: Fuji Electric Co., Ltd.Inventor: Yasuyuki Kawada
-
Patent number: 8043912Abstract: A semiconductor device is provided with a semiconductor substrate comprising element isolation regions and an element region surrounded by the element isolation regions, a first polysilicon layer formed in the element region of the semiconductor substrate, an element-isolating insulation film formed in the element isolation region of the semiconductor substrate, a second polysilicon layer formed on the element-isolating insulation film, a first silicide layer formed on the first polysilicon layer. And the device further comprising a second silicide layer formed on the second polysilicon layer and being thicker than the first silicide layer.Type: GrantFiled: October 25, 2007Date of Patent: October 25, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Satoshi Matsuda
-
Patent number: 8012863Abstract: A transistor with a gate stack having a metal electrode and a method for forming the same. The method includes providing a structure which includes (a) a substrate, (b) a gate dielectric layer on the substrate, and (c) a gate layer on the gate dielectric layer. The gate layer includes an oxidized layer. The oxidized layer comprises an oxidized material. Then, the structure is exposed to a first plasma resulting in removal of oxygen atoms from molecules of the oxidized material.Type: GrantFiled: January 6, 2006Date of Patent: September 6, 2011Assignee: International Business Machines CorporationInventors: Michael Patrick Chudzik, Paul Daniel Kirsch
-
Patent number: 8008177Abstract: A method for fabricating a semiconductor device is provided using a nickel salicide process. The method includes forming a gate pattern and a source/drain region on a silicon substrate, forming a Ni-based metal layer for silicide on the silicon substrate where the gate pattern and the source/drain region are formed, and forming an N-rich titanium nitride layer on the Ni-based metal layer for silicide. Next, a thermal treatment is applied to the silicon substrate where the Ni-based metal layer for silicide and the N-rich titanium nitride layer are formed, thereby forming a nickel silicide on each of the gate pattern and the source/drain region. Then, the Ni-based metal layer for silicide and the N-rich titanium nitride layer are selectively removed to expose a top portion of a nickel silicide layer formed on the gate pattern and the source/drain region.Type: GrantFiled: July 17, 2003Date of Patent: August 30, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Min-chul San, Ja-hum Ku, Chul-sung Kim, Kwan-jong Roh, Min-joo Kim
-
Patent number: 7989892Abstract: A gate structure can include a polysilicon layer, a metal layer on the polysilicon layer, a metal silicide nitride layer on the metal layer and a silicon nitride mask on the metal silicide nitride layer.Type: GrantFiled: June 12, 2009Date of Patent: August 2, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Jong-Min Baek, Jae-Hwa Park, Gil-Heyun Choi, Byung-Hee Kim, Byung-Hak Lee, Hee-Sook Park
-
Patent number: 7985668Abstract: Generally, the present disclosure is directed to a method of removing “weakened” areas of a metal silicide layer during silicide layer formation, thereby reducing the likelihood that material defects might occur during subsequent device manufacturing. One illustrative embodiment includes depositing a first layer of a refractory metal on a surface of a silicon-containing material, and performing first and second heating processes. The method further comprises performing a cleaning process, depositing a second layer of the refractory metal above the silicon-containing material, and performing a third heating process.Type: GrantFiled: November 17, 2010Date of Patent: July 26, 2011Assignee: Globalfoundries Inc.Inventors: Ralf Richter, Torsten Huisinga, Jens Heinrich
-
Patent number: 7923362Abstract: A method for manufacturing a metal-semiconductor contact in semiconductor Components is disclosed. There is a relatively high risk of contamination in the course of metal depositions in prior-art methods. In the disclosed method, the actual metal -semiconductor or Schottky contact is produced only after the application of a protective layer system, as a result of which it is possible to use any metals, particularly platinum, without the risk of contamination.Type: GrantFiled: June 6, 2006Date of Patent: April 12, 2011Assignee: TELEFUNKEN Semiconductors GmbH & Co. KGInventors: Franz Dietz, Volker Dudek, Tobias Florian, Michael Graf
-
Patent number: 7902055Abstract: An embodiment of the invention is a Schottky diode 22 having a semiconductor substrate 3, a first metal 24, a barrier layer 26, and second metal 28. Another embodiment of the invention is a method of manufacturing a Schottky diode 22 that includes providing a semiconductor substrate 3, forming a barrier layer 26 over the semiconductor substrate 3, forming a first metal layer 23 over the semiconductor substrate 3, annealing the semiconductor substrate 3 to form areas 24 of reacted first metal and areas 23 of un-reacted first metal, and removing selected areas 23 of the un-reacted first metal. The method further includes forming a second metal layer 30 over the semiconductor substrate 3 and annealing the semiconductor substrate 3 to form areas 28 of reacted second metal and areas 30 of un-reacted second metal.Type: GrantFiled: March 30, 2005Date of Patent: March 8, 2011Assignee: Texas Instruments IncoproratedInventors: Richard B. Irwin, Tony T. Phan, Hong-Ryong Kim, Ming-Yeh Chuang, Jennifer S. Dumin, Patrick J. Jones, Fredric D. Bailey
-
Patent number: 7879705Abstract: A method is set forth of forming an ohmic electrode having good characteristics on a SiC semiconductor layer. In the method, a Ti-layer and an Al-layer are formed on a surface of the SiC substrate. The SiC substrate having the Ti-layer and the Al-layer is maintained at a temperature that is higher than or equal to a first temperature and lower than a second temperature until all Ti in the Ti-layer has reacted with Al. The first temperature is the minimum temperature of a temperature zone at which the Ti reacts with the Al to form Al3Ti, and the second temperature is the minimum temperature of a temperature zone at which the Al3Ti reacts with SiC to form Ti3SiC2. As a result of this maintaining of temperature step, an Al3Ti-layer is formed on the surface of the SiC substrate. The method also comprises further heating the SiC substrate having the Al3Ti-layer to a temperature that is higher than the second temperature.Type: GrantFiled: September 21, 2007Date of Patent: February 1, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventors: Akira Kawahashi, Masahiro Sugimoto, Akinori Seki, Masakatsu Maeda, Yasuo Takahashi
-
Patent number: 7851307Abstract: Methods and devices are disclosed, such as those involving forming a charge trap for, e.g., a memory device, which can include flash memory cells. A substrate is exposed to temporally-separated pulses of a titanium source material, a strontium source material, and an oxygen source material capable of forming an oxide with the titanium source material and the strontium source material to form the charge trapping layer on the substrate.Type: GrantFiled: August 17, 2007Date of Patent: December 14, 2010Assignee: Micron Technology, Inc.Inventors: Nirmal Ramaswamy, Gurtej Sandhu, Bhaskar Srinivasan, John Smythe