Abstract: The present invention relates to methods and systems for isolating non-rectangular shaped optical integrated circuits formed on a brittle substrate. For example, a brittle substrate comprising a plurality of non-rectangular shaped optical integrated circuits is provided on a water jet cutting system. In the cutting head of the water jet cutting system, a mixture of water and abrasive particles is wet injected into a supply of a high pressure water stream. The non-rectangular shaped optical integrated circuits are isolated by water jet cutting in a curvilinear manner without fatally damaging adjacent optical integrated circuits.
Abstract: A gantry is constrained to move around the walls of a cylindrical, concrete tank. A rotating, high pressure water spray nozzle is mounted to a moveable platform on the gantry and connected to a source of water at a pressure of over 20,000 psi. The distance between the nozzle and an opposing surface of the wall of the tank is selected so the nozzle can remove the surface of the concrete and produce a selected surface roughness. The platform is moved vertically, with the gantry moving around the tank, so the surface of the concrete is systematically removed and roughened. A shotcrete or gunnite sprayer is then mounted to the platform, and the roughened surface sprayed with shotcrete or gunnite which sticks to the roughened surface. A tensioning head is then mounted to the platform, and wires or cables are tensioned as they are wrapped around the walls.
Type:
Grant
Filed:
January 11, 2001
Date of Patent:
January 13, 2004
Assignee:
DYK Incorporated
Inventors:
Gordon B. Bristol, Robert A. Grogan, Timothy M. Mathews, Stephen T. Rader, James L. Rogers
Abstract: Abrasive shot is injected into a carrier stream of compressed gas. The shot and gas stream are directed against a pliant coating. The compressed gas expands at the coating for cooling thereof which decreases coating resiliency for enhancing stripping thereof by the impinging abrasive shot.
Abstract: A chip for holding DNA samples and method of making same by masking a silicon substrate for spaced apart wells with a photoabrasive masking material, blasting the masked surface with microabrasive beads to produce roughened wells in the substrate and forming an oxide coating over the masked and roughened surface of the substrate.
Abstract: An unexpanded perlite ore polishing composition is shown. The composition comprises base material having grains of unexpanded perlite ore of a selected distribution of particle sizes which undergo fracturing of the grains as a function of an abrasive force applied to the base material. The selected distribution of particle sizes includes a significant volume of grains of unexpanded perlite ore having a particle size of less than about 245 &mgr;m. The base material is responsive to an abrasive force being applied thereto during polishing resulting in continued fracturing of the grains of unexpanded perlite ore to yield a final polishing composition having a sufficiently low level of abrasiveness under said abrasive force making it suitable for use in polishing. Methods for preparing and using the unexpanded perlite ore polishing composition are also shown.
Abstract: A method of forming an ink fill slot in a silicon substrate of an ink-jet printhead includes fluidizing abrasive particulate material with a first gas within a storage container, combining the gas fluidized abrasive particulate material with a stream of a second gas to provide a stream of the gas fluidized abrasive particulate material, and directing the stream of the gas fluidized abrasive particulate material at the silicon substrate to form the ink fill slot in the silicon substrate.
Type:
Grant
Filed:
December 17, 2001
Date of Patent:
September 23, 2003
Assignee:
Hewlett-Packard Development Company, L.P.
Abstract: A method of abrading a portion of a silicon substrate includes fluidizing abrasive particulate material with a first gas within a storage container, combining the gas fluidized abrasive particulate material with a stream of a second gas to provide a stream of the gas fluidized abrasive particulate material, and directing the stream of the gas fluidized abrasive particulate material at the silicon substrate to abrade the portion of the silicon substrate.
Type:
Grant
Filed:
December 17, 2001
Date of Patent:
September 23, 2003
Assignee:
Hewlett-Packard Development Company, L.P.
Abstract: An improved method and apparatus for media blasting a workpiece 20 is described. The media blasting apparatus 10 of the present invention includes a media reclaim and recycle system 35, which reduces media wastage, advantageously improves peening of a workpiece 20 and provides better coverage of the workpiece surface. The media blasting apparatus 10 also includes a pressure chamber 90 for creating a media blast stream, a media metering valve 105 for controlling media flow rate and a powered part hold-down apparatus 130 for holding the workpiece 20 in a predetermined position during a blasting operation. The controlled media flow rate in combination with the powered hold down of the workpiece 20 ensures even and thorough peening of a workpiece surface.
Abstract: A method of removing a coating, such as paint, varnish, biological growth or grime, from a surface, the method comprising selecting a suitable particulate solid having a particular, size of from 150-250 mm and a fluid carrier to form a spray mixture and spraying the mixture as a jet spray so as to impact and at least partially remove the coating. The hardness of the particulate solid is less than 8.0 on the Moh scale. The pressure applied to the spray mixture to generate the spray is from 3x105 to 1.5x106 Nm−2. An apparatus comprising a blasting pot (1) and a compressor (2) to generate the spray mixture and propel it from a nozzle (5) is also disclosed. Heating may be applied to the carrier, either prior to or when mixing with the particulate solid.
Abstract: An abrasivejet cutting head is disclosed for use in an abrasivejet cutting system. The cutting head includes a replaceable generally cylindrical insert member having a fluid passageway aligned with the passageway of the housing. A waterjet-forming orifice member is supported within the insert in axial alignment with the abrasivejet discharge nozzle located at the downstream end of the cutting head. The insert is locked into the cutting head by the sleeve of an abrasive-carrying conduit, and provides the mixing region in which the abrasive is entrained into the waterjet. By making the jet-forming orifice and mixing region an integral unit, the mixing chamber is conveniently changed every time the wear in the jet-forming orifice requires an orifice change to maintain high cutting efficiency, while adding virtually no cost in additional components since it merely requires a slightly elongated insert than would otherwise be necessary.
Abstract: The invention provides a method for producing a metal plate with an enhanced surface. More particularly, the method of the invention produces a metal press plate with a roughened matte surface having a substantially uniform and raised surface topography for use in the manufacture of laminated and multilayer materials used to fabricate circuit boards and other electronic assemblies. The method of the invention also cleans and reprocesses the roughened matte surface of the metal press plate after use in laminate and multilayer materials production to reestablish the substantially uniform and raised surface topography. The invention also provides a metal press plate produced according to the method of the invention.
Type:
Grant
Filed:
September 21, 2000
Date of Patent:
July 1, 2003
Assignee:
Polyclad Laminates, Inc.
Inventors:
Scott M. Benedict, Edward Carignan, Mark Ferman, Matthew Lampron
Abstract: A substrate treating apparatus includes a cleaning medium feed mechanism having a discharge nozzle for discharging warm water as a cleaning medium toward a substrate. The discharge nozzle is reciprocable between a position opposed to the center of rotation of the substrate held and rotated by a spin chuck and a position opposed to the edge of the substrate. The discharge nozzle is connected to a deionized water source through a solenoid valve and a heater. Deionized water fed from the deionized water source is heated warm and supplied to the substrate through the discharge nozzle.
Abstract: A method for cleaning an inorganic surface of a virgin semiconductor processing component by directing a flow of frozen CO2 pellets upon the surface. After cleaning, the component is packaged for transport and installation into a furnace used for processing semiconductor wafers.
Type:
Grant
Filed:
July 2, 2001
Date of Patent:
May 20, 2003
Assignee:
Saint-Gobain Ceramics and Plastics, Inc.
Abstract: An abrasive fluid jet cutting composition, method and apparatus for cutting an object from a sheet. In one embodiment, a fluid jet stream is directed against a glass sheet to cut a disk substrate for use in a data storage device. An abrasive slurry is delivered to a fluid jet head from a slurry tank. The slurry is formed by mixing water, abrasive particles, a surfactant or surfactants, and an acid or base. The head also receives a pressurized fluid from a fluid pump. The abrasive slurry and the pressurized fluid are mixed in the head to form the fluid jet stream. Preferably, the abrasive particles are 8-64 microns and may include recycled scrap. The slurry may also contain polishing particles that are smaller than the abrasive particles to affect polishing. In addition to reducing surface tension, the surfactant may cause the abrasive particles to flocculate or disperse.
Type:
Application
Filed:
November 9, 2001
Publication date:
May 15, 2003
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Karl Robert Erickson, Dennis L. Fox, Mark Arthur Halbakken, Douglas Howard Piltingsrud
Abstract: A method of cleaning a component or a unit of an image forming apparatus which has been contaminated by a toner used for image forming includes the steps of blasting a target surface of the component or unit which has been contaminated by the toner with dry ice, and supplying a detergent to the target surface when the target surface is blasted with dry ice. In addition, a type or concentration of the detergent is adjusted in accordance with a type of the toner used for image forming.
Abstract: A method for cleaning a semiconductor processing component is provided. The process calls for directing a stream of cleaning media at a surface of the component, the cleaning media including zirconia. After cleaning with the cleaning media, frozen CO2 (dry ice) pellets may be directed at the surface to further clean the component.
Abstract: A sandblasting mask device for performing sandblasting processes on wood objects is disclosed. The mask device includes a base and a mask cover. The base has a fixture for fixing a wood object that has a target surface to be worked on. The mask cover is removably fixed on the base. The mask cover includes a mask panel, which contains at least one sandblasting opening of a predetermined shape. When the mask cover is fixed on the base, the wood object is tightly clamped between the mask cover and the base, and the mask panel of the mask cover is closely attached to the target surface of the object. The sandblasting opening of the mask panel will expose a predetermined portion of the target surface of the object for performing the sandblasting process.
Type:
Grant
Filed:
January 22, 2002
Date of Patent:
March 18, 2003
Assignee:
North America Intellectual Property Corporation
Abstract: The present invention provides a cleaning method in accordance with a degree of soiling and a type of contaminant on a surface to be cleaned of a cleaning target. In the method of cleaning a cleaning target, such as an electrical component, with dry ice, during a process of blasting the dry ice toward the surface to be cleaned from a location where the dry ice is stored, a size of the dry ice is adjusted, so cleaning is performed while a cleaning performance of the dry ice is changed in accordance with the type of soiling or contaminant on the surface to be cleaned.
Abstract: A particle blast apparatus includes a hopper assembly which is mechanically isolated from the rest of the particle blast system. Energy is imparted to the hopper by an impulse assembly, which preferably is mounted directly to the hopper. The hopper is mounted to the apparatus on a slide assembly which allows the hopper to be moved to a second position at which particles may be discharged from the hopper exit away from the particle feeder.
Abstract: Abrasive shot is injected into a carrier stream of compressed gas. The shot and gas stream are directed against a plaint coating. The compressed gas expands at the coating for cooling thereof which decreases coating resiliency for enhancing stripping thereof by the impinging abrasive shot.
Abstract: A method for cleaning ceramic workpieces such as SiC boats used in semiconductor fabrication is disclosed. The method comprises washing a virgin or used ceramic workpiece with a strong acid and then using a pelletized CO2 cleaning process on the acid-washed component. The inventive method has been found to produce a workpiece having a very low level of metallic and particulate contaminants on its surface.
Abstract: A device for cleaning stock material, such as wire, rod, or tubing, comprises two separate blast chambers, each blast chamber adapted for receiving abrasive projected by two blast wheels. Each blast wheel creates a blast zone in the blast chamber through which the stock material passes. The blast zones are oriented to provide a surface treatment on all or a portion of the exterior surface of the stock material.
Abstract: The invention provides an apparatus and method for partitioning continuously produced ice particulates and delivering them at a high velocity onto a substrate for treating the surface of the substrate. The apparatus includes a refrigerated curved surface that is brought into contact with water to form a thin, substantially uniform, ice sheet on the surface. This ice sheet is of such thickness as to contain stresses so that the sheet is predisposed to fracture into particulates. A harvesting blade is mounted to intercept a leading edge of the ice sheet and to fragment the ice sheet to produce ice particulates. These ice particulates enter into an inlet where they are fluidized and drawn into a manifold that extends substantially along the length of the harvesting blade. The manifold partitions the particulates into separate delivery tubes where they are ejected from nozzles to the workpiece. The manifold can be created to either evenly or unevenly distribute ice particulates to the delivery tubes.
Abstract: A pressurized delivery system for abrasive particulate material includes a storage container adapted to contain the abrasive particulate material therein, an input pressure line adapted to communicate with a pressurized source, and a fluidizing pressure line communicating with the input pressure line and an inlet opening in the storage container. A back-pressure pressure line communicates with an unoccupied portion of the storage container and an output pressure line. The output pressure line, into which the abrasive particulate material is fed from the storage container, communicates with the input pressure line, the back-pressure pressure line, and an outlet opening of storage container. During operation, pressurized gas is released through the inlet opening and into the storage container such that the abrasive particulate material adjacent the outlet opening is fluidized and maintained flowable so as to achieve consistent flow of the abrasive particulate material through the outlet opening.
Abstract: Methods and apparatus for marring a surface of a fiber optic substrate by sandblasting one or more sides of the substrate during movement of the substrate past one or more sandblasting nozzles to produce a specific illumination pattern. The nozzles may be operated intermittently to produce intermittent light emitting areas along the length of the substrate. Alternatively, the substrate may be moved past the nozzles at a variable speed, or the pressure of the nozzles or spacing of the nozzles from the surface of the substrate may be regulated during movement of the substrate past the nozzles in order to produce a specific illumination pattern. Also, a perforated plate may be placed between the nozzles and substrate in order to produce a specific illumination pattern. After the sandblasting operation, the substrate may be cleaned and cut to desired lengths, and permanently heat formed into any desired shape.
Abstract: The present invention is a superior micro abrasive blasting device (55) with an integral flow control mechanism. Flow control is achieved through the displacement of discharge conduit (10) to control the distance between discharge conduit inlet (12) and mixing chamber second end wall (30). The flow control mechanism provides for the continuous pressurization of the mixing chamber (23) to yield instantaneous flow start-up response and instantaneous flow shut-off response.
Abstract: In a high accuracy blast processing method of the present invention which is a blast processing method for processing a substrate by injecting an injection material from a nozzle by compressed air, injection of the injection material is either intermittent injection for repeating the injection and injection stop at short intervals or a combination of the intermittent injection and continuous injection. By doing so, even if a processing progresses, processing efficiency is not deteriorated and a non-processing target region is not damaged even without using a mask. A high accuracy blast processing apparatus of the present invention consists of a nozzle unit forcedly feeding the injection material to the nozzle by the compressed air and a work table moving the substrate horizontally and vertically. A solenoid valve for injecting and stopping the injection material and a control unit outputting an intermittent operating signal to the solenoid valve are connected to the nozzle unit.
Abstract: A device for cleaning the inner walls of vulcanizing molds that are divided into upper and lower partial molds by means of a blasting device/nozzle and a manipulating device, with the blasting device and the manipulating device being accommodated and encapsulated in an isolation hood that is provided with an adapter ring, and with the isolation hood being suspended on a movable boom and connectable to the outer circumference of a partial mold by means of the adapter ring.
Type:
Grant
Filed:
August 2, 2000
Date of Patent:
June 18, 2002
Assignee:
Continental Aktiengesellschaft
Inventors:
Nhu Vinh Nguyen, Martin Gonschior, Robert Pohlmann, Heinz Köhler, Marc Rapin, Karsten Wenzel, Leo Pontzen, Heinrich Schnell, Holger Brandt, Wolfgang Kuhr
Abstract: The invention relates to a method and device for treating, especially cleaning, abrasive clearing or removing of coatings (1), graffiti or other superficial soiling on parts, work pieces or surfaces (3). A blasting means (2) is gravity fed from a holding container (11) to a carrying air stream (5) which is transported inside a hose guiding system constructed with outgoing and incoming lines. The blasting means are fed through said carrying air flow by low pressure, and, in a blasting chamber (25), are blasted against the surface (3) which is to be treated through a blasting lance (22). From the blasting chamber, said blasting means are transported back to the carrying air stream (5) in such a way that the blasting means (2) are circulated. The acceleration of the blasting means is essentially generated by the low pressure applied on the blasting chamber (25) and by increasing the blasting velocity in an acceleration section (L) by reducing the diameter of the outgoing line in the acceleration section (L).
Abstract: A water pump is connected to a mixer so as to blast high pressure water at a high speed in the mixer. The air and powder are supplied to the blast flow of the high pressure water through an air supply pipe and a powder supply pipe respectively so that a mixture flow composed of the gas, the droplet-like fluid, and powder is formed. The mixture flow is blasted from a nozzle at a high speed so as to be sprayed onto a surface to be treated. Thus, impact actions held by the powder and the droplet-like fluid as cleansing/scraping media are given to the surface to be treated. Thus, a cleansing/scraping operation is achieved. Then, if the fluid, gas or the like supplied to the mixer is heated, the cleansing/scraping operation can be further accelerated.
Abstract: An constant abrasive feeder of abrasive grains M is formed of a reservoir supply section 20 having a reservoir tank 21 and a buffer tank 31, a stirring hopper 40 for stirring abrasive grains S, and a vibration feeder 60 for supplying the abrasive grains S to an abrasive jet nozzle 5. The abrasive grains S recovered in a cyclone 1 is reserved in the reservoir tank 21 and the buffer tank 31 by a constant quantity, the abrasive grains S is sent from the buffer tank 31 and reserved in a reservoir 43, which is stirred by stirring bars 50, 51 and sent to a supply guide 45. Then, the abrasive grains S is sequentially supplied to a feeder body 61 of the vibration feeder 60 from an opening formed in the supply guide 45.
Abstract: With the blasting apparatus in which the injection nozzle is disposed to inject the blast material against the work pieces from the outside of the tubular barrel formed of the mesh net for accommodation of the work pieces and rotatable about the center axis, the work pieces can be stirred homogenously and efficiently without excessive occurrence of the collision of the work pieces against one another and without occurrence of the collision of the work pieces against one another and with a strong shock force. Therefore, the treating efficiency is enhanced and, it is possible to inhibit the occurrence of the cracking and breaking of the work pieces. Further, with the blasting apparatus in which the tubular barrel is supported circumferentially outside the center axis of the support member rotatable about the center axis, it is possible to more inhibit the occurrence of the cracking and breaking of the work pieces.
Abstract: The invention is relative to an electrode for gas evolution in electrolytic and electrometallurgical industrial applications, made of a metal substrate having a surface morphology characterized by a combination of micro-roughness and macro-roughness which favors high adherence of a superficial catalytic layer in order to prevent detachment of the same and passivation of the substrate even under critical operating conditions.
Type:
Application
Filed:
May 16, 2001
Publication date:
December 20, 2001
Inventors:
Ruben Ornelas Jacobo, Giuseppe Faita, Lawrence Gestaut, Corrado Mojana
Abstract: A ultra fine particle film forming apparatus is provided which is capable of forming a ultra fine particle film which has ultra fine particles sufficiently bonded together, sufficient density, flat surface and uniform density. A planarized ultra fine particle film forming method for forming a planarized ultra fine particle film from a deposited film of ultra fine particles formed by supplying the ultra fine particles to a substrate, the method comprising one or more of a planarizing step of planarizing a surface of the deposited film of the ultra fine particles supplied to the substrate.
Abstract: An improved high-capacity apparatus for rapidly pressure treating a large surface area, such as the hull of a cargo ship or a large storage tank, using high-pressure spray. The apparatus conforms to the surface to be treated and provides the treating power of multiple rotating nozzles.
Abstract: A sanding machine with a hand-held sanding unit, with interchangeable heads, connected to a base unit, containing three motors, one to provide suction of debris back through a hose, which has an inner hose containing a driver cable and self lubricating material, which allows the transportation of debris back to the base unit collection unit, connecting the base unit and hand-held unit, a second motor to power a driver cable which turns the hand-held unit, a third motor which is encased inside a collection unit, inside the base unit, which generates electromagnetic vibrations causing filters to release accumulated debris by the interaction of an inner and outer spring.
Abstract: A method for cleaning ceramic workpieces such as SiC boats used in semiconductor fabrication is disclosed. The method comprises washing a virgin or used ceramic workpiece with a strong acid and then using a pelleted CO2 cleaning process on the acid-washed component. The inventive method has been found to produce a workpiece having a very low level of metallic and particulate contaminants on its surface.
Type:
Grant
Filed:
December 22, 1999
Date of Patent:
October 2, 2001
Assignee:
Saint-Gobain Ceramics and Plastics, Inc.
Abstract: A blast nozzle apparatus which includes a circular inlet to an entry portion with converging top and bottom surfaces and diverging side surfaces which terminate in a throat portion and an outlet portion including diverging side surfaces and top and bottom surfaces terminating in a substantially rectangular outlet opening.
Abstract: A method and apparatus for producing a high-velocity particle stream at low cost through multi-staged acceleration using different media in each stage, the particles are accelerated to a subsonic velocity (with respect to the velocity of sound in air) using one or more jets of gas at low cost, then further accelerated to a higher velocity using jets of water. Additionally, to enhance particle acceleration, a vortex motion is created, and the particles introduced into the fluid having vortex motion, thereby enhancing the delivery of particles to the target.
Type:
Grant
Filed:
August 16, 2000
Date of Patent:
September 4, 2001
Assignee:
Flow International Corporation
Inventors:
Y. H. Michael Pao, Peter L. Madonna, Ross T. Coogan
Abstract: A workpiece surface is treated in a cleaning, polishing or milling or similar surface treatment operation by a waterjet head. The head is located near the workpiece surface with its axis intersecting the workpiece surface and is held so that it dies not rotate about its axis. The waterjet head is driven so that its axis rapidly and repetitively moves in a closed path. The waterjet head is mounted in an eccentric member and the closed path is a surface of revolution. In one arrangement, the closed path described by the axis of the waterjet head is a circular cylinder. In another arrangement, the waterjet head is pivotally mounted and resiliently supported so that the closed path is conical.
Abstract: An improved method and apparatus for media blasting a workpiece 20 is described. The media blasting apparatus 10 of the present invention includes a media reclaim and recycle system 35 , which reduces media wastage, advantageously improves peening of a workpiece 20 and provides better coverage of the workpiece surface. The media blasting apparatus 10 also includes a pressure chamber 90 for creating a media blast stream, a media metering valve 105 for controlling media flow rate and a powered part hold-down apparatus 130 for holding the workpiece 20 in a predetermined position during a blasting operation. The controlled media flow rate in combination with the powered hold down of the workpiece 20 ensures even and thorough peening of a workpiece surface.
Abstract: The apparatus for cleaning a substrate comprises cleaning chambers each of which is disposed on a respective side with reference to a clearance therebetween. The apparatus further comprises a plurality of chucks which clamp the substrate to be cleaned and move the substrate between the inside the clearance between the cleaning chambers and the outside thereof, a pair of screws each of which is disposed to be rotatable and close to a respective surface of the substrate when the substrate is introduced into the clearance between the cleaning chambers, liquid supplying nozzles which supply the screws with pure water or mixed liquid including pure water and medicinal liquid, and snow ice supplying nozzles which supply the screws with snow ice having a predetermined granular diameter. The opposite surfaces of the substrate are cleaned by rotating pure water or mixed liquid including pure water and medicinal liquid by means of the screws to press it against the opposite surfaces of the substrate.
Abstract: An automated system for preparing weld land areas of panels to be welded to each other is disclosed. Generally, the system of the present invention includes a system for cleaning contaminants from such weld land areas. In one embodiment, the system for cleaning contaminants includes a system for blasting carbon dioxide granules or pellets against the weld land areas. In instances where the panels comprise aluminum, the system may further include a system for removing at least a first layer of aluminum oxide from the weld land areas. In one embodiment, the system for removing includes a system for moving a plurality of sheets of sand paper over the weld land areas. For purposes of moving the panels relative to the system for cleaning contaminants and/or the system for removing at least the first layer of aluminum oxide, the automated system of the present invention may further include a shuttle system for supporting and moving at least the first panel therethrough.
Type:
Grant
Filed:
August 17, 1999
Date of Patent:
April 10, 2001
Assignee:
Lockheed Martin Corporation
Inventors:
John A. Johnson, Richard K. Hansen, Brent K. Christner
Abstract: An apparatus for removing surface coverings comprises a feeder device capable of providing a supply of dry ice pieces, a pellet-size reducer operatively associated with the feeder device to receive dry ice pieces from said feeder device and reduce the size of the dry ice pieces to nominal diameters less than 1 mm, and a blast gun connected to the pellet-size reducer and adapted for operative communication with an associated supply of flowing gas. The blast gun incorporates a venturi to entrain the reduced-sized dry ice pieces into the flowing gas and directs the flowing gas and dry ice pieces to an associated surface covering to be removed. Preferably, the pellet-size reducer is a knife- or disc-type grinding mill. In one embodiment, the grinding mill is adjustable for controlling the size of the dry ice particles supplied to the blast gun. The apparatus preferably includes a humidity controller to suppress static charges caused by the interaction of the dry ice particles with the surface being blasted.
Abstract: An apparatus for the introduction of a blasting media into a high velocity, high pressure fluid stream. In one embodiment of the present invention a dual chambered pressure vessel has a pair of auxiliary actuated pop-up valves that are cycled at a high rate to provide continuous delivery of the blasting media to the work surface. The pressure vessel having a blasting media flow control valve coupled with the pressure vessel for controlling the flow of blasting media into the vessel.
Abstract: An apparatus and method that enhances removal of contaminating particles from surfaces of a non-electrostatically sensitive components that are cleaned using a carbon dioxide cleaning spray. The apparatus includes a programmable power supply that is connected to ground and to the non-electrostatically sensitive component. The surface charge of the component is determined by cleaning the surface without adding any voltage or charge bias to the component. Then the surface is reversed-biased with a voltage having the opposite polarity by a large amount using the programmable power supply. The surface is then cleaned a second time, which removes the contaminating particles that were bound to the surface by electrostatic forces generated during the first cleaning. Thus, reversing the polarity of the charge on the surface that is to be cleaned removes the strong attraction between the contaminating particles and the surface and enhances removal of the contaminating particles from the surface.
Abstract: A blast surface treating machine utilizes a control cage featuring an inlet and an outlet that is positioned with its outlet within the central space of the machine blast wheel. A hopper supplies particulate material to the control cage inlet. A rotating screw conveyor transports the particulate material through the control cage. The screw conveyor also forces the particulate material out of the control cage outlet where it is picked up by the rotating blast wheel. The control cage is oscillated about the axis of the blast wheel to provide a widened blast pattern upon the surface being treated. The blast wheel, blast wheel housing, control cage and screw conveyor are constructed of manganese or hardened steel to provide the an anti-shattering construction in the event that a bolt or other foreign object falls into the hopper.
Abstract: A waterjet head is resiliently supported at one location along its axis and is pivotally supported at another, axially spaced location. The head is driven in a pivoting, oscillating manner by a drive system including a rotary motor and an eccentric. The outlet nozzle of the waterjet head pivots in an orbital path so that the UHP liquid or liquid/abrasive stream discharged from the nozzle describes an orbital path on an adjacent workpiece surface, enabling the stream to carry out a uniform surface treatment operation such as cleaning, polishing or milling without damaging the workpiece surface.
Abstract: A method of bonding together metallic glass laminations to form a stack and thereafter shaping the stack, for example, by cutting, to form a bulk object such as a wound stator or rotor of an electric motor. Metallic glass is an amorphous ferromagnetic material used in the construction of electrical equipment to reduce core losses. The method involves coating individual laminations of metallic glass with a temperature resistant, non-gas producing metal bonding agent, stacking the coated laminations, applying a pressure to the stacked laminations such that the bonding agent does not exude from between the laminations, allowing the bonding agent to cure, and thereafter shaping the stacked laminations as required. In some cases, temperature resistant wiring and insulation are fitted to the shaped laminations and heated to a temperature sufficient to anneal the metallic glass. The laminations are shaped by cutting with a mixture of fluent material and abrasive material emitted from a nozzle at high pressure.
Type:
Grant
Filed:
December 20, 1996
Date of Patent:
August 22, 2000
Assignee:
Glassy Metal Technologies Limited
Inventors:
Tadeusz Rybak, Peter Georgopolos, Andrew Conroy