Homodyne (i.e., Zero Beat Or Synchrodyne Reception) Patents (Class 455/324)
  • Patent number: 11722184
    Abstract: The distributed Antenna System for massive MIMO applications, comprises: a plurality of Point of Interface modules connectable to a Baseband Unit and configured for converting a digital data flow coming from the Baseband Unit to RF signals and/or for converting incoming RF signals to a digital data flow to be sent to the Baseband Unit; a plurality of optical modules operatively connected to the plurality of Point of Interface modules and configured for performing an electro-optical conversion of the RF signals; a plurality of Remote Units operatively connected to the optical modules and to a plurality of antennas; in which the optical modules comprises a plurality of uplink paths separated from each other and provided with respective uplink outputs.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: August 8, 2023
    Assignee: Teko Telecom S.r.l.
    Inventors: Massimo Notargiacomo, Lorenzo Minghini
  • Patent number: 11569971
    Abstract: Disclosed is an electronic device including an antenna module including one or more antennas transmitting or receiving a signal in a first frequency band and a second frequency band wirelessly, a first duplexer separating the first frequency band into a first transmission frequency band and a first reception frequency band and adjusting the first reception frequency band, a second duplexer separating the second frequency band into a second transmission frequency band and a second reception frequency band and adjusting the second reception frequency band, and a diplexer including a first terminal electrically connected to the antenna module, a first filter passing the first frequency band, a second terminal electrically connected to the first filter and the first duplexer, a second filter passing the second frequency band, and a third terminal electrically connected to the second filter and the second duplexer.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: January 31, 2023
    Inventors: Dongil Yang, Hanyeop Lee, Hyoseok Na
  • Patent number: 11043929
    Abstract: Embodiments of methods and systems for gain control in a communications device are described. In an embodiment, a method for gain control in a communications device involves detecting a change in an amplification gain that is applied to an analog signal in the communications device and compensating for the change in the amplification gain by manipulating an amplitude of a digital signal that is converted from the analog signal. Other embodiments are also described.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: June 22, 2021
    Assignee: NXP B.V.
    Inventors: Steve Charpentier, Stefan Mendel, Ulrich Andreas Muehlmann, Helmut Kranabenter
  • Patent number: 10862728
    Abstract: The embodiments described herein provide systems and methods for digital correction in low intermediate frequency (IF) receivers. Specifically, the embodiments described herein use digital correction techniques that can correct for signal distortions in low IF receivers caused by I-Q imbalance, including both I-Q magnitude imbalance and I-Q phase imbalance. In general, the embodiments described herein are implemented to at least partially cancel an image of a blocking signal in the complex digital signal. Such a cancellation can be implemented to at least partially cancel an image of blocking signal where that image occurs at or near the intermediate frequency. In one embodiment, a corrector is implemented in a low RF receiver and is configured to receive a complex digital signal that includes an image of a blocking signal. Such a low RF receiver can further include a trainer configured to train the corrector to generate the cancellation signal.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: December 8, 2020
    Assignee: NXP USA, Inc.
    Inventor: Claudio Gustavo Rey
  • Patent number: 10855226
    Abstract: Proposed is related to a quadrature passive mixer and a frequency down-converter for enhancing an input referred second-order intercept point (IIP2). More particularly, proposed is related to a quadrature passive mixer and a frequency down-converter for enhancing the IIP2 capable of improving the IIP2 by reducing a mismatch component of a mixer block used for frequency downconversion of a wireless communication system. Here, the frequency down-converter for improving the IIP2 according to the embodiment of the present invention includes an RF quadrature signal generator, an LO IQ signal generator, a 25% LO signal generator, an LO buffer, an I-quadrature mixer, and a Q-quadrature mixer. In addition, the I-quadrature mixer and the Q-quadrature mixer receive RF quadrature signals from the RF quadrature signal generator and selectively downconvert and output the RF quadrature signals according to the 25% duty-cycle LO signals applied from the LO buffer.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: December 1, 2020
    Assignee: THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY
    Inventor: Junghwan Han
  • Patent number: 10804748
    Abstract: Wireless power transmitting equipment may transmit wireless power signals to wireless power receiving equipment. The wireless power transmitting equipment may have a wireless power transmitter coupled to a wireless power transmitting coil. The wireless power receiving equipment may have a wireless power receiving coil coupled to wireless power receiving circuitry such as a rectifier. Foreign object detection coil arrays may be formed from arrays of metal traces on printed circuit substrates that overlap the wireless power transfer coils. Control circuitry in the transmitting equipment and the receiving equipment may monitor signals from foreign object detection circuitry that is coupled to the coil arrays. The foreign object detection circuitry may produce in-phase and quadrature signals that are indicative of whether a foreign object is overlapping a foreign object detection coil array.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 13, 2020
    Assignee: Apple Inc.
    Inventors: Hunter H. Wu, Anlang Lu, Brandon Pierquet, Jouya Jadidian
  • Patent number: 10756751
    Abstract: Various embodiments relate to an analog-to-digital converter (ADC). The ADC may include a first channel including a first delta-sigma loop filter and a second channel including a second delta-sigma loop filter. Each of the first delta-sigma loop filter and the second delta-sigma loop filter may include a first integrator and a quantizer having an input coupled to an output of the first integrator. Each of the first delta-sigma loop filter and the second delta-sigma loop filter may also include a first summing node having an output coupled to an input of the first integrator, and a feedforward path from an input of the delta sigma loop filter to a first input of the first summing node. Further, each of the first delta-sigma loop filter and the second delta-sigma loop filter may include a first feedback path from an output of the quantizer to a second input of the first summing node.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: August 25, 2020
    Assignee: Microchip Technology Incorporated
    Inventors: Omid Rajaee, Rahim Bagheri, Saeed Pourbagheri, Mohammad Mehrjoo, Mahdi Bagheri, Edwin Chiem, Jun Wang
  • Patent number: 10623045
    Abstract: A receiver for reducing a distortion component within a baseband receive signal is provided. The baseband receive signal is derived from a radio frequency signal. The receiver includes a signal generation unit configured to generate a local oscillator signal. The local oscillator signal comprises a first signal component having a first frequency related to a desired signal component of the radio frequency signal, and a second signal component having a second frequency related to a frequency of an interfering signal. The receiver further includes a mixer coupled to the signal generation unit. The mixer is configured to receive the local oscillator signal, wherein the mixer receives the local oscillator signal with the interfering signal.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 14, 2020
    Assignee: Apple Inc.
    Inventor: Stefan Tertinek
  • Patent number: 10484028
    Abstract: One embodiment is directed to a system comprising a first signal path configured to receive a first uplink signal and a second signal path configured to receive a second uplink signal. The system further comprises a correlator communicatively coupled to the first signal path and the second signal path and configured to produce correlation data indicative of any correlation between the first uplink signal and the second uplink signal. The system further comprises a comparator communicatively coupled to the correlator and configured to cause, based on receiving the correlation data, a first variable gain device in the first signal path to adjust a gain of the first uplink signal and a second variable gain device in the second signal path to adjust a gain of the second uplink signal. Other embodiments are disclosed.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: November 19, 2019
    Assignee: CommScope Technologies LLC
    Inventor: Van E. Hanson
  • Patent number: 10237002
    Abstract: A method for determining a calibration parameter of a zero intermediate frequency radio receiver, and a zero intermediate frequency radio receiver are provided. The method includes: obtaining a plurality of sub-band training signals, where a sum of the plurality of sub-band training signals is a fullband training signal; determining a sub-band calibration parameter corresponding to each of the plurality of sub-band training signals; determining a fullband calibration signal according to the plurality of sub-band training signals and the sub-band calibration parameter corresponding to each of the plurality of sub-band training signals; and performing coefficient fitting on the fullband training signal and the fullband calibration signal, to determine a fullband calibration parameter. Because sub-band calibration parameters are obtained according to a plurality of different sub-band training signals, aliasing between an image signal and a training signal is reduced.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: March 19, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Lie Zhang, Jianxiong Bai, Meifeng Li, Qiang Li
  • Patent number: 10224905
    Abstract: A method comprises: receiving a differential input signal; converting the differential input signal into a first transmitted current and a second transmitted current using a common-source differential pair biased by a bias current; launching the first transmitted current and the second transmitted current onto a first port of a differential transmission line; receiving a first received current and a second received current from a second port of the differential transmission line; buffering the first received current and the second received current into a first output current and a second output current, respectively, using a current buffer, wherein the current buffer comprises: a common-gate amplifier pair, a first cross-coupling network configured to provide a negative feedback on the input side of the current buffer to reduce an input impedance of the current buffer, and a second cross-coupling network configured to provide a positive feedback on the output side of the current buffer to boost an output impe
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: March 5, 2019
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventors: Chia-Liang (Leon) Lin, Fei Song
  • Patent number: 10153797
    Abstract: A communication module includes a first switch circuit that receives a first or second received signal and that outputs the first received signal from a first terminal thereof or the second received signal from a second terminal thereof, a first low-noise amplifier that amplifies the first received signal, a second low-noise amplifier that amplifies the second received signal, a first filter circuit disposed between the first switch circuit and the first low-noise amplifier, and a second filter circuit disposed between the first switch circuit and the second low-noise amplifier. The first filter circuit has greater signal loss than the second filter circuit. A signal path from the first terminal of the first switch circuit to the first low-noise amplifier via the first filter circuit has a shorter length than that from the second terminal of the first switch circuit to the second low-noise amplifier via the second filter circuit.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: December 11, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Tomohide Aramata
  • Patent number: 9900037
    Abstract: A single transmission line couples multiple different antennas to corresponding radios using a low-loss signal selector made from a directional radio frequency coupler and a bandpass filter. A combiner receives signals from the antennas and combines those signals onto the one transmission line. The multiple, different-frequency signals on the transmission line are provided to a directional coupler having two outputs. One of the outputs from the directional coupler is routed to a first band pass filter having a pass band corresponding to a radio frequency required by a particular radio.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: February 20, 2018
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Bob C Camello, Jianming Zhang, Benjamin Pokorny
  • Patent number: 9742451
    Abstract: A multiplexer device includes at least one acoustic band pass filter connected to a common port, and a hybrid LC/acoustic filter connected to the common port in parallel with the at least one acoustic band pass filter. Each acoustic band pass filter has a corresponding passband and includes multiple acoustic resonators. The hybrid LC/acoustic filter includes at least one acoustic resonator, and has at least one capacitor replaced by a corresponding at least one acoustic resonator, respectively. Each of the at least one acoustic resonator included in the hybrid LC/acoustic filter provides a stopband response when operating in a corresponding acoustic frequency range, and acts as a capacitor when operating in a corresponding non-acoustic frequency range.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 22, 2017
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Andriy Yatsenko, Hongya Xu, Lueder Elbrecht, Martin Handtmann
  • Patent number: 9621387
    Abstract: An improved quadrature modulator/demodulator (IQMD) may use two-phase quadrature local oscillator (LO) signal generation for generating 0° and 90° LO signals, and an anti-phase combiner/divider (at 0° and 180°) on the RF (radio frequency) port. The IQMD may include mixers (which may be double-balanced passive mixers) that function as downconverters when a signal is incident at their radio frequency (RF) ports, and function as upconverters when signals are incident on their intermediate frequency (IF) ports. Accordingly, the IQMD may function as an I/Q modulator by connecting digital-to-analog converters (DAC) to the differential I and Q ports, and/or it may also function as an I/Q demodulator by connecting analog-to-digital converters (ADC) to the differential I and Q ports.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 11, 2017
    Assignee: NATIONAL INSTRUMENTS CORPORATION
    Inventor: Justin R. Magers
  • Patent number: 9425906
    Abstract: Disclosed herein is a mixer. The mixer may include an MLO switching unit configured to include at least three MLO switches provided in odd numbers and configured to branch a signal from an input stage and to receive respective MLO signals and an LO switching unit configured to include pairs of LO switches connected in parallel to output sides of the MLO switches, wherein each of the pairs of LO switches corresponds to each of the MLO switches. Each of the pairs of LO switches is connected to the positive and negative intermediate frequency (IF) output sides so that the output sides of each of the pairs of LO switches alternately apply output signals to the positive and negative IF output sides when LO signals are sequentially input to each of the pairs of LO switches.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 23, 2016
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Minjae Lee, Dongju Lee
  • Patent number: 9344130
    Abstract: Techniques are described for calibration of a frequency converter for reducing a leakage-based direct current component at an output of the frequency converter. In an apparatus comprising a frequency converter arranged to perform frequency conversion on an input signal, a variable load arranged to act on at least one of an input and an output of the frequency converter, and a detector arranged to detect a direct current component of an output signal of the frequency converter, a plurality of states of the variable load are sequentially set, a variation between the direct current components for each one of the plurality of states of the variable load is observed, and at least one parameter influencing the direct current component of the output signal of the frequency converter is adjusted such that the observed variation is reduced.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: May 17, 2016
    Assignee: BROADCOM CORPORATION
    Inventors: Markus Rudiger Nentwig, Jouni Kristian Kaukovuori
  • Patent number: 9112482
    Abstract: A received is disclosed that is capable of improving reception sensitivity while avoiding an increase in circuit scale. The receiver includes: a multi-phase local oscillation signal generating section that generates a plurality of local oscillation signals of different phases; a phase selection signal generating section that generates a phase selection signal used to select a baseband signal of a predetermined phase based on a detection result of a reception level of a high-frequency signal; and a frequency converter that frequency-converts the high-frequency signal based on the plurality of local oscillation signals, that generates a plurality of baseband signals of different phases, and that selects a baseband signal from among the plurality of baseband signals based on the phase selection signal.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: August 18, 2015
    Assignee: Panasonic Corporation
    Inventors: Masahiro Kumagawa, Yoshifumi Hosokawa
  • Patent number: 9112566
    Abstract: An apparatus and method suppress unwanted signal components in receiving signals during wireless communication. A first circuitry is arranged to process a first signal, a second circuitry is arranged to apply transferred impedance filtering on a second signal according to a filter clock frequency, a signal branching circuitry is arranged to branch an input signal into the first circuitry and the second circuitry, and a signal combining circuitry is arranged to combine the processed first signal and the filtered second signal such that signal components of the first signal processed in the first circuitry and the filtered second signal are in-phase for signal frequencies equal to the filter clock frequency.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 18, 2015
    Assignee: BROADCOM CORPORATION
    Inventor: Markus Rudiger Nentwig
  • Patent number: 9077420
    Abstract: One aspect of the present invention includes an RF including a first mixer receiving an RF signal. A second mixer also receivers the RF signal. A resonant circuit couples to a common input of the first mixer and the second mixer. A second polyphase reactive circuit coupled to an output of the second mixer. In one embodiment, a direct current circuit coupled to the output of the first mixer, injecting direct current into the system. The resonant circuit is set at a resonance frequency such that a voltage across the second polyphase reactive circuit is a predetermined voltage.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 7, 2015
    Assignee: MStar Semiconductor, Inc.
    Inventors: Thomas McKay, Jonathan Gowing
  • Patent number: 9065557
    Abstract: A signal transmission device includes a signal sender that sends first and second transmission signals of mutually opposite phases, a first transmission path over which the first transmission signal is transmitted, a second transmission path over which the second transmission signal is transmitted, and a signal receiver that converts the first transmission signal received from the first transmission path and the second transmission signal received from the second transmission path into an output signal of a single phase. The signal transmission device differentiates each amplitude of the first and second transmission signals sent from the signal sender, and the signal receiver, based on an amplitude ratio of the first and second transmission signals, converts the received first and second transmission signals.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: June 23, 2015
    Assignee: Funai Electric Co., Ltd.
    Inventor: Shinichi Kodama
  • Patent number: 9054748
    Abstract: One embodiment of the present invention provides a receiver for wireless communication. The receiver includes a demodulator and at least one filtering mechanism coupled to the demodulator, and an analog-to-digital converter (ADC) coupled to the filtering mechanism. The filtering mechanism can be configured to function as a low-pass filter (LPF) or a band-pass filter (BPF), thereby enabling the receiver to function as a direct-conversion receiver or a low-intermediate frequency (low-IF) receiver.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: June 9, 2015
    Assignee: AVIACOMM INC.
    Inventors: Shih Hsiung Mo, Yan Cui, Chung-Hsing Chang
  • Patent number: 9020073
    Abstract: One embodiment relates to a low intermediate frequency (IF) receiver. The low-IF receiver includes an analog front end that is configured to receive a modulated IQ data signal and provide an in-phase signal and a quadrature signal, where the in-phase signal is phase shifted by approximately 90° relative to the quadrature signal. The low-IF receiver further includes a digital processing block, and a single path that provides only one of the in-phase signal and the quadrature signal to the digital processing block. Other receivers and methods are also disclosed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: April 28, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Stefan van Waasen, Christian Grewing, Michael Lewis
  • Patent number: 9020026
    Abstract: A method and system for compensating for frequency dependent phase and amplitude imbalances is provided. A plurality of frequency sub-bands is extracted from a received wideband signal. Each of the plurality of frequency sub-bands is compensated to produce an associated plurality of compensated frequency sub-bands. The compensated sub-bands are summed in order to produce a compensated signal.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: April 28, 2015
    Assignee: LGS Innovations LLC
    Inventor: Robert L. Cupo
  • Patent number: 9014653
    Abstract: A novel and useful reconfigurable superheterodyne receiver that employs a 3rd order complex IQ charge-sharing band-pass filter (BPF) for image rejection and 1st order feedback based RF BPF for channel selection filtering. The operating RF input frequency of the receiver is 500 MHz to 1.2 GHz with a varying high IF range of 33 to 80 MHz. The gain stages are inverter based gm stages and the total gain of the receiver is 35 dB and in-band IIP3 at mid gain is +10 dBm. The NF of the receiver is 6.7 dB which is acceptable for the receiver without an LNA. The architecture is highly reconfigurable and follows the technology scaling.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Technische Universiteit Delft
    Inventors: Iman Madadi, Massoud Tohidian, Robert Bogdan Staszewski
  • Patent number: 8977519
    Abstract: A spectrum analyzer for measuring an RF signal over a selected frequency span configured to use multiple Intermediate Frequencies (IFs) for residual, spurious and image signal reduction. The spectrum analyzer has both a primary IF path and a secondary IF path configured to provide band pass filtering of the IF signals. A master clock synthesizer is configured to reduce residual noise by providing from a single Voltage Controlled Oscillator, a master clock signal and a Local Oscillator (LO) signal. The spectrum analyzer has a microcontroller configured to change the frequency of the master clock signal and the LO signal if the center frequency of the selected span is sufficiently close to a known spurious signal.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: March 10, 2015
    Assignee: Test Equipment Plus, Inc
    Inventor: Justin Crooks
  • Patent number: 8942656
    Abstract: In a radio receiver, a method of reducing second order distortion components, involves at a first mixer, mixing an input signal with an oscillator signal to generate an I component of a received radio signal; at a second mixer, mixing the input signal with a phase shifted oscillator signal to generate a Q component of the received radio signal; where the I and Q components of the received signal have a receive bandwidth; computing an estimate of second order distortion components as a power output of the I and Q components between approximately the receive bandwidth and twice the receive bandwidth of the received radio signals; and adjusting an operational parameter of the radio receiver to reduce the estimated value of second order distortion components. This abstract is not to be considered limiting.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 27, 2015
    Assignee: BlackBerry Limited
    Inventors: Tajinder Manku, Christopher Eugene Snyder, Stephen Arnold Devison
  • Patent number: 8929845
    Abstract: A system can include an input signal source, a local oscillator (LO), and an intermediate frequency (IF) receiver to receive an input signal from the input signal source and an LO signal from the LO. The IF receiver can include a switch to switch between the first and second inputs to provide an output. The IF receiver can generate a calibration signal from the LO signal.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 6, 2015
    Assignee: Tektronix, Inc.
    Inventors: Franklin Merlin Borden, Marcus Kieling Da Silva
  • Patent number: 8909166
    Abstract: An apparatus and method for controlling a multi-band antenna in a mobile communication terminal are provided. An apparatus for controlling a multi-band antenna in a mobile communication terminal includes a modem, an antenna unit, a Radio Frequency (RF) processing unit, and a switch module. The modem outputs at least one control signal corresponding to a target frequency band. The antenna unit changes a resonance frequency of the antenna according to the at least one control signal. The RF processing unit includes a plurality of transmission/reception (TX/RX) paths and processes TX/RX signals. The switch module connects the antenna to one of the TX/RX paths according to the at least one control signal.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Ho Park, Sung-Hwan Ko, Suk-Chan Hong, Young-Hwan Jung
  • Patent number: 8849232
    Abstract: A receiver uses a local oscillator to receive data transmitted via a combination of radio frequency signals using carrier aggregation. Each radio frequency signal occupies a respective radio frequency band and the radio frequency bands are arranged in two groups, a first group and a second group, separated in frequency by a first frequency region, each of the groups including one or more radio frequency bands and the first group occupying a wider frequency region than the second group. The radio frequency signals are processed using the local oscillator by setting the local oscillator, during the processing, to a frequency that is offset from the centre of a band defined by outer edges of the frequency regions occupied by the two groups.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: September 30, 2014
    Assignee: Broadcom Corporation
    Inventors: Jouni Kristian Kaukovuori, Aarno Tapio Pärssinen, Antti Oskari Immonen
  • Patent number: 8848847
    Abstract: One embodiment of the present invention relates to a combined mixer filter circuit. The circuit includes a sampler, a plurality of filter branches, and a coefficient generator. The sampler is configured to provide a sampled signal by sampling a received signal at a specified rate. The plurality of filter branches has selectable filter coefficients. The plurality of filter branches are configured to receive the sampled signal and generate a mixed and filtered output signal without a separate mixer component. The coefficient generator is coupled to the plurality of filter branches. The coefficient generator is configured to assign filter coefficient values to the selectable filter coefficients to yield a selected mixing function for the mixed filtered output signal.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: September 30, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Christoph Schultz, Markus Hammes, Rainer Kreienkamp
  • Patent number: 8836555
    Abstract: A sensor circuit for obtaining physical quantities with a small margin of error even when the temperature varies is provided. The sensor circuit includes a sensor, a sampling circuit for obtaining a voltage value or a current value of a signal output from the sensor during a predetermined period and holding the value, and an analog-to-digital converter circuit for converting the held analog voltage value or current value into a digital value. The sampling circuit includes a switch for obtaining the voltage value or the current value and holding the value. The switch includes a transistor including an oxide semiconductor in a channel formation region.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8831143
    Abstract: A method for DC offset cancellation includes defining, in a range of possible gain values for operating a direct conversion receiver, multiple sub-ranges of the possible gain values. Multiple DC offset correction values for the respective sub-ranges are stored in a memory. Upon detecting at the receiver that a gain of the receiver has changed from a first sub-range to a second sub-range, DC offset cancellation is initiated based on a DC offset correction value stored for the second sub-range and on a condition relating to past operation in the second sub-range.
    Type: Grant
    Filed: December 22, 2013
    Date of Patent: September 9, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Rony Ashkenazi, Alexander Zaslavsky, Gregory Uehara, Brian Brunn
  • Patent number: 8831549
    Abstract: A receiver circuit, e.g., a low-IF receiver, including two mixing paths. The two mixing paths scale an input signal respectively by two mixing gains and shift phase of the input signal respectively by two mixing phase offsets to provide two mixed signals. The two mixing gains and the two mixing phase offsets are arranged to produce an amplitude adjustment between amplitudes of the two mixed signals and a phase difference of 90 degrees plus a phase adjustment between phases of the two mixed signals. With the amplitude adjustment and/or the phase adjustment properly tuned to nonzero value(s) in association with band-pass response of the receiver circuit, image rejection can be achieved and optimized. Associated method is also disclosed.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 9, 2014
    Assignee: Mediatek Inc.
    Inventors: Ang-Sheng Lin, Wei-Hao Chiu
  • Patent number: 8768277
    Abstract: The present invention relates to a receiver circuit for processing of electrical signals, and comprising: an antenna (12), at least one amplifier (14) coupled to the output of the antenna (12), an automatic gain control circuit (30) coupled to the at least one amplifier (14) to modify a gain thereof, and at least one voltage offset-compensating circuit (50) embedded in the automatic gain control circuit (30) and comprising a clock generator (40) and at least one capacitor (42, 44) to effectively compensate an offset voltage.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 1, 2014
    Assignee: EM Microelectronics-Marin S.A.
    Inventors: Marc Morin, Tindaro Pittorino
  • Patent number: 8750441
    Abstract: A method includes obtaining an input signal and demodulating phase contamination in the input signal to generate a baseband signal. The method also includes modulating the input signal based on the baseband signal to generate an output signal, where the output signal has less phase contamination than the input signal. The phase contamination could be demodulated using a phase demodulator or a frequency modulation (FM) detector. A portion of the input signal could be down-converted to a lower frequency, and the phase contamination in the down-converted portion of the input signal could be demodulated. Additional phase contamination in the output signal can be demodulated and used to regulate a level of the baseband signal used during modulation of the input signal. The output signal could have less phase noise or period jitter than the input signal.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: June 10, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Lawrence H. Zuckerman
  • Patent number: 8724679
    Abstract: Transceiver calibration is a critical issue for proper transceiver operation. The transceiver comprises at least one RF transmit chain and one RF receive chain. A closed loop path is formed from the digital block, the RF transmit chain, the substrate coupling, the RF receive chain back to the digital block and is used to estimate and calibrate the transceiver parameters over the operating range of frequencies. The substrate coupling eliminates the need for the additional circuitry saving area, power, and performance. In place of the additional circuitry, the digital block which performs baseband operations can be reconfigured into a software or/and hardware mode to calibrate the transceiver. The digital block comprises a processor and memory and is coupled to the front end of the RF transmit chain and the tail end of the RF receive chain.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 13, 2014
    Assignee: Tensorcom, Inc.
    Inventor: Ismail Lakkis
  • Patent number: 8706071
    Abstract: One embodiment of the present invention provides a receiver for wireless communication. The receiver includes a demodulator and at least one filtering mechanism coupled to the demodulator, and an analog-to-digital converter (ADC) coupled to the filtering mechanism. The filtering mechanism can be configured to function as a low-pass filter (LPF) or a band-pass filter (BPF), thereby enabling the receiver to function as a direct-conversion receiver or a low-intermediate frequency (low-IF) receiver.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Aviacomm Inc.
    Inventors: Shih Hsiung Mo, Yan Cui, Chung-Hsing Chang
  • Patent number: 8670740
    Abstract: A direct sampling tuner includes a low noise amplifier and an optional dynamically configurable band pass filter coupled to the low noise amplifier. The optional filter is configured to pass a selected band of channels. The tuner further includes a relatively high accuracy, multi-bit analog-to-digital converter (“ADC”) coupled to the LNA or to the optional dynamically configurable band pass filter. The ADC operates at greater than about twice a frequency of a sampled signal. The ADC directly samples the spectrum of the selected channels at the Nyquist rate, thus avoiding image problems presented by conventional tuners.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: March 11, 2014
    Assignee: Broadcom Corporation
    Inventor: Leonard Dauphinee
  • Patent number: 8638883
    Abstract: A method includes receiving a signal using a direct conversion receiver, while the receiver is set at a gain that is selected from a range of possible gain values. Multiple DC offset correction values are provided for use by a DC offset cancellation loop, each DC offset correction value being associated with a respective sub-range of the range of the possible gain values. A DC offset correction value is selected from among the multiple DC offset correction values based on the gain to which the receiver is set. A DC offset in the signal is canceled by setting the DC offset cancellation loop to the selected DC offset correction value.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: January 28, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Rony Ashkenazi, Alexander Zaslavsky, Gregory Uehara, Brian Brunn
  • Patent number: 8634450
    Abstract: An efficient coding and modulation system for transmission of digital data over plastic optical fibers is disclosed. The digital signal is coded by a three-level coset coding. The spectral efficiency of the system is configurable by selecting the number of bits to be processed in each of the levels. The first level applies to the digital data a binary BCH coding and performs coset partitioning by constellation mapping and lattice transformations. Similarly, second level applies another binary BCH coding, which may be performed selectably in accordance with the desired configuration by two BCH codes with substantially the same coding rate, operating on codewords of different sizes. The third level is uncoded. The second and third levels undergo mapping and lattice transformation. After an addition of the levels, a second-stage lattice transformation is performed to obtain a zero-mean constellation. The symbols output from such three-level coset coder are then further modulated.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 21, 2014
    Assignee: Knowledge Development for POF, S.L.
    Inventors: Carlos Pardo Vidal, Rúben Pérez de Aranda Alonso
  • Patent number: 8620254
    Abstract: The present invention is directed to a wireless communications device that includes an antenna configured to receive an RF signal from an ambient environment. The antenna is characterized by an antenna impedance and the RF signal is characterized by a predetermined frequency. A passive mixer assembly is coupled to the antenna without an RF matching network. The passive mixer assembly is characterized by a passive mixer impedance presented to the antenna. The passive mixer assembly includes a plurality of baseband mixer ports. The passive mixer assembly is configured to downconvert the RF signal and provide a plurality of baseband signals. Each baseband signal of the plurality of baseband signals is directed out of a corresponding port of the plurality of baseband mixer ports and characterized by a predetermined phase of a plurality of predetermined phases. A baseband low noise amplifier (baseband-LNA) assembly is coupled to the passive mixer assembly.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: December 31, 2013
    Assignee: Cornell University
    Inventors: Alyosha Molnar, Caroline Andrews
  • Patent number: 8619895
    Abstract: Disclosed are a method and an apparatus for transmitting and receiving broadcast data in a digital broadcasting system. The method for transmitting and receiving broadcast data in a digital broadcasting system includes receiving the main data encoded with symbols having a plurality of levels; deciding whether levels of main data symbols encoded with symbols having the plurality of levels belong to a first group; and mapping the main data symbols to extended levels by using modulation values of the additional data if it is decided that the levels of the main data symbols belong to the first group.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: December 31, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae-Hyun Seo, Sung-Ik Park, Ho-Min Eum, Hyoung-Soo Lim, Heung-Mook Kim, Soo-In Lee
  • Patent number: 8620253
    Abstract: An apparatus and method of compensating for a direct voltage offset in a direct conversion receiver of a wireless communications system is provided.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: December 31, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang Lee, Byung Ki Han, Si Bum Jun
  • Patent number: 8606215
    Abstract: A radio device and a method to operate a non-heterodyne receiver are provided. The radio device is configured to receive a signal waveform and to provide a wake-up signal to a second communication circuit when the signal waveform is a valid communication request; wherein the second communication circuit switches from a power saving state to an operating state upon receiving the wake-up signal from the non-heterodyne receiver. The non-heterodyne receiver further including an Electromagnetic interference (EMI) rejection circuit, including a narrow band filter and a broadband filter to reject an EMI signal. A filter circuit for a narrow passband circuit is also provided. The filter including a buffer circuit; a crystal oscillator coupled to the output of the buffer circuit; and an inverting amplifier coupled in parallel to the crystal oscillator.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 10, 2013
    Assignee: SecureALL Corporation
    Inventor: Arun Kumar Sharma
  • Patent number: 8605822
    Abstract: A data transmitting apparatus performs symbol mapping on each of first and second input data to generate a plurality of first and second modulation data symbols, performs inverse fast Fourier transform (IFFT) on the plurality of first and second modulation data symbols to convert the same into first and second real signals of a time domain from a frequency domain, angle-modulates the first and second real signals, and transmits the same to a data receiving apparatus. Thus, a peak-to-average power ratio (PAPR) can be lowered, while the same data transfer amount as that of the general OFDM data transmitting apparatus is maintained.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 10, 2013
    Assignee: Electronics & Telecommunications Research Institute
    Inventor: Jong Soo Lim
  • Patent number: 8571152
    Abstract: The present invention discloses an apparatus and method for power-saving switch on a pair of configurable analog-to-digital converters. The apparatus mainly comprises an antenna, an antenna switch, a zero-IF RF receiver, and a baseband demodulator. By using a first and a second control signal to control the ON/OFF states of a plurality of switches and a plurality of stage units in the configurable analog-to-digital converters, and the third control signal to control the ON/OFF states of a plurality of LNA stages and the gain of a plurality VGAs, the power saving of the analog-to-digital converter is easily achieved.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 29, 2013
    Assignee: ISSC Technologies Corp.
    Inventors: Jeng-Hong Chen, Chin-Chang Chang, Kuang-Hu Huang, Chih-Ching Huang, Che-Kang Sun, Chun-Yuan Huang
  • Patent number: 8525937
    Abstract: An apparatus for calibrating an audio-visual (AV) signal includes a controller for generating a control signal, a controllable filter for selectively filtering the AV signal in response to the control signal to output either the AV signal or a filtered AV signal; and a calibrator for generating a group of calibrating coefficients according to the filtered AV signal and calibrating the AV signal according to the group of calibrating coefficients.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 3, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventors: Wen Chieh Yang, Ching Fu Lan, Jen Hsing Wang, Yi Hsuan Lai, Chin Fu Ho, Hsin Chuan Kuo, You Tsai Cheng, Tai Lai Tung
  • Patent number: 8509358
    Abstract: The device is used for decoding convolution-encoded reception symbols. In this context, transmission data are modulated with a modulation scheme to form symbols, which are encoded with a transmission filter to form convolution-encoded transmission symbols. A convolution-encoded transmission symbol contains components of several symbols arranged in time succession. These transmission symbols are transmitted via a transmission channel and received as reception symbols. The Viterbi decoder decodes the reception symbols by use of a modified Viterbi algorithm. Before running through the Viterbi decoder, the reception symbols are processed by a state-reduction device, which determines additional items of information relating to possible consequential states of the decoding independently of the decoding through the Viterbi decoder in every state of the decoding. The state-reduction device uses the additional items of information to restrict the decoding through the Viterbi decoder to given consequential states.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 13, 2013
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventor: Claudiu Krakowski
  • Patent number: 8483644
    Abstract: The component, fully integrated onto a monolithic substrate, includes a tuner, a demodulator, and a channel decoder. The overall filtering is carried out in two parts, a baseband analog filtering and a digital Nyquist filtering removing the information of adjacent channels. It outputs a stream of MPEG data.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 9, 2013
    Assignee: STMicroelectronics SA
    Inventors: Pierre Busson, Bernard Louis-Gavet, Pierre-Olivier Jouffre