And Aluminum Or Iron Compound Patents (Class 501/68)
  • Patent number: 8217106
    Abstract: In the present invention, ceramic particles are used as an optical diffusible filler. The present invention provides an optical diffusible material containing ceramic particles, wherein the ceramic particles satisfy the following requirements (I) and (II): (I) the total amount of Al2O3 or MgO and SiO2 is 80% by weight or more; and (II) the weight ratio of Al2O3 or MgO to SiO2 ((Al2O3 or MgO)/SiO2) is 0.1 to 15.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 10, 2012
    Assignee: Kao Corporation
    Inventors: Mikio Sakaguchi, Kazuo Oki
  • Publication number: 20120171497
    Abstract: A cover glass having a compressive-stress layer on the principal surfaces thereof, and having a glass composition containing 50% to 70% by mole of SiO2, 3% to 20% by mole of Al2O3, 5% to 25% by mole of Na2O, more than 0% by mole and less than or equal to 2.5% by mole of Li2O, 0% to 5.5% by mole of K2O, and 0% to less than 3% by mole of B2O3. Also disclosed is a method for producing a cover glass which includes: (i) preparing molten glass by melting a glass raw material; (ii) forming the prepared molten glass into a plate-like shape by a down-draw process and thereby obtaining a glass substrate; and (iii) forming a compressive-stress layer on the surface of the glass substrate.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 5, 2012
    Applicants: HOYA CORPORATION, AVANSTRATE INC.
    Inventors: Akihiro KOYAMA, Satoshi AMI, Kazuaki HASHIMOTO, Tetsuo TAKANO
  • Publication number: 20120157290
    Abstract: The invention relates to a glass ceramic comprising article, wherein the integral, non-post-processed and non-reworked glass ceramic comprising article comprises at least three different types of microstructures. The microstructures differ in the number and/or size of the crystallites contained per unit volume, and/or in the composition of the crystallites, and/or in the composition of the residual glass phases. The different microstructures are characterized by different relative ion content profiles across a cross-section perpendicular to the transition areas. The relative ion content profiles are determined from intensities which are determined using secondary ion mass spectrometry, and each of the three different types of microstructures preferably has different intensity plateaus for individual ions, wherein the individual ions are components of the main crystal phases.
    Type: Application
    Filed: July 13, 2010
    Publication date: June 21, 2012
    Applicant: SCHOTT AG
    Inventors: Falk Gabel, Eveline Rudigier-Voigt, Christian Henn, Roland Leroux, Lorenz Strenge, Roland Dudek
  • Publication number: 20120148770
    Abstract: A high silica glass composition comprising about 82 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 18 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 14, 2012
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Tianjun Rong, Samuel Conzone, Martin Lawrence Panchula
  • Publication number: 20120141801
    Abstract: A tempered glass substrate used for a cover glass of a display has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 1% of Li2O, 7 to 20% of Na2O, 0 to 15% of K2O, 0 to 3% of SrO, 0.001 to 10% of ZrO2, and 0 to 4% of TiO2, wherein K2O/Na2O in terms of mass fraction is 0.25 to 2.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 7, 2012
    Inventor: Takashi MURATA
  • Patent number: 8178451
    Abstract: The glass-metal bond for a tube collector includes a glass tube and metal part bonded to the glass tube. In order to match the thermal expansion properties, the glass tube has the following composition: SiO2, 73-77 wt. %; B2O3, 6-<8 wt. %; Al2O3, 6-6.5 wt. %; Na2O, 5.5-7 wt. %; K2O, 1-3 wt. %; CaO, 0.5-3.2 wt. %; MgO, 0-2 wt. %; Fe2O3, 50-150 ppm; and TiO2 0-<100 ppm. The ratio of the sum of the alkaline-earth metal oxides (in mol %) to the sum of the alkali metal oxides (in mol %) is ?0.6. The metal part is preferably made of metal material no. 1.3981 according to DIN 17745. The glass composition itself is also part of the invention.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 15, 2012
    Assignee: Schott AG
    Inventors: Erhard Dick, Johann Collignon, Wolfgang Zettl, Stephan Tratzky
  • Patent number: 8168259
    Abstract: An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 1, 2012
    Assignee: General Electric Company
    Inventors: Reza Sarrafi-Nour, Krishan Lal Luthra, Peter Joel Meschter, Curtis Alan Johnson
  • Patent number: 8168295
    Abstract: A tempered glass substrate of the present invention is a tempered glass substrate, which has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 3.5% of Li2O, 7 to 20% of Na2O, and 0 to 15% of K2O.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: May 1, 2012
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 8168693
    Abstract: Zirconium-containing BaO- and PbO-free X-ray opaque glasses having a refractive index nd of about 1.54 to about 1.58 and a high X-ray opacity with an aluminum equivalent thickness of at least about 500% are provided. Such glasses are based on a SiO2—B2O3—Al2O3—R2O—RO—La2O3—ZrO2 system with optional additions of SnO2. Such glasses may be used, in particular, as dental glasses or as optical glasses.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: May 1, 2012
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Oliver Hochrein, Sabine Pichler-Wilhelm
  • Publication number: 20120100397
    Abstract: To provide glass to be used for a substrate which is, as a substrate, less susceptible to surface roughening even if subjected to cleaning by means of a strongly acidic solution. Glass for a substrate, which comprises, as represented by mol % based on the following oxides, from 62.5 to 69% of SiO2, from 9 to 15.5% of Al2O3, from 8 to 16 of Li2O, from 0 to 8% of Na2O, from 0 to 7% of K2O and from 0 to 3.5% of ZrO2, provided that SiO2—Al2O3 is at least 53.3%, Li2O+Na2O+K2O is from 17 to 24%, and the total of contents of the above six components is at least 97%.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 26, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Jun ENDO, Tetsuya Nakashima, Atsuyoshi Takenaka
  • Patent number: 8162664
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 24, 2012
    Assignee: Ivoclar Vivadent AG
    Inventors: Elke Apel, Wolfram Holland, Marcel Schweiger, Christian Ritzberger, Harald Burke, Volker Rheinberger
  • Patent number: 8158543
    Abstract: A fining agent for reducing the concentration of seeds or bubbles in a silicate glass. The fining agent includes at least one inorganic compound, such as a hydrate or a hydroxide that acts as a source of water. In one embodiment, the fining agent further includes at least one multivalent metal oxide and, optionally, an oxidizer. A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3 is also provided. Methods of reducing the seed concentration of a silicate glass, and a method of making a silicate glass having a seed concentration of less than about 1 seed/cm3 are also described.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 17, 2012
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Publication number: 20120083401
    Abstract: The disclosed cover glass is produced by etching a glass substrate that has been formed by a down-drawing process, and chemically strengthening the glass substrate to provide the glass substrate with a compressive-stress layer on the principal surfaces thereof. The glass substrate contains, as components thereof, 50% to 70% by mass of SiO2, 5% to 20% by mass of Al2O3, 6% to 30% by mass of Na2O, and 0% to less than 8% by mass of Li2O. The glass substrate may also contain 0% to 2.6% by mass of CaO, if necessary. The glass substrate has an etching characteristic in which the etching rate is at least 3.7 ?m/minute in an etching environment having a temperature of 22° C. and containing hydrogen fluoride with a concentration of 10% by mass.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Applicants: HOYA CORPORATION, AVANSTRATE INC.
    Inventors: Akihiro KOYAMA, Mikiko MORISHITA, Satoshi AMI, Kazuaki HASHIMOTO, Tetsuo TAKANO
  • Publication number: 20120070729
    Abstract: The application describes glass compositions that includes more than 30 percent by weight of bismuth compounds, in particular bismuth oxide. Additionally, components, specifically battery separators, made from the glass compositions with high levels of bismuth are described.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 22, 2012
    Applicant: HOLLINGSWORTH & VOSE COMPANY
    Inventors: John Wertz, Christopher Campion, Yuri Vulfson, Rene Gargan, Nicolas Clement
  • Patent number: 8129299
    Abstract: A glass composition which is reduced in the amount of residual bubbles and is produced using smaller amounts of an environmentally unfriendly component such as arsenic oxide and antimony oxide. This glass composition contains, in terms of mass %: 40-70% SiO2; 5-20% B2O3; 10.25% Al2O3; 0-10% MgO; 0-20% CaO; 0-20% SrO; 0-10% BaO; 0-0.5% Li2O; 0-1.0% Na2O; 0-1.5% K2O; and 0-1.5%, excluding 0%, Cl, Li2O+Na2O+K2O exceeding 0.06%. The glass composition can be produced suitably using, for example, a chloride as part of the raw glass materials.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: March 6, 2012
    Assignee: AvanStrate Inc.
    Inventors: Shoichi Kishimoto, Haruki Niida, Akihiro Koyama, Yukihito Nagashima
  • Patent number: 8127571
    Abstract: The present invention relates to a method of refining lithium aluminosilicate glass capable of being controllably ceramized and free of arsenic oxide, antimony oxide and tin oxide, in which at least 0.05% by weight of at least one sulfide is added to the glass batch materials and said materials are melted at a temperature below 1750° C. The invention also relates to the glass-ceramics obtained from said colored glass, especially glass colored by vanadium oxide, and cooktops and cooking utensils including such glass-ceramics.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 6, 2012
    Assignee: Eurokera S.N.C.
    Inventors: Dorothee Martin, Yannick Lefrere
  • Patent number: 8114798
    Abstract: A fining agent for reducing the concentration of seeds or bubbles in a silicate glass. The fining agent includes at least one inorganic compound, such as a hydrate or a hydroxide that acts as a source of water. In one embodiment, the fining agent further includes at least one multivalent metal oxide and, optionally, an oxidizer. A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3 is also provided. Methods of reducing the seed concentration of a silicate glass, and a method of making a silicate glass having a seed concentration of less than about 1 seed/cm3 are also described.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: February 14, 2012
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Publication number: 20120034435
    Abstract: The disclosure is directed to a chemically strengthened glass having antimicrobial properties and to a method of making such glass. In particular, the disclosure is directed to a chemically strengthened glass with antimicrobial properties and with a low surface energy coating on the glass that does not interfere with the antimicrobial properties of the glass. The antimicrobial has an Ag ion concentration on the surface in the range of greater than zero to 0.047 ?g/cm2. The glass has particular applications as antimicrobial shelving, table tops and other applications in hospitals, laboratories and other institutions handling biological substances, where color in the glass is not a consideration.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 9, 2012
    Inventors: Nicholas Francis Borrelli, David Lathrop Morse, Wageesha Senaratne, Florence Verrier, Ying Wei
  • Publication number: 20120035041
    Abstract: Mineral materials selected from lithium aluminosilicate glasses containing vanadium, precursors of glass-ceramics, and glass-ceramics colored by vanadium contain solid solution(s) of ?-quartz and/or ?-spodumene as main crystalline phase. Also disclosed are articles made from said mineral materials, as well as methods for forming said glasses, glass-ceramics and articles of said glasses and glass-ceramics. Methods involve optimizing the refining of lithium aluminosilicate glasses containing SnO2 as a fining agent in preparing glasses or glass-ceramics.
    Type: Application
    Filed: July 15, 2011
    Publication date: February 9, 2012
    Inventor: Marie Jacqueline Monique Comte
  • Patent number: 8097341
    Abstract: A process for producing a wipe-proof anti-reflection layer on a borosilicate glass body is described, in which the borosilicate glass body is coated with a coating solution having a composition of 1-6% by weight of HCl, 0.5-7% by weight of SiO2 sol (solids content), 0.5-5% by weight of H2O, and 85-98% by weight of a readily volatile water-soluble organic solvent. The borosilicate glass body that is to be coated contains, in % by weight based on oxide content: 63-76 of SiO2, >11-20 of B2O3, 1-9 of Al2O3, 3-12 of alkali metal oxide(s), 0-10 of alkaline earth metal oxide(s), 0-2 of ZnO, 0-5 of TiO2, 0-1 of ZrO2, 0-1 of Nb2O5, and 0-1 of WO3.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 17, 2012
    Assignee: Schott AG
    Inventors: Stephan Tratzky, Denise Trapp
  • Patent number: 8093167
    Abstract: For providing glasses and glass-ceramics having properties suitable for use as a substrate of an information storage medium of next generation such as one for the perpendicular magnetic recording system without employing arsenic and antimony components which adversely affect human beings and the environment, there are provided glass-ceramics comprising SiO2, Li2O and Al2O3 on oxide basis, comprising lithium disilicate as a crystal phase, and comprising one or more elements selected from the group consisting of Sn, Ce, Mn, W, Ta, Bi, Nb, S, Cl and F.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: January 10, 2012
    Assignee: Ohara Inc.
    Inventors: Toshitaka Yagi, Naoyuki Goto
  • Patent number: 8088701
    Abstract: Melt formed inorganic fibers are disclosed having the composition:— Al2O3 5-90 mol % K2O 5-90 mol % SiO2 5-90 mol % in which SiO2+Al2O3+K2O>=50 mol %. Fibers of like composition having K2O greater than 12 mol % are also encompassed.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: January 3, 2012
    Assignee: The Morgan Crucible Company PLC
    Inventor: Gary Anthony Jubb
  • Publication number: 20110318571
    Abstract: A tempered glass substrate of the present invention is a tempered glass substrate, which has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 3.5% of Li2O, 7 to 20% of Na2O, and 0 to 15% of K2O.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Inventor: Takashi MURATA
  • Publication number: 20110312483
    Abstract: Glass for a display device, which comprises, as represented by mole percentage based on the following oxides, from 61 to 72% of SiO2, from 8 to 17% of Al2O3, from 6 to 18% of Li2O, from 2 to 15% of Na2O, from 0 to 8% of K2O, from 0 to 6% of MgO, from 0 to 6% of CaO, from 0 to 4% of TiO2, and from 0 to 2.5% of ZrO2, and having a total content R2O of Li2O, Na2O and K2 O of from 15 to 25%, a ratio Li2O/R2O of the Li2O content to R2O of from 0.35 to 0.8, and a total content of MgO and CaO of from 0 to 9%.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 22, 2011
    Applicant: Asahi Glass Company, Limited
    Inventors: Tetsuya NAKASHIMA, Seiki OHARA, Tatsuo NAGASHIMA
  • Patent number: 8076014
    Abstract: According to one aspect of the present invention, provided is glass for use in substrate for information recording medium, which comprises, denoted as molar percentages, a total of 70 to 85 percent of SiO2 and Al2O3, where SiO2 content is equal to or greater than 50 percent and Al2O3 content is equal to or greater than 3 percent; a total of equal to or greater than 10 percent of Li2O, Na2O and K2O; a total of 1 to 6 percent of CaO and MgO, where CaO content is greater than MgO content; a total of greater than 0 percent but equal to or lower than 4 percent of ZrO2, HfO2, Nb2O5, Ta2O5, La2O3, Y2O3 and TiO2; with the molar ratio of the total content of Li2O, Na2O and K2O to the total content of SiO2, Al2O3, ZrO2, HfO2, Nb2O5, Ta2O5, La2O3, Y2O3 and TiO2 ((Li2O+Na2O+K2O)/(SiO2+Al2O3+ZrO2+HfO2+Nb2O5+Ta2O5+La2O3+Y2O3+TiO2)) being equal to or less than 0.28.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 13, 2011
    Assignee: Hoya Corporation
    Inventors: Kazuo Tachiwana, Yoichi Hachitani, Xuelu Zou, Mikio Ikenishi, Kinobu Osakabe
  • Patent number: 8075999
    Abstract: A strengthened glass article having a central tension that is below a threshold value above which the glass exhibits frangible behavior. The central tension varies non-linearly with the thickness of the glass. The glass article may be used as cover plates or windows for portable or mobile electronic devices such as cellular phones, music players, information terminal (IT) devices, including laptop computers, and the like.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 13, 2011
    Assignee: Corning Incorporated
    Inventors: Kristen L Barefoot, James Joseph Price, Jose Mario Quintal, Ronald Leroy Stewart
  • Publication number: 20110283738
    Abstract: A crystallized glass comprises, in term of mass %, 55 to 73% of SiO2, 17 to 25% of Al2O3, 2 to 5% of Li2O, 4 to 5.5% of TiO2, 0.05 to less than 0.2% of SnO2, and 0.02 to 0.1% of V2O5. The crystallized glass has a ratio V2O5/(SnO2+V2O5) of 0.2 to 0.4 and is substantially free of As2O3 and Sb2O3.
    Type: Application
    Filed: February 3, 2010
    Publication date: November 24, 2011
    Inventors: Tai Fujisawa, Shingo Nakane
  • Patent number: 8062749
    Abstract: An aircraft transparency in a glass piece, wherein the glass piece includes a chemically tempered first major surface and a chemically tempered opposite second major surface, a first case depth begins at the first major surface, a second case depth begins at the second major surface, and a tensile stress zone is within the glass piece between the end points of the first and the second case depths. The glass between the end points of the first and second case depth has a glass composition including: Ingredient Percent by weight SiO2 60 to 75; Al2O3 18 to 28; and Li2O 3 to 9, and the glass has at least one of the following properties (a) a log 10 viscosity temperature of at least 1413° F. and (b) a liquidus temperature of at least 2436° F.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 22, 2011
    Assignee: PPG Industries Ohio, Inc
    Inventors: Larry J. Shelestak, George B. Goodwin, Amarendra Mishra, James M. Baldauff
  • Publication number: 20110274916
    Abstract: A tempered glass of the present invention includes, as a glass composition, in terms of mass %, 45 to 75% of SiO2, 0 to 30% of Al2O3, and 0 to 30% of Li2O+Na2O+K2O and has a ?-OH value of 0.3 to 1/mm.
    Type: Application
    Filed: December 8, 2009
    Publication date: November 10, 2011
    Applicant: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 8048817
    Abstract: To provide an amorphous silica powder suitable for a sealing material for semiconductors having improved HTSL properties and HTOL properties, and a process for its production. An amorphous silica powder containing Al in an amount of from 0.03 to 20 mass % as calculated as Al2O3 measured by atomic absorption spectrophotometry, wherein the average particle size is at most 50 ?m, and when the amorphous silica powder is divided according to the average particle size into two powders, a powder having a particle size smaller than the average particle size has a higher content as calculated as Al2O3 than a powder having a particle size larger than the average particle size.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 1, 2011
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yasuhisa Nishi, Tohru Umezaki
  • Publication number: 20110259053
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Applicant: IVOCLAR VIVADENT AG
    Inventors: Elke Apel, Wolfram Höland, Marcel Schweiger, Christian van t'Hoen, Harald Bürke, Volker M. Rheinberger
  • Patent number: 8043986
    Abstract: A sealing glass for an energy storage device is provided. The sealing glass includes silicon dioxide, boron oxide, aluminum oxide, sodium oxide and zirconium oxide. Methods for preparing the sealing glass and the energy storage device incorporating the sealing glass are also provided.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 25, 2011
    Assignee: General Electric Company
    Inventors: Dong-Sil Park, Jian Wu, Mamatha Nagesh, Sundeep Kumar, Craig Stringer, Digamber Porob, Vinayak Hassan Vishwanath
  • Patent number: 8034457
    Abstract: A seal structure is provided for an energy storage device. The seal structure includes a sealing glass joining an ion-conducting first ceramic to an electrically insulating second ceramic. The sealing glass has a composition that includes about 48 weight percent silica, about 20 weight percent to about 25 weight percent boria, about 20 weight percent to about 24 weight percent alumina, and about 8 weight percent to about 12 weight percent sodium oxide based on the total weight of the sealing glass composition. A method for making the seal structure is provided. An article comprising the seal structure is also provided.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 11, 2011
    Inventors: Jian Wu, Dong-Sil Park, Craig Stringer, Sundeep Kumar
  • Patent number: 7993137
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: August 9, 2011
    Assignee: Ivoclar Vivadent AG
    Inventors: Elke Apel, Wolfram Holland, Marcel Schweiger, Christian Ritzberger, Harald Burke, Volker Rheinberger
  • Patent number: 7981823
    Abstract: A transparent, colorless lithium-aluminosilicate glass ceramic plate with high-quartz mixed crystals as the prevailing crystal phase, which is provided on one side with an opaque, colored, temperature-stable coating over the entire surface or over the entire surface to a large extent, is described, which has a content of Nd2O3 of 40 to 4000 ppm, a Yellowness Index of less than 10% with a 4 mm glass (ceramic) layer thickness, and a variegation of colors of the glass or the glass ceramic in the CIELAB color system of C* of less than 5. The glass ceramic plate preferably has a composition (in % by weight based on oxide) of: Li2O 3.0-4.5, Na2O 0-1.5, K2O 0-1.5, ?Na2O+K2O 0.2-2.0, MgO 0-2.0, CaO 0-1.5, SrO 0-1.5, BaO 0-2.5, ZnO 0-2.5, B2O3 0-1.0, Al2O3 19-25, SiO2 55-69, TiO2 1-3, ZrO2 1-2.5, SnO2 0-0.4, ?SnO2+TiO2<3, P2O5 0-3.0, Nd2O3 0.01-0.4, CoO 0.0-0.004.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: July 19, 2011
    Assignee: Schott AG
    Inventors: Friedrich Siebers, Ulrich Schiffner, Wolfgang Schmidbauer, Klaus Schönberger, Petra Grewer, Erich Rodek
  • Patent number: 7977263
    Abstract: A glass composition is provided for the production of high temperature glass fibers with oxides comprising 1% to 15% Fe2O3+FeO as a fluidizer to lower liquidous temperature and the fiberizing temperature of a mix of high temperature oxides. The glass composition has therein an appropriate content of high temperature oxides to produce glass fiber with high temperature limits and high burn-through properties.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: July 12, 2011
    Assignee: Glass Incorporated
    Inventor: Albert Lewis
  • Patent number: 7977262
    Abstract: A glass composition which contains Ce ions as a component substantially comprises, in terms of oxides, SiO2: 55 to 75 wt %, B2O3: 6 to 25 wt %, CeO2: 0.01 to 5 wt %, SnO: 0.01 to 5 wt %, Al2O3: 0 to 10 wt %, Li2O: 0 to 10 wt %, Na2O: 0 to 10 wt %, K2O: 0 to 10 wt %, MgO: 0 to 5 wt %, CaO: 0 to 10 wt %, SrO: 0 to 10 wt %, BaO 0 to 10 wt %, TiO2: 0 to 1.0 wt %, Fe2O3: 0.01 to 0.2 wt %, Sb2O3: 0 to 5 wt %, ZrO2: 0.01 to 5 wt %. By having such constituents, the glass composition is capable of suppressing transmission of ultraviolet light and solarization, and thus the glass composition hardly suffers from initial coloring or coloring during lamp production.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 12, 2011
    Assignee: Panasonic Corporation
    Inventors: Atsushi Motoya, Yasurou Niguma
  • Publication number: 20110159219
    Abstract: The present invention relates to a silicate glass article, such as a glass container, with a modified surface region. The modified surface has, among other advantageous properties, an improved chemical durability, an increased hardness, and/or an increased thermal stability, such as thermal shock resistance. In particular the present invention relates to a process for modifying a surface region of a silicate glass article by heat-treatment at Tg in a reducing gas atmosphere such as H2/N2 (1/99). The concentration of network-modifying cations (NMC) in the surface region of the silicate glass article is lower than in the bulk part, and the composition in the surface region of the network-modifying cations is a consequence of an inward diffusion.
    Type: Application
    Filed: September 3, 2009
    Publication date: June 30, 2011
    Applicant: AALBORG UNIVERSITET
    Inventors: Yuanzheng Yue, Morten Mattrup Smedskjaer
  • Publication number: 20110160033
    Abstract: An LAS-type float glass, which is substantially free of As2O3 and/or Sb2O3 and precipitates a ?-quartz solid solution or a ?-spodumene solid solution as a main crystal by heat treatment, wherein, when C1 [mass %] represents the content of SnO2 at a glass surface, C0 [mass %] represents the content of SnO2 at a depth of 0.5 mm from the glass surface, and k [mass %/mm] represents an SnO2 concentration gradient defined by k=(C1-C0)/0.5, the LAS-type crystallized glass satisfies relationships of K?2 and C0?0.8 with respect to at least one surface thereof.
    Type: Application
    Filed: August 11, 2009
    Publication date: June 30, 2011
    Inventors: Hideo Yamauchi, Tomohiro Nagakane
  • Patent number: 7968217
    Abstract: An article for use in aggressive environments is presented. In one embodiment, the article comprises a substrate and a self-sealing and substantially hermetic sealing layer disposed over the bondcoat. The substrate may be any high-temperature material, including, for instance, silicon-bearing ceramics and ceramic matrix composites. A method for making such articles is also presented. The method comprises providing a substrate; disposing a self-sealing layer over the substrate; and heating the sealing layer to a sealing temperature at which at least a portion of the sealing layer will flow.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: Reza Sarrafi-Nour, Krishan Lal Luthra, Peter Joel Meschter, Curtis Alan Johnson
  • Patent number: 7951312
    Abstract: The borosilicate glass for pharmaceutical packaging has a transmission ? in the visible range of more than 80% at a wavelength of 400 nm, a transmission ? in the UV range of at most 0.1% at wavelengths under 260 nm (each at a sample thickness of 1 mm), a transformation temperature Tg of 550° C. to 590° C. and a processing temperature VA of 1100° C. to 1200° C. The glass has a composition, in wt. % on an oxide basis, of SiO2, 60-80; B2O3, 5-15; Al2O3, 2-10; TiO2, 0.5-7; ? Li2O+K2O+Na2O, 3-10; ? alkaline earth oxides, 0.5-10; ZrO2, 0-3; and Fe2O3, 0-0.2. The glass is suitable for packaging UV-sensitive substances but nevertheless permits optical quality control.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 31, 2011
    Assignee: Schott AG
    Inventors: Franz Ott, Joerg Hinrich Fechner, Max Raster, Reinhard Maennl
  • Publication number: 20110111260
    Abstract: A glass substrate for information recording medium, said glass substrate being composed of an aluminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one substance selected from the group consisting of SO3 (sulfurous acid), F (fluorine), Cl (chlorine), Br (bromine) and I (iodine), as a refining agent. The molar ratio of the total amount of the refining agent to the amount of Al2O3 is within the range of 0.02-0.20.
    Type: Application
    Filed: July 3, 2009
    Publication date: May 12, 2011
    Applicant: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Publication number: 20110111263
    Abstract: A glass substrate for information recording medium, said glass substrate being composed of an alminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one polyvalent element selected from the group consisting of V (vanadium), Mn (manganese), Ni (nickel), Nb (niobium), Mo (molybdenum), Sn (tin), Ce (cerium), Ta (tantalum) and Bi (bismuth). The molar ratio of the total amount of the polyvalent elements to the amount of Al2O3 is within the range of 0.02-0.20.
    Type: Application
    Filed: July 3, 2009
    Publication date: May 12, 2011
    Applicant: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Publication number: 20110111160
    Abstract: A glass substrate for information recording medium, said glass substrate being composed of an alminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one polyvalent element selected from the group consisting of V (vanadium), Mn (manganese), Ni (nickel), Nb (niobium), Mo (molybdenum), Sn (tin), Ce (cerium), Ta (tantalum) and Bi (bismuth). The molar ratio of the total amount of the polyvalent elements to the amount of ZrO2 is within the range of 0.05-0.50.
    Type: Application
    Filed: July 3, 2009
    Publication date: May 12, 2011
    Inventor: Hideki Kawai
  • Publication number: 20110111161
    Abstract: A glass substrate for information recording medium, said glass substrate being composed of an alminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one substance selected from the group consisting of SO3 (sulfurous acid), F (fluorine), Cl (chlorine), Br (bromine) and I (iodine), as a refining agent. The molar ratio of the total amount of the refining agent to the amount of ZrO2 is within the range of 0.05-0.50.
    Type: Application
    Filed: July 3, 2009
    Publication date: May 12, 2011
    Applicant: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Publication number: 20110086241
    Abstract: The provided are a glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. Glasses for a magnetic recording medium substrate are, glass I comprised of an oxide glass, comprising, denoted as mass percentages: Si 20 to 40 percent, Al 0.1 to 10 percent, Li 0.1 to 5 percent, Na 0.1 to 10 percent, K 0 to 5 percent (where the total content of Li, Na, and K is 15 percent or less), Sn 0.005 to 0.6 percent, and Ce 0 to 1.2 percent; the Sb content is 0 to 0.1 percent; and not comprising As or F; glass II comprised of oxide glass, comprising, as converted based on the oxide, denoted as molar percentages: SiO2 60 to 75 percent, Al2O3 1 to 15 percent, Li2O 0.1 to 20 percent, Na2O 0.
    Type: Application
    Filed: March 18, 2009
    Publication date: April 14, 2011
    Applicant: HOYA CORPORATION
    Inventors: Yoichi Hachitani, Kinobu Osakabe
  • Publication number: 20110071011
    Abstract: To provide crystallizable glass that is less likely to be devitrified even when formed into shape by a float process, causes no breakage during a forming step and a crystallization step and is capable of precipitating LAS-based crystals as main crystals by subjecting the glass to heat treatment after being formed into shape, and crystallized glass obtained by crystallizing the crystallizable glass. The crystallizable glass of the present invention is characterized by substantially containing neither As2O3 nor Sb2O3 and having a composition of, in percent by mass, 55.0 to 73.0% SiO2, 17.0 to 27.0% Al2O3, 2.0 to 5.0% Li2O, 0 to 1.5% MgO, 0 to 1.5% ZnO, 0 to 1.0% Na2O, 0 to 1.0% K2O, 0 to 3.8% TiO2, 0 to 2.5% ZrO2, 0 to 0.6% SnO2, and 2.3 to 3.8% TiO2+ZrO2.
    Type: Application
    Filed: April 17, 2009
    Publication date: March 24, 2011
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Tai Fujisawa, Shingo Nakane
  • Patent number: 7908886
    Abstract: The invention is directed to oxyhalide fining agents for glass and processes for making glass using such a fining agent.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: March 22, 2011
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Ellison, Shari Elizabeth Koval
  • Publication number: 20110059836
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: IVOCLAR VIVADENT AG
    Inventors: Elke Apel, Wolfram Höland, Marcel Schweiger, Christian van t'Hoen, Harald Bürke, Volker M. Rheinberger
  • Publication number: 20110045961
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 16, 2010
    Publication date: February 24, 2011
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson