And Aluminum Or Iron Compound Patents (Class 501/68)
  • Patent number: 7396788
    Abstract: A glass substrate for use as the substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD or of an optical communication device, and a glass composition for making such a glass substrate, contains the following glass ingredients: 45 to 75% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 15% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 65 to 90% by weight; a total of 7 to 20% by weight of R2O compounds, where R=Li, Na, and K; and a total of 0 to 12% by weight, zero inclusive, of R?O compounds, where R?=Mg, Ca, Sr, Ba, and Zn. Moreover, the following conditions are fulfilled: B2O3=0% by weight, or Al2O3/B2O3?1.0; and (SiO2+Al2O3+B2O3)/(the total of R2O compounds+the total of R2O compounds)?3.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: July 8, 2008
    Assignee: Minolta Co., Ltd.
    Inventors: Hideki Kawai, Toshiharu Mori
  • Publication number: 20080103039
    Abstract: A colored glass is provided that includes a base material and a colorant including Fe2O3 and Se. The Fe2O3 and Se are combined in the frit or glass as a Fe2O3—Se complex before being added with the base material.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Inventor: James V. Jones
  • Patent number: 7365037
    Abstract: As a jig material to use under plasma reaction for producing semiconductors the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: April 29, 2008
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Tatsuhiro Sato, Nobumasa Yoshida, Mamoru Endo
  • Patent number: 7316740
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 8, 2008
    Assignee: Ivoclar Vivadent AG
    Inventors: Marcel Schweiger, Volker M. Rheinberger, Harald Bürke, Wolfram Höland
  • Publication number: 20070293388
    Abstract: A glass composition is characterized by having little batch-to-batch variations in the properties of the glass products made thereof. The glass composition contains 40 to 99 wt. % SiO2 with a softening temperature ranging from 600° C. to 1650° C., and wherein the standard deviation of softening temperature measurements obtained from 10 or more randomly selected samples of glass articles produced from the lot is 10° C. or less.
    Type: Application
    Filed: November 8, 2006
    Publication date: December 20, 2007
    Applicant: General Electric Company
    Inventors: Konstantin S. Zuyev, Yan Zhou
  • Patent number: 7297645
    Abstract: An opalescent glass-ceramic product, especially for use as a dental material or as an additive to or component of dental material, including SiO2, Al2O3, P2O5, Na2O, K2O, CaO and Me(IV))O2. In order to obtain improved opalescence with improved transparency, in addition to fluorescence, thermal expansion and a combustion temperature adapted to other materials, the opalescent ceramic product is completely or substantially devoid of ZrO2 and TiO2, such that the Me(II)O content in the glass ceramic is less than approximately 4 wt % and the Me(IV)O2 content amounts to approximately 0.5-3 wt %. The invention also relates to a method for the production of the opalescent glass-ceramic product.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: November 20, 2007
    Assignee: Degudent GmbH
    Inventor: Klaus Krumbholz
  • Patent number: 7285510
    Abstract: The present invention provides a glass composition suitable for producing a poling effect. This glass composition includes 0.001 to 0.5 mol % of univalent metal ions in terms of oxide thereof, 0.1 to 40 mol % of Al2O3, and 0 to 15 mol % of B2O3, and a ratio of the number of moles of Al2O3 to a sum of moles of oxide in terms of which the univalent metal ions is expressed is at least 1.0. As the univalent metal ions are suitable Li, Na, K, Cs, Ag, Cu, and Au.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: October 23, 2007
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Koichi Sakaguchi, Shigeki Nakagaki
  • Publication number: 20070238601
    Abstract: The invention is directed to highly crystalline, frit-sintered glass-ceramic compositions having a coefficient of thermal expansion in the range of 85-115×10?7° C. The primary crystal phases of the glass-ceramics of the invention possess a cyclosilicate structure. The glass-ceramic of the invention are useful as metal-to-metal, metal-to-ceramic and ceramic-to-ceramic sealing agents, and also as high-performance coating for metals and ceramics. In their broadest composition the glass-ceramic contain, in weight percent, 30-55% SiO2, 5-40% CaO, 0-50% BaO, 0.1-10% Al2O3, and 0-40% SrO, wherein the sum of CaO+BaO+SrO is in the range of 35-65 wt. %. Optionally, the glass-ceramic compositions may contain at least one from the group of >0-15 wt. % MgO and >0-10 wt. % ZnO. Also optionally, the glass ceramic compositions may contain >0-10 wt. % of at least one transition metal or rare earth metal oxide.
    Type: Application
    Filed: February 20, 2007
    Publication date: October 11, 2007
    Inventors: Linda Ruth Pinckney, Steven Alvin Tietje
  • Patent number: 7265070
    Abstract: Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength region of less than about 250 nm and particularly, exhibiting a low laser induced density change. The synthetic silica glass optical material of the present invention contains at least about 0.1 ppm of aluminum and H2 concentration levels greater than about 0.5×1017 molecules/cm2. Additionally, the synthetic silica optical material of the present invention exhibits an H2 to Al ratio of greater than about 1.2, as measured in ×1017/cm3 molecules H2 per ppm Al.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: September 4, 2007
    Assignee: Corning Incorporated
    Inventors: Heather D Boek, Christine E Heckle, Johannes Moll, Charlene M Smith
  • Patent number: 7262144
    Abstract: The invention relates to a photostructurable body, in particular glass or glass-ceramic, in which the glass is a multicomponent glass and/or the glass-ceramic is a multicomponent glass-ceramic, in each case having a positive change in refractive index ?n as a result of the action of light.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: August 28, 2007
    Assignee: Schott AG
    Inventors: Bianca Schreder, Josè Zimmer, Matthias Brinkmann, Michael Kluge
  • Publication number: 20070191207
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 16, 2007
    Inventors: Paul S. Danielson, Adam J.G. Ellison, Natesan Venkataraman
  • Patent number: 7217672
    Abstract: An optical glass wherein an amount of change in refractive index (?n: difference in refractive index between a state before radiation and a state after radiation) caused by radiation of laser beam at wavelength of 351 nm having average output power of 0.43W, pulse repetition rate of 5 kHz and pulse width of 400 ns for one hour is 5 ppm or below is provided. The optical glass comprises a fluorine ingredient and/or a titanium oxide ingredient and/or an arsenic oxide ingredient. The optical glass suffers little change in refractive index by radiation of strong light having wavelengths of 300 nm to 400 nm such as ultraviolet laser.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: May 15, 2007
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Akira Masumura, Muneo Nakahara, Satoru Matsumoto, Tatsuya Senoo
  • Patent number: 7214441
    Abstract: A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.–900° C., the seal having a CTE in the 100×10?7/° C. to 120×10?7/° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO2 15–65; Li2O 0–5; Na2O 0–5; K2O 0–10; MgO 0–5; CaO 0–32; Al2O3 0–10; B2O3 0–50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: May 8, 2007
    Assignee: Corning Incorporated
    Inventors: Jeffrey Earl Cortright, Lisa Ann Lamberson, Pamela Arlene Maurey, Robert Michael Morena
  • Patent number: 7189470
    Abstract: A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.–800° C., the seal having a CTE in the 100×10?7/° C. to 120×10?7/° C., wherein the sealing material comprises in weight %, of: (i) a 80 to 95 wt % of glass frit, the glass frit itself having a composition in mole percent of: SiO2 70–85%; Al2O3 0–5%; Na2O3 0–8%; K2O 10–25%; ZnO 0–10%; ZrO2 0–6%; MgO 0–7%; TiO2 0–2%; and (ii) and 5 wt % to 25 wt % of addition comprising at least one of: alumina, zirconia or leucite.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 13, 2007
    Assignee: Corning Incorporated
    Inventors: Jeffrey E Cortright, Lisa A Lamberson, Pamela A Maurey, Robert M Morena
  • Patent number: 7189671
    Abstract: Improved glass fibers compositions, typically useful for fire resistant blankets or containers to provide high burn-through resistance at high temperatures of 2,400° F. and higher, and typically comprising silica, sodium oxide, potassium oxide, calcium oxide, magnesium oxide, ferrous+ferric oxide, and titanium oxide; the improved glass compositions may further include alumina, lithium oxide, and boron oxide.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 13, 2007
    Assignee: Glass Incorporated
    Inventor: Albert Lewis
  • Patent number: 7169476
    Abstract: A zinc oxide-alumina-silica-based crystallized glass is provided, containing zinc oxide, alumina and silica as main components, and zirconia as a nucleating agent. The main components are provided in a ratio of 20–30% by mass of zinc oxide, 15–25% by mass of alumina and 50–60% by mass of silica to amount to 100% by mass in total. The nucleating agent is contained in an amount of 3–6 parts by mass based on 100 parts by mass of the main components. The crystallized glass also includes at least one modification component selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, diphosphorus pentoxide, niobium oxide and tantalum oxide in addition to the main components and the nucleating agent.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: January 30, 2007
    Assignees: NGK Insulators, Ltd., NGK Optoceramics Co., Ltd.
    Inventors: Takashi Ota, Kazuki Ootou
  • Patent number: 7160824
    Abstract: Disclosed are glass compositions and glass fibers formed from certain embodiments of the disclosed glass compositions. Certain embodiments of the glass compositions include, among other components, bismuth oxide. Certain embodiments of the glass composition include about 0.5–30% bismuth oxide of the composition by weight and silica oxide at about 54–70% of the composition by weight. Embodiments of the glass compositions may also include other components. For example, zinc oxide can make up about 0.01–5% of the composition by weight.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: January 9, 2007
    Assignee: Evanite Fiber Corporation
    Inventors: George Zguris, John Windisch, Patrick Svoboda, Yuri Vulfson
  • Patent number: 7101625
    Abstract: Glass for a light filter capable of preventing variation of refractive index in a band-pass filter has a coefficient of thermal expansion within a range from 90×10?7/° C. to 120×10?7/° C. within a temperature range from ?20° C. to +70° C. and, preferably, Young's modulus of 75 GPa or over and Vickers hardness of 550 or over, and light transmittance for plate thickness of 10 mm of 90% or over within a wavelength range from 950 nm to 1600 nm.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: September 5, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Naoyuki Goto
  • Patent number: 7091142
    Abstract: The invention encompasses a glass-ceramic comprising a continuous glass phase and a crystal phase comprising tetragonal leucite, wherein the glass-ceramic has a crack-free glass phase and a crystal phase comprising leucite crystals distributed essentially homogeneously in the glass phase. The crystal phase has a particle size distribution made of from about 5% to about 70% of a first group of leucite crystals having particle sizes of <1 ?m and from about 30% to about 95% of a second group of leucite crystals having particle sizes of ?1 ?m. The proportion of Li2O in the glass-ceramic is preferably below 0.5% by weight. It is preferred that not only the glass phase but also the crystal phase is essentially free of cracks. The corresponding glass-ceramics are particularly suitable for use in the dental sector, in particular as facing ceramics.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: August 15, 2006
    Assignee: Wieland Dental Ceramics GmbH
    Inventors: Steffen Assmann, Peter Appel, Reinhard Armbrust
  • Patent number: 7087307
    Abstract: The present invention provides a glass sheet formed on molten tin, that exhibits a high transmittance that is originally inherent to its composition. In this glass sheet, the difference between a visible light reflectance of a surface formed in contact with the molten tin and a visible light reflectance of a surface on the opposite side thereof is not greater than 0.25%. And when the glass sheet's thickness is 4 mm, a light transmittance at 540 nm wavelength is at least 91.5%, and a light transmittance at 450 nm wavelength is at least 91.0%, and after irradiating UV light for 6 hours as specified in the radiation-proofing test according to JIS R3212, a light transmittance at 540 nm wavelength is at least 91.0% and a light transmittance at 450 nm wavelength is at least 90.5%.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: August 8, 2006
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Yukihito Nagashima, Masahiro Hirata, Akihiro Koyama, Akira Fujisawa
  • Patent number: 7084084
    Abstract: Highly durable silica glass comprising silica having incorporated therein aluminum and at least one element (M) selected from group 2A elements, group 3A elements and group 4A elements of the periodic table. Preferably, the sum of aluminum and element (M) is at least 30 atomic % based on the amount of total metal elements in the silica glass, and the atomic ratio of aluminum to element (M) is in the range of 0.05 to 20. The silica glass has a high purity and exhibits enhanced durability while good processability and machinability, and reduced dusting property are kept, and the glass is suitable for members of a semiconductor production apparatus or liquid crystal display production apparatus using a halogenated gas and/or its plasma.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: August 1, 2006
    Assignees: Tosoh Corporation, Tosoh Quartz Corporation, Tosoh SGM Corporation
    Inventors: Kazuyoshi Arai, Tsutomu Takahata, Shinkichi Hashimoto, Hideaki Kiriya, Yoshinori Harada
  • Patent number: 7045475
    Abstract: Glass formulations, and a method of converting such glass formulations to glass beads having a refractive index of at least 1.59 and a high level of retroreflectivity, are provided. The methods and formulations provide beads also having high levels of resistance to degradation by environmental exposure.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: May 16, 2006
    Assignee: PQ Corporation
    Inventors: Ufuk Senturk, Michael P. Lanci, Raymond Jackson, John W. Lau
  • Patent number: 7008891
    Abstract: A crystallized glass for an optical filter substrate, which has an average linear expansion coefficient ?L of from 95×10?7/° C. to 130×10?7/° C. at from ?30° C. to 70° C. and which has a crystal or the like of Na4-xKxAl4Si4O16 (1<x?4) precipitated therein. Further, a crystallized glass for an optical filter substrate, which comprises from 35 to 60% of SiO2, from 10 to 30% of Al2O3, from 1 to 15% of TiO2+ZrO2, from 4 to 20% of Na2O, from 4 to 20% of K2O, from 0.1 to 10% of CaO+SrO+Bao, from 0 to 10% of MgO, etc., and which has ?L of from 95×10?7/° C. to 130×10?7/° C. and which has a crystal or solid solution precipitated therein.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: March 7, 2006
    Assignee: Asahi Glass Company, Limited
    Inventors: Tomoyuki Kobayashi, Kei Maeda, Motoyuki Hirose
  • Patent number: 7005187
    Abstract: Glass for a light filter capable of preventing variation of refractive index in a band-pass filter has a coefficient of thermal expansion within a range from 90×10?7/° C. within a temperature range from ?20° C. to +70° C. and, preferably, Young's modulus of 75 GPa or over and Vickers hardness of 550 or over, and light transmittance for plate thickness of 10 mm of 90% or over within a wavelength range from 950 nm to 1600 nm.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: February 28, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Naoyuki Goto
  • Patent number: 6989633
    Abstract: An alkaline-earth aluminosilicate glass having a composition (in % by weight, based on oxide) of SiO2>55-64; Al2O3 13-18; B2O3 0-5.5; M5O 0-7; CaO 5.5-14; SrO 0-8; BaO 6-17; ZrO2 0-2; CeO2 0-0.3; TiO2 0-0.5; CoO 0.01-0.035; Fe2O3 0.005-0.05; and NiO 0-0.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 24, 2006
    Assignee: Schott AG
    Inventors: Christian Kunert, Karin Naumann, Franz Ott, Ottmar Becker
  • Patent number: 6960545
    Abstract: The present invention relates to preferably lead-free and arsenic-free optical glasses, having a refractive index of 1.48?nd?1.56, an Abbe number of 64??d?72, a low transformation temperature (Tg?500° C.) and good ion exchange properties, as well as good chemical resistance and crystallization stability, and comprising the following composition (in % by weight): SiO2 53-58 B2O3 11-15 Al2O3 16-20 Na2O ?0-13 K2O ?0-13 ?M2O ?9-13 F 0.5-4?? The glass may additionally contain standard refining agents. The invention also relates to the use of the optical glasses according to the invention in the application areas of imaging, projection, telecommunications, optical communication technology and/or laser technology.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: November 1, 2005
    Assignee: Schott Glas
    Inventors: Silke Wolff, Ute Woelfel
  • Publication number: 20040242398
    Abstract: A glass substrate for use as the substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD or of an optical communication device, and a glass composition for making such a glass substrate, contains the following glass ingredients: 45 to 75% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 8% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 60 to 90% by weight; a total of 0 to 20% by weight, zero inclusive, of R2O compounds, where R=Li, Na, and K; and a total of 0 to 15% by weight, zero inclusive, of TiO2+ZrO2+LnxOy, where LnxOy represents at least one compound selected from the group consisting of lanthanoid metal oxides, Y2O3, Nb2O5, and Ta2O5.
    Type: Application
    Filed: August 4, 2003
    Publication date: December 2, 2004
    Applicant: MINOLTA CO., LTD.
    Inventors: Toshiharu Mori, Hideki Kawai
  • Patent number: 6825139
    Abstract: The invention relates to a crystalline composition, a poly-crystalline product and an article of manufacture comprising an amount of SiO2, Al2O3, CaO, Fe2O3, TiO2, K2O, P2O5, Cr2O3, ZnO, MgO, Na2O, Li2O, CeO2, ZrO2 and MnO2 and methods for preparation the same.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: November 30, 2004
    Assignee: GlassCerax Ltd.
    Inventors: Alexander Raichel, Svetlana Raichel
  • Patent number: 6825141
    Abstract: A candidate composition is prepared. For the candidate composition, the basicity was calculated. With reference to the basicity thus calculated, the fusibility with a mold is evaluated. With reference to the result of evaluation, the composition is determined. A glass material is prepared to have the determined composition, melted, and formed. Thus, a mold-press forming glass having the basicity adjusted to be equal to 11 or less is produced.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: November 30, 2004
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Fumio Sato
  • Patent number: 6822383
    Abstract: In order to suppress production of devitrifying stones such as barium disilicate and strontium silicate and to achieve a high X-ray absorbability, a CRT panel glass does not substantially contain PbO and contains, in mass percent, 9-9.5% SrO and 8.5-9% BaO. In addition, the value of SrO/(SrO+BaO) is set to 0.50-0.53. Therefore, the CRT panel glass has an X-ray absorption coefficient of 28.0 cm−1 or more at 0.6 Å.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 23, 2004
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Hiroshi Komori, Hiroki Yamazaki
  • Patent number: 6821628
    Abstract: The cooking panel is made from an opaque glass-ceramic material uniformly colored throughout and having keatite mixed crystals as the predominant crystalline phase. The cooking panel is made by ceramicizing a ceramicizable glass or a transparent glass-ceramic with high quartz mixed crystals as the predominant crystalline phase in a definite color location range with a brightness parameter value (L*) less than 85 and a color shade and chromaticity according to its later service and wear pattern. The cooking panel makes deposited material, such as dirt and the like, less conspicuous.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 23, 2004
    Assignee: Schott Glas
    Inventors: Bernd Schultheis, Waldemar Weinberg, Monica Cotlear De Witzmann, Roland Dudek, Friedrich Siebers, Klaus Schoenberger
  • Patent number: 6794043
    Abstract: There is provided a glass-ceramic which is suitable for use as a light filter. The glass-ceramic has Young's modulus (GPa) within a range from 95 to 120 and includes 5.3-8 weight percent of Al2O3, 0.5-3.5 weight percent of ZrO2 and 71-81 weight percent of SiO2, based respectively on the total content of the oxides. The glass-ceramic preferably has, as its predominant crystal phases, (a) lithium disilicate (Li2O.2SiO2) and (b) at least one of &agr;-quartz (&agr;-SiO2) and &agr;-quartz solid solution (&agr;-SiO2 solid solution), has specific gravity within a range from 2.4 to 2.6 and has a coefficient of thermal expansion within a range from 65×10−7/° C. to 130×10−7/° C. within a temperature range from −50° C. to +70° C.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: September 21, 2004
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Naoyuki Goto, Junko Ishioka, Yasuyuki Kawashima
  • Patent number: 6780803
    Abstract: The ultraviolet/infrared absorbent low transmittance glass consists of base glass including: 65 to 80 wt. % SiO2; 0 to 5 wt. % Al2O3; 0 to 10 wt. % MgO; 5 to 15 wt. % CaO (a total amount of MgO and CaO is between 5 to 15 wt. %); 10 to 18 wt. % Na2O; 0 to 5 wt. % K2O (a total amount of Na2O and K2O is between 10 to 20 wt. %); and 0 to 5 wt. % B2O3; and colorants including: 1.2 to 2.2 wt. % total iron oxide (T-Fe2O3) expressed as Fe2O3; greater than 0.03 wt. % CoO; less than 0.0001 wt. % Se; and 0 to 0.2 wt. % NiO. The glass has a visible light transmittance measured by the illuminant A of not greater than 12% in case that the glass has a thickness of 4 mm. The glass has almost neutral color such as bluish green shade or deep green shade, low visible light transmittance, low solar energy transmittance and low ultraviolet transmittance, so that it is useful for windows of vehicles or buildings particularly for thickness and weight reduction of a privacy preventing glass.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 24, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Hiromitsu Seto, Yukihito Nagashima, Shigekazu Yoshii
  • Patent number: 6764746
    Abstract: An object of the invention is to provide a low temperature fired porcelain having an optimum firing temperature not higher than 1000° C. a reduced dielectric constant ∈ r, an improved quality coefficient and a low incidence of cracks. The invention provides a low temperature-fired porcelain comprising a barium component in a calculated amount of 10 to 64 weight percent when calculated as BaO, a silicon component in a calculated amount of 20 to 80 weight percent when calculated as SiO2, an aluminum component in a calculated amount of 0.1 to 20 weight percent when calculated as Al2O3, a boron component in a calculated amount of 0.3 to 1.0 weight percent when calculated as B2O3 a zinc component in a calculated amount of 0.5 to 20 weight percent when calculated as ZnO, and a bismuth component in a calculated amount of not higher than 20 weight percent when calculated as Bi2O3.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 20, 2004
    Assignees: NGK Insulators, Ltd., Soshin Electric Co., Ltd.
    Inventors: Takeshi Oobuchi, Yoshiaki Naruo, Yoshinori Ide
  • Patent number: 6733891
    Abstract: Rolls include a core and a glass outer coating on the core. The glass can be electrically charged and discharged. The outer coatings have smooth finishes and controlled electrical properties. The outer coatings can also provide selected mechanical, chemical and thermal properties. The rolls can be used in various applications in which controlled electrical properties are desired. For example, the rolls can be used as charge donor rolls in electrostatographic imaging apparatus.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: May 11, 2004
    Assignee: Xerox Corporation
    Inventors: Christopher D. Blair, Timothy R. Jaskowiak
  • Publication number: 20040079258
    Abstract: The invention relates to the use of ions of weakly basic oxides as linking ions for polyacids in cements, preferably polyelectrolyte cements. Suitable ions comprise elements of the scandium series, for example, Sc3+, Y3+, La3+, Ce4+ and all subsequent tri- and tetra-valent lanthanides and the ions Mg2+, Zn2+, Ga2+, In2+. The application of said ions permits a regulation of the cement reaction without surface treatment of the glass powder.
    Type: Application
    Filed: December 8, 2003
    Publication date: April 29, 2004
    Inventors: Stefan Hoescheler, Markus Mikulla, Gabriele Rackelmann, Volker Bambach
  • Patent number: 6716781
    Abstract: The lead-free optical glasses have an index of refraction (nd) between 1.49 and 1.55 and an Abbé number (&ngr;d) between 47 and 59. They contain (in percent by weight on an oxide basis) 60 to 70, SiO2; 0.3 to 5, Al2O3; 16 to 25, Na2O; 0 to 9, TiO2; 0 to 7, advantageously 0.1 to 2, ZrO2; 0 to <0.5, Nb2O5; 0 to 7, Ta2O5 and 0 to 3, F. The lead-free optical glass is advantageously free of arsenic oxide, except for impurities, and contains antimony oxide as a fining agent.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 6, 2004
    Assignee: Schott Glas
    Inventors: Silke Wolff, Peter Brix, Ute Woelfel
  • Publication number: 20040063564
    Abstract: A glass substrate for use as the substrate of an information recording medium such as a magnetic disk, magneto-optical disk, DVD, or MD or of an optical communication device, and a glass composition for making such a glass substrate, contains the following glass ingredients: 45 to 75% by weight of SiO2; 1 to 20% by weight of Al2O3; 0 to 15% by weight, zero inclusive, of B2O3; SiO2+Al2O3+B2O3 accounting for 65 to 90% by weight; a total of 7 to 20% by weight of R2O compounds, where R=Li, Na, and K; and a total of 0 to 12% by weight, zero inclusive, of R′O compounds, where R′=Mg, Ca, Sr, Ba, and Zn. Moreover, the following conditions are fulfilled: B2O3=0% by weight, or Al2O3/B2O3≧1.0; and (SiO2+Al2O3+B2O3)/(the total of R2O compounds+the total of R2O compounds)≧3.
    Type: Application
    Filed: June 13, 2003
    Publication date: April 1, 2004
    Applicant: MINOLTA CO., LTD.
    Inventors: Hideki Kawai, Toshiharu Mori
  • Patent number: 6713180
    Abstract: Glazing, thermally tempered to required standards, are produced more readily by tempering panes having a high coefficient of thermal expansion (greater than 93×10−7 per degree Centigrade) and for a low Fracture Toughness (less than 0.72 MPam½). Use of glasses selected according to the invention enables thin glazings (especially glazings less than 3 mm thick) to be tempered to automotive standard with improved yields using conventional tempering methods, and thicker glazings to be tempered at lower quench pressure than required hitherto. Suitable glasses include glasses comprising, in percentages by weight, 64 to 75% SiO2, 0 to 5% Al2O3, 0 to 5% B2O3, 9 to 16% alkaline earth metal oxide other than MgO, 0 to 2% MgO, 15 to 18% alkali mental oxide and at least 0.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: March 30, 2004
    Assignee: Pilkington plc
    Inventors: Ashley Carl Torr, Louise Sara Butcher, Kevin Jones, Alan Charles Woodward
  • Patent number: 6677046
    Abstract: A glass ceramic having properties of low thermal expansion, high transmittance in a visible light region and low specific gravity, and a glass ceramic substrate made of the glass ceramic are provided. The glass ceramic has a crystal phase containing a &bgr;-quartz solid solution precipitated by heat treatment of a matrix glass for a glass ceramic, and the matrix glass has a glass composition comprising 55 to 70 mol % of SiO2, 13 to 23 mol % of Al2O3, 11 to 21 mol % of an alkali metal oxide, provided that the alkali metal oxide contains 10 to 20 mol % of Li2O and contains 0.1 to 3 mol % of Na2O and K2O in total, 0.1 to 4 mol % of TiO2 and 0.1 to 2 mol % of ZrO2, the total content of said components being at least 95 mol %, and further comprising 0 to less than 0.2 mol % of BaO, 0 to less than 0.1 mol % of P2O5, 0 to less than 0.3 mol % of B2O3 and 0 to leas than 0.1 mol % of SnO2.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: January 13, 2004
    Assignee: Hoya Corporation
    Inventors: Yoichi Hachitani, Keiji Hosoda, Kenji Matsumoto
  • Publication number: 20030129329
    Abstract: A component of a thermal processing apparatus for a fluid stream of hydrocarbons, a precursor glass for a glass-ceramic coating on such component, and a method of inhibiting deposition of a material, such as carbon, on a surface of the component.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 10, 2003
    Inventor: David G. Grossman
  • Patent number: 6582826
    Abstract: There is provided a glass-ceramic substrate which is suitable for use as a light filter. The glass-ceramic has a Young's modulus (GPa) within a range from 95 to 120 and includes 5.3 to 8 weight percent (expressed on an oxide basis) of Al2O3. Tile glass ceramic substrate preferably has, as its predominant crystal phases, (a) lithium disilicate (Li2O·2SiO2) and b) at least one of &agr;-quartz (&agr;-SiO2) and &agr;-quartz solid solution (&agr;-SiO2 solid solution), has a specific gravity within a range from 2.4 to 2.6 and has a coefficient of thermal expansion within a range from 65×10−7/° C. to 130×10−7/° C. within a temperature range from −50° C. to +70° C.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: June 24, 2003
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Naoyuki Goto, Junko Ishioka, Yasuyuki Kawashima
  • Patent number: 6551952
    Abstract: The lead-free optical light flint glass material has a refractive index nd between 1.54 and 1.61 and an Abbe number &ngr;d of between 38 and 45. It has a composition, based on oxide content, of SiO2 from 52 to 62% by weight, Al2O3 from 3 to 8% by weight, Na2O from 7 to 14% by weight, K2O from 8 to 14% by weight, TiO2 from 13 to 18% by weight, ZrO2 from 0 to 5% by weight, with at least one refining agent, if needed, in an amount suitable for the purposes of refining; and with the proviso that a sum total of Na2O and K2O present is greater than 18% by weight.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: April 22, 2003
    Assignee: Schott Glas
    Inventors: Silke Wolff, Peter Brix, Ute Woelfel
  • Publication number: 20030040424
    Abstract: The lead-free optical glasses have an index of refraction (nd) between 1.49 and 1.55 and an Abbé number (&ngr;d) between 47 and 59. They contain (in percent by weight on an oxide basis) 60 to 70, SiO2; 0.3 to 5, Al2O3; 16 to 25, Na2O; 0 to 9, TiO2; 0 to 7, advantageously 0.1 to 2, ZrO2; 0 to <0.5, Nb2O5; 0 to 7, Ta2O5 and 0 to 3, F. The lead-free optical glass is advantageously free of arsenic oxide, except for impurities, and contains antimony oxide as a fining agent.
    Type: Application
    Filed: July 9, 2002
    Publication date: February 27, 2003
    Inventors: Silke Wolff, Peter Brix, Ute Woelfel
  • Patent number: 6524685
    Abstract: A high performance green glass composition containing at least 14.5% by weight Na2O, at least 10.5% by weight CaO, at least 0.5% by weight total iron (measured as Fe2O3) and is substantially magnesium-free, the glass thus produced having a ferrous value of at least 30% and a performance (light transmission minus Direct Solar Heat Transmission) of at least 28% at at least one thickness of 2.8 mm to 5 mm. The invention also relates to glasses made from such composition and to a laminated glass assembly in which two sheets of glass sandwich a polymeric material, at least one, preferably both, of the sheets of glass having such a composition.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: February 25, 2003
    Assignee: Pilkington plc
    Inventors: Ashley Carl Torr, Louise Sara Butcher
  • Patent number: 6511932
    Abstract: A graded index lens is obtained by treating a raw glass material having a rod shape by ion exchange using silver to form a refractive index distribution in the radial direction of the rod, wherein the raw glass material comprises a glass composition of the following components: 15<Na2O≦30 mol %; 10<Al2O3≦25 mol %; 27.5≦SiO2≦55 mol %; 3≦B2O3≦18 mol %; 2.5≦MgO≦18 mol %; 0≦Ta2O5≦5 mol %; 0≦La2O3≦3 mol %; 0≦BaO≦3 mol %; and 0≦ZrO2≦3 mol %.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: January 28, 2003
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Jun Yamaguchi, Shigeo Kittaka
  • Patent number: 6506487
    Abstract: A laminated glass comprising plural glass sheets and an interlayer interposed between the plural glass sheets, wherein the interlayer is an organic resin film having IR cutoff fine particles with diameters of at most 0.2 &mgr;m dispersed therein, the product of the solar transmittances of the respective glass sheets is from 0.3 to 0.6, and the content of the IR cutoff fine particles dispersed in the interlayer is from 0.1 to 0.5 parts by mass in relation to 100 parts by total mass of the interlayer.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: January 14, 2003
    Assignee: Asahi Glass Company, Limited
    Inventor: Kuniko Nagai
  • Patent number: 6503860
    Abstract: According to one aspect of the present invention an optically active glass contains Sb2O3, up to about 4 mole % of an oxide of a rare earth element, and 0-20 mole % of a metal halide selected from the group consisting of a metal fluoride, a metal bromide, a metal chloride, and mixtures thereof, wherein this metal is a trivalent metal, a divalent metal, a monovalent metal, and mixtures thereof. In addition, any of the glass compositions described herein may contain up to 15 mole % B2O3 substituted for an equivalent amount of Sb2O3.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: January 7, 2003
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Adam J. G. Ellison, Alexandre M. Mayolet, Michel Prassas
  • Publication number: 20020183187
    Abstract: The invention relates to a glass and a glass-ceramic comprising beta-quartz and/or keatite solid solutions, and to a process for their production, and to their use as substrate material for coating. Glass-ceramic comprising beta-quartz and/or keatite solid solutions with a surface roughness without polishing of Ra<50 nm, a thermal expansion in the temperature range between 20° C. and 300° C. of <1.2·10−6/K, a transmission in the near infrared region at 1050 nm of >85% for a 4 mm thickness, and a composition in % by weight, based on the total composition, containing: 1 Li2O 3.0-5.5 Na2O 0-2.5 K2O 0-2.0 &Sgr; Na2O + K2O 0.5-3.0 &Sgr; MgO + ZnO <0.3 SrO 0-2.0 BaO 0-3.5 B2O3 0-4.0 Al2O3 19.0-27.0 SiO2 55.0-66.0 TiO2 1.0-5.5 ZrO2 0-2.5 &Sgr; TiO2 + ZrO2 3.0-6.0 P2O5 0-8.0 Fe2O3 <200 ppm F 0-0.
    Type: Application
    Filed: February 5, 2002
    Publication date: December 5, 2002
    Inventors: Friedrich Siebers, Hans-Werner Beudt, Dirk Sprenger
  • Patent number: 6436858
    Abstract: The principal object of the present invention is organic lens molds, constituted wholly or in part of at least one specific inorganic glass, advantageously strengthened by a chemical tempering or a thermal tempering. Said glass has the following composition, expressed in percentages by weight: SiO2 56-66, Al2O3 2.5-10, B2O3 0.5-7, Li2O 0-3, Na2O 8-15, K2O 3-12, with Li2O+Na2O+K2O 12-20, ZnO 2-12, MgO 0-3, TiO2 0-0.5, ZrO2 1-9, CaO 0-1, BaO 0-2, SrO 0-2, with MgO+CaO+SrO+BaO 0-5, Cl 0-0.5, As2O3+sb2O3 0-1. The invention also deals with novel inorganic glasses which have the above composition with a single exception relative to the Al2O3 content: Al2O3 2.5-4.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: August 20, 2002
    Assignee: Corning S.A.
    Inventors: Pascale Laborde, Daniel L. G. Ricoult