Containing Two Or More Different Component B Metals Patents (Class 502/113)
  • Patent number: 7518023
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 14, 2009
    Assignee: Shell Internationale Research Maatschappij, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7514585
    Abstract: The present invention relates to a process for producing an aliphatic amine, including the step of contacting a linear or branched, or cyclic aliphatic alcohol with ammonia and hydrogen in the presence of a catalyst containing (A) nickel, copper and zirconium components, and (B) at least one metal component selected from the group consisting of elements belonging to Group 3 of the Periodic Table, elements belonging to Group 5 of the Periodic Table and platinum group elements. According to the process of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with a high selectivity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 7, 2009
    Assignee: Kao Corporation
    Inventors: Tetsuaki Fukushima, Masaharu Jono, Michio Terasaka
  • Patent number: 7507863
    Abstract: The present invention relates to a process for producing an aliphatic amine, including the step of contacting a linear or branched, or cyclic aliphatic alcohol with ammonia and hydrogen in the presence of a catalyst containing (A) nickel, copper and zirconium components, and (B) at least one metal component selected from the group consisting of elements belonging to Group 1 of the Periodic Table. According to the process of the present invention, an aliphatic primary amine can be produced from the aliphatic alcohol with a good yield and a high productivity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: March 24, 2009
    Assignee: Kao Corporation
    Inventors: Tetsuaki Fukushima, Masaharu Jono, Michio Terasaka
  • Patent number: 7504357
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 17, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7498289
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: March 3, 2009
    Assignee: Celanese International Corporation
    Inventor: Yumin Liu
  • Publication number: 20090043061
    Abstract: A complex compound comprising the skeletal unit (A), wherein the ring C(R1)-A1-A2-(A3)x-C(R2)—C— has delocalised unsaturation and is optionally substituted via one or more of A1, A2 and A3 by hydrogen, alkyl, aryl, halogen, or heterocyclic groups containing at least one N, S or O in a carbon ring; A1, A2 and A3 are carbon, nitrogen and, oxygen, R1 and R2 are hydrocarbyl, chlorine, bromine and iodine at least one of R1 and R2 being chlorine, bromine or iodine; x is zero or 1, 0 is oxygen, E is nitrogen, phosphorus or arsenic, Q is a divalent bridging group comprising one or more Group 14 atoms; X is a monovalent atom or group covalently or ionically bonded to M; L is a mono- or bidentate molecule datively bound to M, y satisfies the valency of M and z is from 0 to 5. The complex can be used to polymerise olefins optionally with organo-A1 or -B compounds as activator.
    Type: Application
    Filed: September 15, 2006
    Publication date: February 12, 2009
    Inventors: Vernon Charles Gibson, Daniel Charles Howard Oakes
  • Patent number: 7479529
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: January 20, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Publication number: 20080306227
    Abstract: An oxygen-bridged bimetallic complex of the general formula (I) Cp2R1M1-O-M2R22Cp, ??(I) wherein Cp is independently a cyclopentadienyl, indenyl or fluorenyl ligand which can be substituted, or a ligand isolobal to cyclopentadienyl, R1, R2 independently are halide, linear or branched or cyclic alkyl, aryl, amido, phosphido, alkoxy or aryloxy groups, which can be substituted, M1 is Zr, Ti or Hf, and M2 is Ti, Zn, Zr or a rare earth metal. The complex can be useful as a polymerization catalyst.
    Type: Application
    Filed: April 28, 2008
    Publication date: December 11, 2008
    Inventors: Herbert W. Roesky, Prabhuodeyara M. Gurubasavaraj
  • Publication number: 20080287721
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, typically using a supported catalyst composition. In one aspect, this invention encompasses precontacting a metallocene with a borinic acid or boronic acid prior to contacting this mixture with the acidic activator-support and an organoaluminum compound.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Applicant: Chevron Phillips Chemical Company
    Inventors: Qing Yang, Michael D. Jensen, Matthew G. Thorn, Kumudini C. Jayaratne, Tony R. Crain
  • Patent number: 7435701
    Abstract: A catalytic composition, including a neutral metal-pair complex, is disclosed, along with a method for its preparation. A method for the polymerization of ethylenically unsaturated monomers using the catalytic composition, and the addition polymers produced thereby are also disclosed.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: October 14, 2008
    Assignee: Rohm and Haas Company
    Inventors: Han Shen, Brian Leslie Goodall
  • Patent number: 7432220
    Abstract: The invention is directed to a process for producing a particulate support for an olefin polymerisation catalyst wherein a solution of a magnesium compound is contacted with a solution of an element of Group (13 or 14) of the Periodic Table (IUPAC) to obtain a solid reaction product. In the process of the invention the solid reaction product is formed by: i) contacting (a) a solution of a magnesium hydrocarbyloxy compound with (b) a solution of a halogen-containing compound of an element of Group (13 or 14) of the Periodic Table (IUPAC); and ii) recovering the solidified reaction product from the reaction mixture.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 7, 2008
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel, Kari Pesonen
  • Patent number: 7429635
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 30, 2008
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7410925
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula BiL1r, a compound represented by the formula R1s-1TH, and a compound represented by the formula R23-nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: August 12, 2008
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuo Takaoki
  • Patent number: 7410926
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: August 12, 2008
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7402637
    Abstract: The invention relates to a method for producing a poly-1-olefin by polymerization of a 1-olefin of the formula R4C?CH2, in which R4 is hydrogen or an alkyl radical having from 1 to 10 carbon atoms, in suspension, in solution or in the gas the gas phase, at a temperature of from 20 to 200° C. and a pressure of from 0.5 to 50 bar, in the presence of a catalyst which consists of the product of the reaction of a magnesium alkoxide with a transition-metal compound (component a) and an organometallic compound (component b), whose component (a) has been produced by reacting a transitionmetal compound of titanium, zirconium, vanadium or chromium with a gelatinous dispersion of the magnesium alkoxide in an inert hydrocarbon.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: July 22, 2008
    Assignee: Bassell Poliolefine GmbH
    Inventors: Ludwig Böhm, Joachim Berthold
  • Publication number: 20080146755
    Abstract: A catalyst composition for polymerizing olefins to polymers having bimodal molecular weight distribution comprises two transition metal-containing metallocene compounds, a magnesium compound, an alcohol, an aluminum containing co-catalyst and a polymeric support. The transition metal in one of the metallocene compounds is zirconium and the transition metal in the second metallocene compound is selected from the group consisting of titanium, vanadium and hafnium. Polyolefin polymers made using the catalyst composition have broad molecular weight distributions and are useful in film and blow molding applications.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 7384885
    Abstract: The present invention relates to the removal of hydrocarbon residues from a catalyst and more specifically the air activation of a catalyst containing hydrocarbon residues. It also relates to extruded pipe and utility conduit resins comprising polyethylene, household/industrial chemicals container resins, and to a polyethylene resin particularly suitable for large parts by blow molding and sheet extrusion procedures, wherein the resin is made by a process using an activated chromium and titanium-based catalyst.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Scott T. Roger, Thomas W. Towles, Anthony N. Speca, Stanley J. Katzen
  • Patent number: 7381778
    Abstract: This invention relates to a method of preparing a supported catalyst comprising the steps of contacting a solid titanium with a supported catalyst compound, and heating the combination to at least 150° C.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stanley J. Katzen, Anthony N. Speca
  • Patent number: 7378537
    Abstract: A metal complex comprising a metal compound complexed to a heteroatomic ligand, the metal complex having Structure X: wherein R1, R2, R3, and R4 are each independently an alkyl group, a cycloalkyl group, a substituted cycloalkyl group, an aromatic group, or a substituted aromatic group, R1c, R2c, R3c, R4c, and R5c are each independently hydrogen or an alkyl group, and MXp comprises a group IVB, VB, or VIB metal. A metal complex comprising a metal compound complexed to a diphosphino aminyl ligand comprising at least two diphosphino aminyl moieties and a linking group linking each aminyl nitrogen atom of the diphosphino aminyl moieties.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: May 27, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Jeffery C. Gee
  • Patent number: 7348383
    Abstract: A Ziegler-Natta catalyst composition comprising a solid mixture formed by halogenation of: Al) a spray-dried catalyst precursor comprising the reaction product of a magnesium compound, a non-metallocene titanium compound, and at least one non-metallocene compound of a transition metal other than titanium, with A2) an organoaluminium halide halogenating agent, a method of preparing, precursors for use therein, and olefin polymerization processes using the same.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: March 25, 2008
    Assignee: Union Carbide Chemicals and Plastics Technology Corporation
    Inventors: Mary T. Zoeckler, Burkhard E. Wagner, Sun-Chueh Kao
  • Patent number: 7348384
    Abstract: Novel supported, titanized chromium catalysts for the homopolymerization of ethylene and the copolymerization of ethylene with ?-olefins, a process for preparing them and to their use for the polymerization of olefins.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: March 25, 2008
    Assignee: Basell Polyolefine GmbH
    Inventors: Martin Schneider, Rainer Karer, Dieter Lilge, Volker Rauschenberger, Philipp Rosendorfer, Joachim Wulff-Döring, Günther Schweier, Martin Lux, Peter Bauer
  • Patent number: 7326760
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: February 5, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Publication number: 20080027188
    Abstract: A metal complex comprising a metal compound complexed to a heteroatomic ligand, the metal complex having Structure X: wherein R1, R2, R3, and R4 are each independently an alkyl group, a cycloalkyl group, a substituted cycloalkyl group, an aromatic group, or a substituted aromatic group, R1c, R2c, R3c, R4c, and R5c are each independently hydrogen or an alkyl group, and MXp comprises a group IVB, VB, or VIB metal. A metal complex comprising a metal compound complexed to a diphosphino aminyl ligand comprising at least two diphosphino aminyl moieties and a linking group linking each aminyl nitrogen atom of the diphosphino aminyl moieties.
    Type: Application
    Filed: July 25, 2006
    Publication date: January 31, 2008
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Jeffery C. Gee
  • Patent number: 7294600
    Abstract: The present invention relates to a supported metallocene catalyst used for preparing polyolefin whose physical properties and molecular weight distribution can be easily controlled, a method for preparing the same, and a method for preparing polyolefin using the same, more particularly to a support metallocene catalyst wherein at least two kinds of metallocenic transition compounds are supported on a metal oxide such as silica, a method for preparing the same, and a method for preparing polyolefin using the same.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 13, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Ki-Soo Lee, Hyo-Sun Lee, Eun-Jung Lee, Sang-Woo Lee, Choong-Hoon Lee
  • Patent number: 7276566
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 2, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten Anne Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7271120
    Abstract: A catalyst for the preparation of dimethyl carbonate from urea and methanol having a composition on weight base of: active component of from 20 to 50 wt %, and carrier of from 80 to 50 wt %, and prepared by equal-volume spraying and impregnating method is disclosed. The method for the synthesis of dimethyl carbonate can be carried out in a catalytic rectification reactor, said method comprising: (1) dissolving urea in methanol to form a methanol solution of urea; and (2) feeding the methanol solution of urea and methanol counter-currently into the reaction zone, wherein the reaction is carried out at conditions including reaction temperature of from 120° C. to 250° C., reaction pressure of from 0.1 MPa to 5 MPa, kettle bottom temperature of from 70° C. to 210° C., stripping section temperature of from 70° C. to 250° C., rectifying section temperature of from 70° C. to 280° C., and reflux ratio of from 1:1 to 20:1.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: September 18, 2007
    Assignees: Institute of Coal Chemistry, Chinese Academy of Sciences, Feicheng Acid Chemicals Co., Ltd.
    Inventors: Yuhan Sun, Wei Wei, Ning Zhao, Baoyuan Sun, Bingsheng Zhang, Yanjun Chen
  • Patent number: 7271126
    Abstract: A method for producing a catalyst for use in the dehydrogenation of ethylbenzene to styrene is disclosed. The catalyst of the present invention comprises a high purity metal and at least one promoter in the form of solid oxides, oxide hydrates, hydroxides, hydroxycarbonates or metals. The catalyst is prepared via a method which comprises the preparation of at least one high purity iron precursor with or without an additional support material and which uses a nominal amount of water in the catalyst production. The catalyst pellets prepared with the high purity metal precursor are essentially free of sulfur and chloride contaminants.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: Dennis J. Smith, Robert J. O'Brien, X. D. Hu
  • Patent number: 7271124
    Abstract: A process to produce ethylene polymers is provided.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 18, 2007
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 7262259
    Abstract: This invention relates to a method to polymerize olefins comprising contacting a solid aluminum or solid titanium compound with a supported catalyst compound, heating the solid aluminum or solid titanium compound to cause the solid compound to vaporize, optionally activating the support by oxidation, thereafter contacting the activated support with one or more olefin monomers.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: August 28, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stanley J. Katzen, Anthony N. Speca
  • Patent number: 7259123
    Abstract: A catalyst precursor composition comprising a) a source of chromium, molybdenum or tungsten; b) a first ligand having the general formula (I); (R1)(R2)P—X—P(R3)(R4)??(I) wherein X is a bivalent organic bridging group; R1 and R3 are independently selected from, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl groups, with the proviso that when R1 and R3 are aromatic groups they do not contain a polar substituent at any of the ortho-positions; R2 and R4 are independently selected from optionally substituted aromatic groups, each R2 and R4 bearing a polar substituent on at least one of the ortho-positions; and c) a second ligand having the general formula (II); (R1?)(R2?)P—X?—P(R3?)(R4?)??(II) wherein X? is a bridging group of the formula —N(R5?)—, wherein R5? is selected from hydrogen, a hydrocarbyl group, a substituted hydrocarbyl group, a heterohydrocarbyl group, a substituted heterohydrocarbyl group, a silyl group or derivative thereof; and R1?, R2?, R3? and R4?
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: August 21, 2007
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Publication number: 20070179046
    Abstract: Provided is catalyst composition including a transition metal complex precatalyst represented by Formula 1; a first cocatalyst represented by Formula 2 which is an alkylaluminum compound; and a second cocatalyst represented by Formula 3 which is a salt compound comprising a Bronsted acid cation and a noncoordinating, compatible anion. Here, R1, R2, R3, R4, E, Q1, Q2 and M are defined in the specification. Al(R6)3 Formula 2 Here, R6 is defined in the specification. [L-H]+[ZA4]? Here, L, [L-H]+, Z and A are defined in the specification. A catalyst composition including binuclear transition metal complexes, an alkylaluminum compound, and a salt compound including a Bronsted acid cation, and a noncoordinating, compatible anion, and a method of preparing the catalyst composition are provided. The activity of the catalyst composition has been improved.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 2, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Eunjung LEE, Choong Hoon LEE, Seungwhan JUNG, Jung A LEE, Boram LEE
  • Patent number: 7229945
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a two-part synthesis of the catalyst with the water insoluble components in one part and the water soluble components in the other part. The water insoluble components are co-precipitated to form an intermediate catalyst precursor of a precipitated support incorporating oxides of the metal components. The intermediate catalyst precursor is filtered and washed to remove nitrates. The intermediate catalyst precursor is slurried with the remaining water soluble components. A final catalyst precursor is formed by removing the water and incorporating the water soluble components. This two-part process reduces the amount of nitrates in the final catalyst precursor.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industrics Corporation
    Inventor: James W. Kauffman
  • Patent number: 7229943
    Abstract: A polymerisation catalyst comprising (1) a transition metal compound of Formula A, and optionally (2) an activating quantity of a Lewis acid activator. Z is a five-membered heterocyclic group containing at least one carbon atom, at least one nitrogen atom and at least one other hetero atom selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being nitrogen or carbon; M is a metal from Group 3 to 11 of the Periodic Table or a lanthanide metal; E1 and E2 are divalent groups from (i) aliphatic hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon (v) heterocyclic groups and (vi) heterosubstituted derivatives of groups (i) to (v); D1 and D2 are donor groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integers. The catalysts are useful for polymerising or oligomerising 1-olefins.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: June 12, 2007
    Assignee: Innovene Europe Limited
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tomov
  • Patent number: 7220805
    Abstract: There are provided (1) a process for producing a contact product, which comprises the step of contacting at least a phthalocyanine complex, a porphyrin complex, or their combination with a surfactant; (2) a catalyst component for addition polymerization, which comprises said contact product; (3) a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component, a compound of a metal atom of Groups 3 to 12 or the lanthanide series, and an optional organoaluminum compound with one another; and (4) a process for producing an addition polymer, which comprises the step of polymerizing an addition polymerizable monomer in the presence of said catalyst.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: May 22, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuo Takaoki
  • Patent number: 7199077
    Abstract: A Fischer-Tropsch catalyst comprising iron and at least one promoter is prepared via a method which comprises the preparation of a high purity iron precursor and which uses a nominal amount of water in the catalyst production. The catalyst particles prepared with the high purity iron precursor have an essentially spherical particle shape, a relatively narrow particle size distribution range, and a high surface area.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: April 3, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: X. D Hu, Robert J. O'Brien, Richard Tuell, Esternio Conca, Carlo Rubini, Guido Petrini
  • Patent number: 7199073
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, a third metallocene compound, a chemically-treated solid oxide, and an organoaluminum compound are provided. Methods for preparing and using the catalyst and polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having decreased haze while minimizing impact on other properties, such as dart impact.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Joel L. Martin, Elizabeth A. Benham, Mark E. Kertok, Michael D. Jensen, Max P. McDaniel, Gil R. Hawley, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia
  • Patent number: 7199212
    Abstract: A novel polymerization catalyst for polyesters, which does not contain any germanium or antimony compound as the main component; polyesters produced with the catalyst; and a process for producing polyesters. This polymerization catalyst is excellent in catalytic activity, little causes thermal degradation of polyesters in melt molding even when neither deactivated nor removed, and can give thermally stable polyesters which little generate foreign matter and are excellent in transparency and color. The polymerization catalyst is one which contains as the first metal-containing component at least one member selected from the group consisting of aluminum and aluminum compounds and which gives polyethylene terephthalate (PET) having a thermal stability parameter (TS) satisfying the relationship: (1) TS<0.3.
    Type: Grant
    Filed: December 25, 2000
    Date of Patent: April 3, 2007
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Kenichi Tsukamoto, Shoichi Gyobu, Maki Sato
  • Patent number: 7199074
    Abstract: A catalytic composition, including a cationic metal-pair complex, is disclosed, along with a method for its preparation. A method for the polymerization of ethylenically unsaturated monomers using the catalytic composition, and the addition polymers produced thereby are also disclosed.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: April 3, 2007
    Assignee: Rohm and Haas Company
    Inventors: Brian Leslie Goodall, Jennifer Lynn Petoff, Han Shen
  • Patent number: 7199072
    Abstract: A process for preparing a mixed catalyst compound used in the polymerization of polyolefins to produce bimodal polyethylenes is disclosed. In an embodiment, a process of preparing the mixed catalyst system includes: mixing a first catalyst and an activator in a first liquid medium to form a first mixture, combining a support with the first mixture to form a first support slurry, drying the first support slurry in an extent sufficient to provide a dried supported first catalyst, mixing the dried supported first catalyst in a second liquid medium to form a second support slurry, and combining one or more additional catalysts with the second support slurry to provide the mixed catalyst compound.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Donna Jean Crowther, John Francis Szul
  • Patent number: 7192901
    Abstract: This invention relates to a method of preparing a supported catalyst comprising the steps of contacting a solid titanium or solid aluminum compound with a supported catalyst compound, and heating the combination to at least 150° C.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stanley J. Katzen, Anthony N. Speca
  • Patent number: 7172990
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 6, 2007
    Assignee: Shell Internationale Research Maatschappiji, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7172987
    Abstract: Bimetallic catalysts, and methods of producing a bimetallic catalyst comprising a modified Ziegler-Natta catalyst and a metallocene are provided, in one embodiment the method including combining: (a) a Ziegler-Natta catalyst comprising a Group 4, 5 or 6 metal halide and/or oxide, optionally including a magnesium compound, with (b) a modifier compound (“modifier”), wherein the modifier compound is a Group 13 alkyl compound, to form a modified Ziegler-Natta catalyst. Also provided is a method of olefin polymerization using the bimetallic catalyst of the invention. The modified Ziegler-Natta catalyst is preferably non-activated, that is, it is unreactive towards olefin polymerization alone. In one embodiment, the molar ratio of the Group 13 metal (of the modifier) to the Group 4, 5 or 6 metal halide and/or oxide is less than 10:1 in one embodiment.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: February 6, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Sun-Chueh Kao, Michael D. Awe
  • Patent number: 7153804
    Abstract: The present invention provides a catalyst component for ethylene polymerization, a process for preparing the same, a catalyst comprising the same, and a process for polymerizing ethylene using the catalyst. The catalyst component comprises a reaction product, supported on an inorganic oxide support, of a magnesium complex, a titanium compound, an alcohol compound, and an organoaluminum compound, wherein said magnesium complex is formed by dissolving a magnesium halide in a solvent system comprising an organic epoxy compound and an organo phosphorus compound. The catalyst according to the invention is especially suitable for slurry phase polymerization of ethylene. The catalyst according to the present invention has high catalytic activity, and a good hydrogen response, with the resultant polymer having a more uniform particle size diameter and a narrow particle size distribution.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: December 26, 2006
    Assignees: China Petroleum & Chemical Corporation, Beijing Reasearch Institute of Chemical Industry
    Inventors: Wei Chen, Zifang Guo, Junling Zhou, Hongxu Yang, Ruixia Li, Ruiping Wang, Yuexiang Liu, Hongtao Wang, Jingmei Zhang, Xiaojing Cheng
  • Patent number: 7148302
    Abstract: This invention is based upon the discovery that a catalyst system which is comprised of (a) palladium or a palladium compound and (b) a fluorinated alcohol is effective for polymerizing norbornene-functional monomers into polynorbornene-functional polymers. It has been further discovered that this catalyst system is more effective in polymerizing certain norbornene-functional monomers that are difficult to polymerize, such as norbornene ester monomers, than prior art catalyst systems. The activity of the catalyst systems of this invention can be further improved with respect to polymerizing some monomers by including a Lewis acid and/or a ligand, such as a phosphine or a carbene, in the system. In any case, the catalyst systems of this invention offer the advantage of being soluble in a wide variety of solvents, relatively inexpensive, and capable of polymerizing many norbornene-functional monomers that are difficult to polymerize with conventional catalyst systems.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: December 12, 2006
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: John-Henry Lipian
  • Patent number: 7129302
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component, This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 31, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 7122707
    Abstract: Coated catalysts which are suitable for the gas-phase catalytic oxidation of propene to acrolein are prepared by a process in which rings are used as supports and water is used as a binder.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: October 17, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Signe Unverricht, Heiko Arnold
  • Patent number: 7109277
    Abstract: A process to produce a polymer is provided. The process comprising contacting a treated solid oxide compound, an organometal compound, and an organoaluminum compound in the presence of an alpha olefin under polymerization conditions to produce the polymer.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: September 19, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Gil R. Hawley, Max P. McDaniel, Christopher E. Wittner, Michael D. Jensen, Joel L. Martin, Elizabeth A. Benham, Anthony P. Eaton, Kathy S. Collins
  • Patent number: 7087687
    Abstract: A catalytic composition, including a cationic metal-pair complex, is disclosed, along with a method for its preparation. A method for the polymerization of ethylenically unsaturated monomers using the catalytic composition, and the addition polymers produced thereby are also disclosed.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: August 8, 2006
    Assignee: Rohm and Haas Company
    Inventors: Brian Leslie Goodall, Jennifer Lynn Petoff, Han Shen
  • Patent number: 7084216
    Abstract: The present invention relates to a process for homopolymerization of ethylene or copolymerization of ethylene with alpha-olefins by contacting ethylene or ethylene and alpha-olefin with a catalyst composition comprising: (a) a solid catalyst precursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising an aluminum compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M. Hamed, Raju Raghavan, Sameh Rizkallah
  • Patent number: 7045481
    Abstract: Supported catalysts include a solid support such as silica that is functionalized to have inorganic acid functional groups attached thereto. Active catalyst particles are supported on the functionalized support material. The acid functionalized support material is made by reacting a solid support with an inorganic acid containing agent such as sulfuric acid or para-toluene sulfonic acid. An organic anchoring agent is used to form and anchor catalyst nanoparticles to the acid functionalized support material. The supported catalyst can be sized and shaped for use in any type of reactor, including a fixed bed or fluidized bed reactor. The methods of the present invention also include a process for the direct synthesis of hydrogen peroxide using the supported catalyst.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: May 16, 2006
    Assignee: Headwaters Nanokinetix, Inc.
    Inventors: Sukesh Parasher, Michael Rueter, Bing Zhou