Containing Two Or More Different Component B Metals Patents (Class 502/113)
  • Patent number: 7041617
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: May 9, 2006
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7022639
    Abstract: The present invention provides a catalytic activity accelerant. The accelerant is added to stock oil for increasing the catalyst activity, the depth of catalytic hydrogenation and the yield of catalytic hydrogenation product, degrading the reaction conditions of catalytic hydrogenation, and improving the quality of product. The catalytic activity accelerant is consisted of an alkyl succinimide derivative, an alkyl phenol and a surfactant. The amount of the alkyl succinimide derivative in the accelerant is 5-70 wt. %. The amount of the alkyl phenol in the accelerant is 2-70 wt. %. The amount of the surfactant in the accelerant is 2-70 wt. %.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: April 4, 2006
    Assignee: Nanjing University of Technology
    Inventors: Jintang Wang, Jianning Guan, Houliang Dai, Lijin Zhou, Minghui Tang, Yuming Zhang, Pingkai Ouyang, Chengfeng Li, Chaorong Dai, Jingyi Wang
  • Patent number: 7019089
    Abstract: Novel supported, titanized chromium catalysts can be used for the homopolymerization of ethylene and the copolymerization of ethylene with ?-olefins.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: March 28, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Martin Schneider, Rainer Karer, Dieter Lilge, Volker Rauschenberger, Philipp Rosendorfer, Joachim Wulff-Döring, Günther Schweier, Martin Lux, Peter Bauer
  • Patent number: 7019090
    Abstract: The present invention relates to a catalytic component for the polymerization of olefins combining a number of catalytic components for the polymerization of olefins and to a process for preparing it. The catalytic component according to the invention is obtained by impregnation of a prepolymer with a solution of a catalytic component for the polymerization of olefins. The invention brings about control of the combination of different catalytic components and provides for improvement in the control of the quality of the polymers manufactured by virtue of the catalytic action of the combined catalytic components. Another advantage of the invention is to be able to control the morphology and the particle size distribution of the polymers by choosing the morphology of a single catalytic component. The prepolymer and the polymer obtained from the catalytic component according to the invention are also subjects of the present invention.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: March 28, 2006
    Assignee: Total Petrochemicals France
    Inventor: Jean Malinge
  • Patent number: 7001962
    Abstract: A catalyst system comprises 1) a group 4 organometallic catalyst and 2) an activator comprising a solid zirconium acid component and a metal alkyl. The catalyst system is inexpensive and is highly active for the polymerization of olefins. Preferred organometallic catalysts contain a cyclopentadienyl ligand, a phosphinimine ligand and or a ketimide ligand.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: February 21, 2006
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Jessie Leighton, Matthew Gerald Kowalchuk, P. Scott Chisholm
  • Patent number: 6995218
    Abstract: The new metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene compound is a transition metal compound which a transition metal is coordinated with a main ligand such as cycloalkanedienyl group and an ancillary ligand. The functional groups of the compound having at least two functional groups are selected from the group consisting of a hydroxy group, a thiol group, a primary amine group, a secondary amine group, etc. The metallocene catalysts according to the present invention have a structure which an ancillary ligand of a metallocene compound is bonded with functional groups. A structure of the metallocene catalysts can be varied according to the metallocene compounds, the compound having at least two functional groups, and the molar ratio of each reactant. The metallocene catalyst is employed with a co-catalyst for styrene and olefin polymerization.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: February 7, 2006
    Assignee: Samsung General Chemicals Co. Ltd.
    Inventors: Yi-Yeol Lyu, Jin-Heong Yim
  • Patent number: 6992033
    Abstract: Process for preparing a catalyst composition for ethylene polymerization or copolymerization, with the steps of: (a) treating at least one magnesium alkoxide compound with the effluent waste from a process for production of a polypropylene catalyst of the Ziegler-Natta type, the effluent waste being mainly composed of about 10 to about 20 wt.-% transition metal based compounds, about 20 to about 50 wt.-% solvents, about 0 to about 2 wt.-% electron donors and impurities; (b) washing the product of step (a) with an inert hydrocarbon solvent; and (c) drying the material for use as the catalyst composition.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: January 31, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventor: Mansour Izzat Taftaf
  • Patent number: 6992034
    Abstract: A solid catalyst component useful for the (co)-polymerization of olefins is disclosed. The catalyst component is prepared by reacting an activated magnesium halide composite support with a halogenized transition metal compound and a chelating diamide compound in the presence of organo-magnesium as a promoting agent and halogenized silicon or boron compounds as an activator. The catalyst component can be used with an organo-aluminum compound to provide a solid catalyst system that is compatible with slurry and gas phase polymerization processes. Linear low density polyethylene (LLDPE) produced using the catalyst component of the present invention displays a low molecular weight distribution, improved co-monomer incorporation, low content of the low molecular weight component, and excellent morphological properties such as spherical shape and high bulk density.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6989347
    Abstract: A catalyst composition for the production of carboxylic acids by the oxidation of the corresponding unsaturated aldehydes, and methods for making and using the catalyst compositions. The catalysts include compositions of the formula: MoaVbAlcXdYeOz wherein X is at least one element selected from W and Mn; Y is at least one element selected from Pd, Sb, Ca, P, Ga, Ge, Si, Mg, Nb, and K; a is 1; b is 0.01–0.9; c is 0<0.2; d is 0<0.5; e is 0<0.5; and z is an integer representing the number of oxygen atoms required to satisfy the valency of the remaining elements in the composition. Using the catalyst composition of the present invention, one may effectively oxidize the desired starting materials at relatively high levels of conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 24, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Asad Ahmad Khan
  • Patent number: 6967184
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: November 22, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Patent number: 6964937
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 15, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 6943226
    Abstract: Novel compounds are provided that are useful as catalysts, particularly in the polymerization of addition polymerizable monomers such as olefinic or vinyl monomers. The compounds are multinuclear complexes of transition metals coordinated to at least one unsaturated nitrogenous ligand. Catalyst systems containing the novel compounds in combination with a catalyst activator are provided as well, as are methods of using the novel compounds in the preparation of polyolefins.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: September 13, 2005
    Assignee: SRI International
    Inventors: Christopher D. Tagge, Robert B. Wilson, Jr.
  • Patent number: 6943224
    Abstract: A process for forming a coordination catalyst system comprising sequentially or substantially simultaneously contacting: (I) pre-catalyst reactants comprising (a) at least one first ligand-containing reactant; and (b) at least one first transition metal reactant suitable to form at least one metallocene or constrained geometry pre-catalyst compound (e.g., rac-ethylene bis(indenyl)zirconiUm dichloride); an optionally (c) at least one second ligand-containing reactant and (d) at least one second transition metal reactant suitable to form at least one non-metallocene, non-constrained geometry, bidentate or tridentate transition metal compound (e.g., tridentate 2,6-diacetylpyridine-bis(2,4,6-trimethylanaline)FeCl2) and (II) further contacting, jointly or individually, the pre-catalyst compound(s) and optional bidentate or tridentate compound(s) with at least one support-activator agglomerate (e.g., spray dried silica/clay agglomerate).
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: September 13, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Keng-Yu Shih
  • Patent number: 6943134
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: September 13, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Patent number: 6936667
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: August 30, 2005
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Patent number: 6911410
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins results from dissolving a nickel compound, optionally mixed or complexed with a ligand, in a medium resulting from mixing: at least one quaternary ammonium halide and/or at least one quaternary phosphonium halide; at least one aluminum halide; and at least one aluminoxane.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: June 28, 2005
    Assignee: Institut Francais Du Petrole
    Inventors: Vincent Lecocq, Hélène Olivier-Bourbigou
  • Patent number: 6908876
    Abstract: The present invention relates to a supported catalyst system for olefin polymerization which comprises at least one metallocene component and a support of an inorganic oxide of silica, aluminum or a polymer containing hydroxyl groups. The support is modified with an organogermane and/or organotin compound. The inventive catalyst system produces minimal reactor fouling, has excellent productivity and good hydrogen responsiveness. The present invention also relates to a process for preparing the catalyst system and to the slurry/suspension or gas-phase polymerization of olefins using the catalytic system, optionally with a small amount of aluminoxane cocatalyst.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: June 21, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Muhammad Atiqullah, Akhlaq Moman, Muhammad Naseem Akhtar, Atieh Abu-Raqabah, Syriac J. Palackal, Muhammad A. Al-Saleh, Faizur Rahman, Muhammad Ibrahim, Javaid H. Khan
  • Patent number: 6897274
    Abstract: The present invention relates to a method for the prepolymerization of ?-olefin in the presence of a catalyst system which comprises (a) a magnesium supported solid complex titanium catalyst and (b) an organometallic compound of metal of Group I or III of the Periodic Table, characterized in that an inert solvent having high viscosity with molecular weight of 300 g/mole or more is used as a reaction medium.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: May 24, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Yoo-Kyoung Kim, Kun Lo, Il-Seop Kim
  • Patent number: 6887818
    Abstract: A supported titanium catalyst system comprising a titanium catalyst bound via at least one heteroatom, a functionalized support, said heteroatom being connected to said support via an organic group.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: May 3, 2005
    Assignee: Borealis Technology Oy
    Inventors: Klaus Jens, Arild Follestad, Siw Bodil Fredriksen, Richard Blom, Ivar Martin Dahl
  • Patent number: 6878658
    Abstract: The present invention provides a Ziegler-Natta catalyst useful in solution processes for the polymerization of olefins having a low amount of aluminum and magnesium. The catalysts of the present invention contain an alkyl silanol and have a molar ratio of Si:Ti from 0.25:1 to 4:1. The catalysts are effective for the solution polymerization of olefins at high temperatures.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: April 12, 2005
    Assignee: Nova Chemicals (International) S.A.
    Inventor: Isam Jaber
  • Patent number: 6870017
    Abstract: A catalyst for addition polymerization obtained by bringing the following (A) into contact with (B) a specific organic aluminum compound and/or aluminoxane, and (C) a specific boron compound, and a process for producing an addition polymer with the same.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 22, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masaaki Nabika, Tatsuya Miyatake
  • Patent number: 6870015
    Abstract: There are provided: (I) a catalyst component for addition polymerization comprising: (i) a transition metal compound having (a) two cyclopentadiene type anion skeleton-carrying groups, which are linked with each other directly or through a bridging group, and (b) a hafnium atom as its central metal, and (ii) a transition metal compound having (a) two substituted cyclopentadiene type anion skeleton-carrying groups, which are not linked with each other, and (b) a zirconium atom or a titanium atom as its central atom; and (II) a process for producing a catalyst for addition polymerization, which comprises the step of contacting the above catalyst component with a co-catalyst component for activation.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: March 22, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hideki Oshima, Kazuo Takaoki
  • Patent number: 6861485
    Abstract: A multi-catalyst system is disclosed. The catalyst system comprises catalyst A and catalyst B. Catalyst A comprises a supported bridged indenoindolyl transition metal complex. Catalyst B comprises a supported non-bridged indenoindolyl transition metal complex. The catalyst system of the invention produces polyolefins which have bi- or multi-modal molecular weight distribution.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 1, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6855654
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 15, 2005
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6841500
    Abstract: Catalyst systems useful for olefin polymerization are disclosed. The catalysts include a bimetallic complex that incorporates two linked indenoindolyl groups, each of which is pi-bonded through its cyclopentadienyl ring to one of the metals. Compared with conventional indenoindolyl complexes, the bimetallic complexes of the invention have enhanced ability to give polyolefins with desirably low melt indices. Certain bimetallic indenoindolyl complexes also provide a way to broaden polymer molecular weight distribution and thereby improve processability simply by regulating the amounts of comonomer and activator used in the polymerization.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, William J. Sartain
  • Patent number: 6838409
    Abstract: Catalysts for copolymerization of olefins and styrenes, comprising (A) a transition metal compound, (B) an oxygen-containing compound and/or a compound capable of reacting with a transition metal compound to form an ionic complex, (C) a specific compound such as a reaction product of triphenylmethyl alcohol and triisobutylaluminium, and optionally (D) an alkylating agent, and methods for producing olefin-styrene copolymers in the presence of such catalysts, which catalysts have the advantages of enhancing the copolymerization activity and reducing the amount of the promoter such as oxygen-containing compounds, etc, and using them, olefin-styrene copolymers can be produced efficiently and inexpensively.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: January 4, 2005
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Nobuhiro Yabunouchi, Nobuhide Ishihara, Kiyohiko Yokota
  • Patent number: 6838533
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and a solid, wherein said solid is selected from the group consisting of titanium tetrafluoride, zirconium tetrafluoride, and a treated solid oxide compound.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: January 4, 2005
    Assignee: Philips Petroleum Company
    Inventors: Max P. McDaniel, Marvin M. Johnson, Bruce B. Randolph, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Gil R. Hawley, Joel L. Martin
  • Publication number: 20040254323
    Abstract: A process to produce ethylene polymers is provided.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 16, 2004
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe
  • Patent number: 6828268
    Abstract: A catalyst system composition comprising a chromium compound supported on a silica-titania support, wherein said catalyst system has been reduced with carbon monoxide, and a cocatalyst selected from the group consisting of i) alkyl lithium compounds, ii) dialkyl aluminum alkoxides in combination with at least one metal alkyl selected from the group consisting of alkyl zinc compounds, alkyl aluminum compounds, alkyl boron compounds, and mixtures thereof and iii) mixtures thereof can be used to polymerize olefins to produce a low density polymer with a decreased melt index and/or high load melt index. This catalyst system also can be used with a Ziegler-Natta catalyst system to polymerize olefins. Polymerization processes using these catalyst system compositions are also provided.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: December 7, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Joseph S. Shveima, Elizabeth A. Benham, Rolf L. Geerts, James L. Smith
  • Patent number: 6828269
    Abstract: A catalytic composition is obtained by mixing at least one chromium compound with at least one aryloxy compound of an element M selected from the group formed by magnesium, calcium, strontium and barium, with general formula M(RO)2-nXn, where RO is an aryloxy radical containing 6 to 80 carbon atoms, X is a halogen or a hydrocarbyl radical containing 1 to 30 carbon atoms and n is a whole number that can take values of 0 to 2, and with at least one aluminum compound selected from hydrocarbylaluminum compounds (tris(hydrocarbyl)-aluminum, chlorinated or brominated hydrocarbylaluminum compounds) and aluminoxanes. The catalytic composition can be used in an ethylene oligomerization process, in particular to produce 1-hexene.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: December 7, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Sébastien Drochon, Lucien Saussine
  • Publication number: 20040220360
    Abstract: Linear low density polyethylenes (LLDPEs) that have relatively high melt index ratios (MIR) and relatively high melt strength (MS). This combination of melt properties is achieved by a substantially non blended LLDPE. Catalysts used to produce these polyethylenes are generally a blend of bridged bisindenyl zirconocene dichlorides, where one zirconocene contains saturated indenyls and the other unsaturated indenyls.
    Type: Application
    Filed: August 29, 2003
    Publication date: November 4, 2004
    Inventors: Armenag Hagop Dekmezian, Natalie Ann Merrill
  • Patent number: 6812183
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a triple-decker bimetallic complex. The complex includes two Group 3-10 transition metals and a delocalized dianionic ligand that is pi-bonded to each of the metals. The behavior of the catalysts can be modified by choice of each metal, by the choice of the dianionic ligand, or by choice of the ancillary ligands. The invention provides a new way to make a large variety of catalyst systems.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: November 2, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Joel A. Mutchler
  • Patent number: 6800580
    Abstract: The present invention relates to a solid complex titanium catalyst for homo-polymerization and co-polymerization of &agr;-olefin, obtained by (i) producing a solution of a magnesium compound by dissolving a magnesium compound and a compound of IIIA Group of the Periodic Table in a solvent mixed with cyclic ether, one or more types of alcohol, a phosphorous compound, and an organosilane, (ii) precipitating the solid particles by reacting said magnesium solution with a compound of a transition metal, a silicon compound, or the mixture thereof, and (iii) reacting said precipitated solid particles with a titanium compound and an electron donor. The catalyst of the present invention is of large particle size, narrow particle distribution, and high catalytic activity, while the polymers obtained with the use of this catalyst are of excellent stereoregularity.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: October 5, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Mie Ock Kim
  • Patent number: 6797839
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, antimony, one or more of the elements W, Nb, Ta, Cr and Ce and nickel and, if required, one or more of the elements Cu, Zn, Co, Fe, Cd, Mn, Mg, Ca, Sr and Ba and having a 2-component structure are used for the gas-phase catalytic oxidative preparation of acrylic acid.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: September 28, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Signe Unverricht
  • Patent number: 6794539
    Abstract: In a process for preparing a multiplephase multimetal oxide composition comprising Mo, V, Cu and, if desired, further elements, at least one phase is preformed separately and dispersed in a plastically deformable precursor composition of a further phase. The mixture is dried and calcined. The multimetal oxide composition is suitable as active composition of catalysts for the catalytically oxidation of organic compounds in the gas phase, in particular for the oxidation of acrolein to acrylic acid.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: September 21, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Signe Unverricht, Raimund Felder, Heiko Arnold, Jochen Petzoldt
  • Patent number: 6794326
    Abstract: A catalyst system for the polymerization of ethylene, comprising a particulate inorganic oxide supporting a chromium oxide being in a reduced oxidation state and a metallocene compound having the formula Cp2ZrR′R″, wherein each Cp, being equal or different, is an unsubstituted or substituted cyclopentadienyl compound, and R′ and R′, independent of each other, are selected from the group comprising alkyls having 1 to 6 carbon atoms, unsubstituted or substituted benzyl, and phenoxy substituted with alkyls having 1 to 6 carbon atoms; or R′ or R″ may be a halide.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: September 21, 2004
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Klaus-Joachim Jens, Richard Blom, Ivar Martin Dahl
  • Publication number: 20040176242
    Abstract: The present invention provides a catalyst for olefin polymerization having high olefin polymerization activity without being accompanied by generation of an adhered polymer on the wall of a polymerization reactor and the wall of pipe line and generation of a blocking massive polymer, and capable of manufacturing an olefin polymer industrially and stably for a long period of time.
    Type: Application
    Filed: December 29, 2003
    Publication date: September 9, 2004
    Inventors: Yoshiyuki Ishihama, Toshihiko Sugano
  • Patent number: 6787677
    Abstract: In a process for the catalytic hydrogenation of a carbonyl compound or a mixture of two or more carbonyl compounds in the presence of catalyst tablets which comprise an inorganic, TiO2-containing support and, as active component, copper or a mixture of copper with at least one metal selected from the group consisting of zinc, aluminum, cerium, nobel metals and metals of transition group VIII and whose copper surface area is not more than 10 m2/g, the diameter d and/or the height h of the tablets is less than 3 mm.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: September 7, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Koch, Steffen Maas, Wolfgang Jürgen Pöpel, Matthias Dernbach
  • Patent number: 6780809
    Abstract: A particulate, modified chromium oxide catalyst for the polymerisation of ethylene or ethylene with &agr;-olefins, comprising: a) a chromium-oxide catalyst, b) a transition metal compound, and c) a catalyst activator. A method for the preparation of the catalyst comprises the steps of: a) subjecting a chromium oxide catalyst precursor, which comprises a chromium oxide compound combined with an inorganic support, to a temperature in the range of from 400 to 950° C.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: August 24, 2004
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Vidar Almquist, Ulf Palmqvist, Harri Hokkanen
  • Patent number: 6777371
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 17, 2004
    Inventor: Yumin Liu
  • Patent number: 6777571
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 17, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Ruozhi Song, Elsie Mae Vickery
  • Publication number: 20040138392
    Abstract: This invention relates to a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, where the polymer has:
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia Franco, David Raymond Johnsrud
  • Patent number: 6759362
    Abstract: A process for making a solid composition comprising alkoxide groups, chloride groups, one or more metals, M, in the +2 oxidation state selected from Mg, Ca, Mn, Cu, Co or Zn, and one or more metals, T, in the +3, +4 or +5 oxidation state selected from Ti, Zr, V, Sm, Fe, Ni, Rh, Co, Cr, Mo, W or Hf, the molar ratio M/T of the composition being from 2.5 to 3.75, said process comprising contacting one or more alkoxide containing compounds of metal M, one or more alkoxide compounds of metal T, and a halide compound, the molar ratio M/T of the contacting compounds being from 2.5 to 3.5, and recovering the resulting solid.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: July 6, 2004
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert Charles Job
  • Patent number: 6750302
    Abstract: A polymerization catalyst is disclosed, wherein the catalyst comprises: (a) a metallocene of Ti, Zr or Hf, (b) an organoaluminum compound, and (c) a treated solid oxide support which comprises fluorine and chromium.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: June 15, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley, Eric T. Hsieh
  • Publication number: 20040106752
    Abstract: A polymerization catalyst system and process, which utilizes a Group 14 and Group 16 containing non-crystalline compound to solubilize or emulsify polymerization catalyst components, is disclosed.
    Type: Application
    Filed: September 10, 2003
    Publication date: June 3, 2004
    Inventor: David E. Gindelberger
  • Patent number: 6740769
    Abstract: A process for producing a molybdenum-bismuth-iron-containing metal oxide fluidized bed catalyst which has a controlled particle diameter and has satisfactory activity and physical properties. In a process for producing a fluidized bed catalyst containing molybdenum-bismuth-iron and silica as a carrier component, dried products formed in a spray drying step and having a particle diameter outside a desired range are pulverized, then the pulverized one is mixed into a slurry before spray drying, the resulting mixture is spray-dried, and the spray-dried particles are subjected to a classification operation to obtain particles having a diameter within the desired range, which are then calcined. The catalyst produced according to the present invention is suitable for producing acrylonitrile by ammoxidation of propylene.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 25, 2004
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kouichi Mizutani, Yoshimi Nakamura, Yutaka Sasaki, Kunio Mori
  • Patent number: 6740617
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Publication number: 20040097364
    Abstract: A catalyst system comprises 1) a group 4 organometallic catalyst and 2) an activator comprising a solid zirconium acid component and a metal alkyl. The catalyst system is inexpensive and is highly active for the polymerization of olefins. Preferred organometallic catalysts contain a cyclopentadienyl ligand, a phosphinimine ligand and or a ketimide ligand.
    Type: Application
    Filed: September 16, 2003
    Publication date: May 20, 2004
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Jessie Leighton, Matthew Gerald Kowalchuk, P. Scott Chisholm
  • Patent number: 6734134
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with two halogenating/titanating agents, the second stronger than the first, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 11, 2004
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6730627
    Abstract: A solid component of catalyst for the (co)polymerization of ethylene and &agr;-olefins contains magnesium-carboxylate bonds and transition metal-carboxylate and can be represented by the formula: M1Mg(0.3-20)X(2-60)Al(0-6)(R—COO)(0.1-3)  (I) wherein: M is at least one metal selected from titanium, vanadium, zirconium and hafnium, X is a halogen excluding iodine, and R is an aliphatic, cycloaliphatic or aromatic hydrocarbon radical, containing at least 4 carbon atoms. A description follows of the preparation of a solid component of catalyst (I) and its use in procedures for the (co)polymerization of ethylene and &agr;-olefins.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: May 4, 2004
    Assignee: ECP Enichem Polimeri S.r.l.
    Inventors: Francesco Masi, Lia Barazzoni, Francesco Menconi, Renzo Invernizzi, Sergio Masini, Cesare Ferrero, Angelo Moalli