Nonmetallic Organic Oxygen Containing Patents (Class 502/125)
  • Patent number: 5869418
    Abstract: Olefins or mixtures of olefins, particularly propene or mixtures of propene advantageously with ethene, can be polymerized using a Ziegler-Natta catalyst system containing, besides a transition-metal-based procatalyst and cocatalyst which is an organometallic compound, a compound particularly suited for controlling the stereospecificity of the produced polymer. Such a compound called an external donor may also have other effects. By using an acetal derivative of an aldehyde that has two ether groups for this purpose, advantageously selected from the group of dialkoxyphenylalkanes, e.g., dimethoxyphenylpropane, a good stereospecificity of the product is attained combined with the high hydrogen sensitivity of the catalyst system, whereby the use of hydrogen as the chain transfer agent offers an easy control method of the molecular weight of the product by means of adjusting the amount of hydrogen available in the polymerization reaction.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: February 9, 1999
    Assignee: Borealis Holding A/S
    Inventors: Eero Iiskola, Paivi L. Pitkanen, Timo Leinonen, Jukka Tulisalo, Mika Harkonen, Ann Britt Bjaland, Tarja Soderberg, Pirjo Jaaskelainen
  • Patent number: 5866088
    Abstract: Disclosed is a process for preparing an anhydrous magnesium halide solution, comprising a step of distilling water off from an oxygen-containing organic solvent solution of hydrous magnesium halide containing at least calcium as an impurity, to prepare an oxygen-containing organic solvent solution of anhydrous magnesium halide, wherein a potassium compound is added in said step to precipitate calcium and potassium, followed by removing the calcium and potassium. According to this process, an anhydrous magnesium halide solution scarcely containing calcium can be prepared from hydrous magnesium halide containing calcium as an impurity. Also disclosed is a process for preparing a solid titanium catalyst component for olefin polymerization, comprising contacting the anhydrous magnesium halide solution obtained by the above process with a liquid titanium compound to precipitate a solid titanium catalyst component.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: February 2, 1999
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yoshinao Itoh, Masayuki Takeda
  • Patent number: 5859288
    Abstract: The invention relates to a reagent which is useful for the synthesis of oxysulphide-containing fluorine-containing organic derivatives by reacting with an oxide of sulphur, especially sulphur dioxide, characterized in that it comprises:a) a fluorocarboxylic acid of formula E.sub.w --CF.sub.2 --COOH where E.sub.w is an electron-withdrawing group or atom which is at least partially salified by an organic or inorganic cation, andb) an aprotic polar solvent; andin that the content of releasable protons carried by its various components, including their impurities, is at most equal to half the initial molar concentration of the said fluorocarboxylic acid.This reagent can be used by heating in order to form fluorine-containing sulphinic or sulphonic acids.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: January 12, 1999
    Assignee: Rhone-Poulenc Chimie
    Inventors: Gerard Forat, Jean-Manuel Mas, Laurent Saint-Jalmes
  • Patent number: 5849655
    Abstract: A method of forming a polyolefin catalyst component which includes chlorinating magnesium ethoxide, and then treating the product first with an electron donor, particularly diethyl phthalate or di-isobutyl phthalate, at a relatively low donor level, and then second with a titanating agent, such as titanium tetrachloride, to produce a catalyst component. The catalyst component is activated with an aluminum alkyl cocatalyst. An external electron donor, such as an organosilane compound, is added for stereoselectivity control. The activated catalyst is used in the polymerization of olefins, particularly propylene, to obtain a polymer product with a broad molecular weight distribution.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: December 15, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Edwar Shoukri Shamshoum, Christopher Garland Bauch, David John Rauscher
  • Patent number: 5849654
    Abstract: A catalyst for olefin polymerization comprising: (A) a solid catalyst component comprising a titanium compound, a magnesium compound, and a halogen compound; (B) an organoaluminum compound; (C) a first organosilicon compound represented by formula (I): ##STR1## wherein R.sup.1 represents a hydrocarbon group having 1 to 4 carbon atoms; R.sup.2 represents a hydrocarbon group having 1 to 6 carbon atoms or a hydrogen atom; R.sup.3 and R.sup.4 each represent a hydrocarbon group having 1 to 6 carbon atoms; and R.sup.2, R.sup.3, and R.sup.4 may be the same or different; and (D) a second organosilicon compound represented by formula (II): ##STR2## wherein R.sup.5 represents a hydrocarbon group having 1 to 4 carbon atoms; and R.sup.6, R.sup.7, and R.sup.8, which may be the same or different, each represent a hydrocarbon group having 1 to 6 carbon atoms or a hydrogen atom.
    Type: Grant
    Filed: November 27, 1995
    Date of Patent: December 15, 1998
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Masaki Fushimi, Yasushi Kuroda, Shintaro Inazawa
  • Patent number: 5834393
    Abstract: A supported catalyst component comprising (a) a support material, an organometal compound, and (b) an activator compound comprising b.1) a cation which is capable of reacting with a transition metal metallocene compound to form a catalytically active transition metal complex, and b.2) a compatible anion having up to 100 nonhydrogen atoms and containing at least one substituent comprising an active hydrogen moiety; a supported catalyst comprising the supported catalyst component and a transition metal compound; process for making the same; an addition polymerization process using the supported catalyst; complex compounds, and a method for preparing the same.
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: November 10, 1998
    Assignee: The Dow Chemical Company
    Inventors: Grant Berent Jacobsen, Peter Wijkens, Johann T. B. H. Jastrzebski, Gerard Van Koten
  • Patent number: 5834572
    Abstract: Process for the manufacture of a support containing silica and at least one constituent chosen from alumina and aluminium phosphate, according to which an alcohol, water, a silicon alkoxide and an acid are mixed under conditions such that gelling or precipitation of silica is prevented, an acidic solution of an aluminium compound and/or a solution of a source of phosphate ions are added thereto, a gelling agent is added thereto, a gel is recovered which is washed with water and then by means of an organic liquid, the gel is then dried by atomization until a powder is obtained, and the powder is calcined. Polymerization of olefins in the presence of a catalyst containing chromium on a support as described above.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: November 10, 1998
    Assignee: Solvay (Societe Anonyme)
    Inventors: Helmut Derleth, Benoit Koch, Andre Rulmont, Fabienne Wijzen
  • Patent number: 5817591
    Abstract: A method of forming a polyolefin catalyst component which includes chlorinating a magnesium alkoxide, solubilizing the chlorinated magnesium alkoxide into a hydrocarbon solvent utilizing an alcohol, and then precipitating a solid from the solvent by the dropwise addition of titanium tetrachloride. Two more titanation steps follow, the first with an electron donor, the second without an electron donor, to produce a catalyst having an improved yield of polymer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Christopher G. Bauch
  • Patent number: 5817590
    Abstract: A catalyst for olefin polymerization is provided which comprises, as the components, a) a metallocene compound, b) an ionizing ionic compound, c) an organoaluminum compound, and d) a Lewis base compound. This catalyst has a stable active species and improves productivity of an olefin polymer without deterioration of the catalytic activity the metallocene is represented by General Formula (1) or (2) where Cp-containing ligands may be Cp, fluorenyl, indenyl or tetrahydroindenyl and where the metal is a group 4 metal of the periodic table.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: October 6, 1998
    Assignee: Tosoh Corporation
    Inventors: Saiki Hasegawa, Hisami Yasuda, Akihiro Yano
  • Patent number: 5804524
    Abstract: The present invention is a catalyst system to produce polymer blends in a single reactor, polymer blends of isotactic polyolefins and syndiotactic polyolefins. The catalyst system is a combination of at least one metallocene catalyst and at least one conventional supported Ziegler-Natta catalyst. The multi-catalyst system is obtained by mixing the components of at least one metallocene catalyst and at least one conventional supported Ziegler-Natta catalyst. The metallocene catalyst comprises solid complx of a metallocene compound and an ionizing agent. The conventional supported Ziegler-Natta catalyst comprises an aluminum alkyl and a transition metal compound with, optionally, an electron donor.
    Type: Grant
    Filed: April 28, 1993
    Date of Patent: September 8, 1998
    Assignee: Fina Technology, Inc.
    Inventors: Baireddy Raghava Reddy, Edwar Shoukri Shamshoum
  • Patent number: 5783512
    Abstract: A non-supported solid catalyst comprising (a) an ionic compound comprising a.1) a cation and a.2) an anion having up to 100 nonhydrogen atoms and said anion containing at least one substituent comprising an active hydrogen moiety, (b) a transition metal compound, and (c) an organometal compound wherein the metal is selected from the Groups 1-14 of the Periodic Table of the Elements; a supported solid catalyst comprising (a), (b), (c), and (d) a support material, obtainable by combining components (a), (b), (c), and (d) in any order, and wherein during at least one step in the preparation of the solid catalyst, component (a) dissolved in a diluent in which (a) is soluble, is converted into solid form; a method for preparing the solid catalysts; and a process of polymerization using these solid catalysts.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: July 21, 1998
    Assignee: The Dow Chemical Company
    Inventors: Grant B. Jacobsen, Theo J. P. Stevens, Pierre H. H. Loix
  • Patent number: 5780378
    Abstract: A solid titanium catalyst component comprising (a) magnesium, (b) titanium, (c) a halogen, (d) a polyether, (e) a hydrocarbon and (f) an electron donor other than the polyether (d) as essential components is provided. Also a process for preparing a solid titanium catalyst component for olefin polymerization, comprising the steps of contacting a halogenated magnesium compound with a compound selected from the group consisting of an alcohol, an ether and an ester in a hydrocarbon solvent to obtain a magnesium compound solution, contacting the magnesium compound solution with a polyether and contacting the resultant solution with a liquid titanium compound is provided. Further, a catalyst for olefin polymerization comprising the above-mentioned solid titanium catalyst component, an organoaluminum compound catalyst component and an electron donor, and a process for polymerizing an olefin using the catalyst for olefin polymerization are also disclosed.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: July 14, 1998
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Tetsuya Toida, Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 5780379
    Abstract: Process for the polymerization of alpha-olefins, which is carried out in the presence of a catalyst system comprising:(1) a solid based on completed titanium trichloride;(2) an organometallic compound of metals of groups IA, IIA, IIB and IIIB of the Periodic Table, and(3) an electron-donor organic compound, the solid (1) based on complexed titanium trichloride having been preactivated by being brought into contact with a preactivator comprising the product of reaction of a trialkylaluminum or alkylaluminum chloride compound (a) and of a compound (b) chosen from hydroxyaromatic compounds whose hydroxyl group is sterically hindered, then isolating the predetermined solid (1) from the medium in which it was found.This process enables propylene to be polymerized with an improved stereospecificity without any significant decrease in catalyst activity.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: July 14, 1998
    Assignee: Solvay Polyolefins Europe-Belgium (Societe Anonyme)
    Inventor: Paul Fiasse
  • Patent number: 5777050
    Abstract: A process is disclosed for the homopolymerization of ethylene or copolymerization of ethylene with one or more .alpha.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: July 7, 1998
    Assignee: DSM N.V.
    Inventors: Nicolaas H. Friederichs, Johannus A. M. van Beek, Rutgerus A. J. Postema, Joseph A. J. Hahnraths
  • Patent number: 5773537
    Abstract: Catalyst systems of the Ziegler-Natta type contain, as active componentsa) a titanium-containing solid component in whose preparation a titanium compound, a compound of magnesium, a halogenating agent and an electron donor component are used,b) an aluminum compound andc) as a further electron donor component, an organosilicon compound of the formula (I)R.sup.1 R.sup.2 Si(OR.sup.3).sub.2 (I)where R.sup.1 is C.sup.1 -C.sub.10 -alkyl or C.sub.3 -C.sub.8 -cycloalkyl, excluding sec-butyl, R.sup.2 is sec-butyl and R.sup.3 is C.sub.1 -C.sub.8 -alkyl. The catalyst systems are particularly suitable for the preparation of polymers of C.sub.2 -C.sub.10 -alk-1-enes.
    Type: Grant
    Filed: December 28, 1995
    Date of Patent: June 30, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Patrik Mueller, Klaus-Dieter Hungenberg, Juergen Kerth, Ralf Zolk
  • Patent number: 5767034
    Abstract: An olefin polymerization catalyst includes a halogen-containing magnesium compound; a titanium compound; and an additive selected from the group consisting of (a) a mixture of an aluminum alkoxide compound and polydimethylsiloxane, (b) an aluminosiloxane, (c) the reaction product of an aluminum alkyl and a calixarene, (d) the reaction product of an aluminum alkyl and a cyclodextrin, and mixtures of (a)-(d).
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: June 16, 1998
    Assignee: Intevep, S.A.
    Inventors: Antonio Diaz-Barrios, Jose Liscano, Marianela Trujillo, Giuseppe Agrifoglio, Jose Orlando Matos
  • Patent number: 5747404
    Abstract: Disclosed is a catalyst having the formula ##STR1## where each R is independently selected from aliphatic from C.sub.1 to C.sub.6 and aromatic from C.sub.6 to C.sub.10, each R.sub.5 is independently selected from H, R, and L', each L' is independently selected from LM'L.sub.r X.sub.3-r or two L' groups form the bridge --LM'X.sub.2-r L.sub.r --, each L is independently selected from cyclopentadienyl, indenyl, and fluorenyl, X is chlorine or bromine, M' is zirconium, titanium, or hafnium, n is 5 to 500, the ratio of R to H+L in R.sub.5 is 0 to 100, the ratio of H to L' in R.sub.5 is 0 to 4, and r is 0 or 1.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: May 5, 1998
    Assignee: Lyondell Petrochemical Company
    Inventors: Sandor Nagy, John A. Tyrell
  • Patent number: 5747595
    Abstract: A catalyst for the polymerization of olefines comprises a solid catalytic component obtained by pre-polymerizing propylene in the presence of (A) a solid component containing magnesium, titanium, halogen and an electron-donating compound, (B) an organoaluminum compound, and (C) an alkylalkoxysilane represented by the formula, R.sup.1 Si(OR.sup.2)(OCH.sub.3).sub.2, wherein R.sup.1 represents a branched or cyclic alkyl group having 3 to 6 carbon atoms, and R.sup.2 represents a branched alkyl, alkenyl or alkinyl group having 3 to 6 carbon atoms; (B) an organoaluminum compound; and (D) an alkyltrialkoxysilane represented by the formula, R.sup.3 Si(OR.sup.4).sub.2 (OCH.sub.3), wherein R.sup.3 represents a linear alkyl group having 3 to 6 carbon atoms, and R.sup.4 represents a branched alkyl, alkenyl or alkinyl group having 3 to 5 carbon atoms.
    Type: Grant
    Filed: March 27, 1996
    Date of Patent: May 5, 1998
    Assignee: Tonen Corporation
    Inventors: Toshiya Saito, Takayuki Taki, Masashi Nakajima, Kunihiko Imanishi, Masahide Murata, Hiroyuki Ozaki, Kazukiyo Aiba, Masatoshi Ookura, Satoshi Ueki
  • Patent number: 5744678
    Abstract: An oligomerization catalyst according to the invention comprises a nickel compound (A); an organophosphoric compound (B); an organoaluminum compound (C); and a compound of the group consisting of carbon-halogen bond-containing compounds, oxoacid and salts thereof, sulfonic acid and derivatives thereof, and compounds of any of the formulae QX.sup.4.sub.n, QR.sub.n, QR'.sub.n, QX.sup.4.sub.1 R.sub.m, QX.sup.4.sub.1 R'.sub.m, QR.sub.1 R'.sub.m, Q.sup.1 (BR.sub.4).sub.p and R"(BR.sub.4) wherein Q is an element of the group consisting of Mg, Ti, Zr, B and Sn, Q.sup.1 is an element of the group consisting of Li, Na, K, Ca and Zn, X.sup.4 is a halogen or hydrogen atom, R is a C.sub.1 -C.sub.12 hydrocarbon group, R' is a C.sub.1 -C.sub.12 oxygen-containing hydrocarbon group, R" is a C.sub.1 -C.sub.20 hydrocarbon group or an ammonium group, n is a valence of Q, l, m is a natural member that satisfied n=l+m, and p is a valence of Q.sup.1. This catalyst is useful for the production of alpha-olefinic oligomers.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: April 28, 1998
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Fuyuki Aida, Takashi Nakano, Yoshio Tajima, Kazuo Matsuura
  • Patent number: 5733842
    Abstract: An improved catalyst carrier is formed by a process that comprises the use of ceramic particle components with particle sizes chosen to ensure that a desired degree of porosity is obtained without recourse to the use of organic burnout materials.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: March 31, 1998
    Assignee: Norton Checmical Process Products Corporation
    Inventors: William H. Gerdes, Donald J. Remus, Thomas Szymanski
  • Patent number: 5733835
    Abstract: It has been determined that 1,3-butadiene monomer can be polymerized into cis-1,4-polybutadiene rubber utilizing a cobalt-based catalyst system which is comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol. The use of this catalyst system results in extremely fast rates of polymerization. The molecular weight of the cis-1,4-polybutadiene rubber made utilizing this cobalt-based catalyst system can be regulated by conducting the polymerization in the presence of 1,5-cyclooctadiene. This present invention more specifically discloses a catalyst system which is particularly useful for polymerizing 1,3-butadiene monomer into cis-1,4-polybutadiene, said catalyst system being comprised of (a) an organocobalt compound, (b) a trialkylaluminum compound and (c) hexafluoro-2-propanol.
    Type: Grant
    Filed: August 5, 1996
    Date of Patent: March 31, 1998
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Kenneth Floyd Castner
  • Patent number: 5728640
    Abstract: A process for preparing a supported metallocene/aluminoxane solid catalyst comprises preparing a water-in-oil emulsion of water and an inert solvent by using an emulsifier, adding dropwise the emulsion to a solution of an organoaluminium compound in an inert solvent to carry out the reaction to obtain a suspension of the particulate aluminoxane, followed by adding a solution of a metallocene to the above suspension to support the metallocene on the aluminoxane. The solid catalyst thus obtained can be used in the polymerization and copolymerization of olefins. Polymerization can be carried out by slurry polymerization, bulk polymerization, gas phase polymerization, etc.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: March 17, 1998
    Assignee: China Petrochemical Corp. and Research Institute of Petroleum Processing Sinopec
    Inventors: Bing Lu, Jinmei Wang, Xiaoyu Hong, Zhenhua Jing
  • Patent number: 5728641
    Abstract: According to the present invention there are provided a catalyst component, a catalyst using the catalyst component and a process using the catalyst, for the preparation of olefin polymers high in molecular weight and relatively wide in molecular weight distribution, using an extremely small amount of a modified organoaluminum compound such as methylaluminoxane and in high yield. The catalyst component is prepared by contacting at least the following constituents (1), (2), (3) and (4) with one another:(1) a compound represented by the general formula Me.sup.1 R.sup.1.sub.p (OR.sup.2).sub.q X.sub.4-p-q where R.sup.1 and R.sup.2 are each independently a hydrocarbon group having 1 to 24 carbon atoms, X is a halogen atom, Me is Zr, Ti or Hf, p and q are each an integer in the ranges of 0.ltoreq.p.ltoreq.4 and 0.ltoreq.q.ltoreq.4, provided 0.ltoreq.p+q.ltoreq.4;(2) at least one compound selected from the group consisting of compounds represented by the following general formulas 1 to 4:General formula 1: Me.sup.
    Type: Grant
    Filed: June 21, 1995
    Date of Patent: March 17, 1998
    Assignee: Nippon Oil Company, Limited
    Inventors: Fuyuki Aida, Yoshio Tajima, Kazuo Matsuura
  • Patent number: 5705464
    Abstract: Automatic dishwashing detergent compositions comprising certain cobalt catalysts are provided. More specifically, the invention relates to automatic dishwashing detergents which provide enhanced cleaning/bleaching benefits (especially tea stain removal) through the selection of cobalt bleach catalyst having the formula:?Co(NH.sub.3).sub.n (M).sub.m (B).sub.b !T.sub.ywherein cobalt is in the +3 oxidation state; n is 4 or 5 (preferably 5); M is one or more ligands coordinated to the cobalt by one site; m is 0, 1 or 2 (preferably 1); B is a ligand coordinated to the cobalt by two sites; b is 0 or 1 (preferably 0), and when b=0, then m+n=6, and when b=l, then m=0 and n=4; and T is one or more appropriately selected counteranions present in a number y, where y is an integer to obtain a charge-balanced salt (preferably y is 1 to 3; most preferably 2 when T is a -1 charged anion); and wherein further said catalyst has a base hydrolysis rate constant of less than 0.23 M.sup.-1 s.sup.-1 (25.degree. C.).
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: January 6, 1998
    Assignee: The Procter & Gamble Company
    Inventors: William Michael Scheper, Christopher Mark Perkins
  • Patent number: 5703181
    Abstract: Disclosed are a catalyst for olefin polymerization comprising (A) a compound of a transition metal in Group IVB of the periodic table which contains a ligand having a cyclopentadienyl skeleton, (B) an organoaluminum compound and any one of (C1) a Br.o slashed.nsted acid; (C2) a material obtained by contacting (c-1) a magnesium compound with (c-2) an electron donor; and (C3) a material obtained by contacting (c-1) a magnesium compound, (c-2) an electron donor and (c-3) an organometallic compound with each other. Also disclosed are processes for polymerizing an olefin in the presence of the above-mentioned catalysts for olefin polymerization. Such catalysts and processes for olefin polymerization as described above are excellent in olefin polymerization activity and economical efficiency.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: December 30, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Takashi Tashiro, Takashi Ueda
  • Patent number: 5703030
    Abstract: Bleach compositions comprising certain carboxylate-containing cobalt catalysts are provided. More specifically, the invention relates to automatic dishwashing detergents and laundry compositions which provide enhanced cleaning/bleaching benefits (especially tea stain removal) through the selection of cobalt catalysts having the formula:?Co(NH.sub.3).sub.5 M!T.sub.ywherein cobalt is in the +3 oxidation state; and M is a substituted and unsubstituted C.sub.1 -C.sub.30 carboxylate-containing ligand having the formula RC(O)O--.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: December 30, 1997
    Assignee: The Procter & Gamble Company
    Inventors: Christopher Mark Perkins, William Michael Scheper
  • Patent number: 5698487
    Abstract: The present invention relates to components of catalysts for the polymerization of olefins comprising a metallocene compound and a magnesium halide which have particular values of porosity and surface area. In particular the components of the invention have surface area (BET) greater than about 50 m.sup.2 /g, porosity (BET) greater than about 0.15 cm.sup.3 /g and porosity (Hg) greater than 0.3 cm.sup.3 /g, with the proviso that when the surface area is less than about 150 m.sup.2 /g, the porosity (Hg) is less than about 1.5 cm.sup.3 /g. The components of the invention are particularly suitable for the preparation of catalysts for the gas-phase polymerization of .alpha.-olefins.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: December 16, 1997
    Assignee: Montell Technology Company BV
    Inventors: Mario Sacchetti, Stefano Pasquali, Gabriele Govoni
  • Patent number: 5696213
    Abstract: This invention is a solution process for the preparation of ethylene-.alpha.-olefin/diolefin copolymers comprising contacting ethylene, one or more .alpha.-olefin monomer, and optionally one or more diene monomer, with a catalyst system containing a catalyst activator and a Group 4 metallocene compound, comprising a) conducting the polymerization reaction at a temperature of about 60.degree. to 150.degree. C.; b) selecting as the Group 4 metallocene compound one or more members of the group consisting of cyclic monocyclopentadienyl Group 4 metal and covalently bridged (bis)indenyl hafnium metallocene compounds; and c) maintaining the .alpha.-olefin concentration at a molar ratio to that of ethylene of between about 0.3 to 7.0 and a diolefin to ethylene molar ratio of between about 0.01 and 0.4. In a preferred embodiment the process comprises: 1) mixing with a reaction solvent the one or more .alpha.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: December 9, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Rinaldo Soria Schiffino, Javier Mario Zamora
  • Patent number: 5684173
    Abstract: An organosilicon compound represented by formula (I) ##STR1## wherein R.sup.1 and R.sup.2 which may be the same or different, each represents an alkyl group having 1 to 3 carbon atoms. The organosilicon compound is used as en effective electron donor ingredient of a Ziegler-Natta catalyst for olefin polymerization.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: November 4, 1997
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Motoki Hosaka, Kenji Goto, Masahiko Matsuo
  • Patent number: 5677256
    Abstract: An olefin polymerization catalyst composition is prepared by adding an organometallic compound of a group IA to IIIA metal to a procatalyst containing a support impregnated with TiCl.sub.4 but without using free TiCl.sub.4 to impregnate the support. The procatalyst is prepared by stirring a carrier with magnesium dichloride and a titanium tetralkoxide in a hydrocarbon solvent containing an electron donor, evaporating the solvent and the donor to form a free-flowing powder and chlorinating the titanium tetralkoxide with an alkyl aluminum chloride.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: October 14, 1997
    Assignee: Neste Oy
    Inventors: Sirpa Ala-Huikku, Pekka Sormunen
  • Patent number: 5670439
    Abstract: A vanadium-containing catalyst system particularly suited to the polymerization of olefin polymers. The catalyst system includes a supported, first catalyst component prepared by contacting silica with hexaalkyldisilazane and thereupon with (1) a compound or complex which includes at least one carbon to magnesium covalent bond and (2) a compound which includes at least one carbon to Group 13 metal covalent bond. The sequence of contact of the silica with compound or complex (1) and compound (2) is optional. However, unless the compound or complex (1) and the compound (2) contact the silica simultaneously, the product of this contact is next contacted with whichever of compound (1) or (2) does not initially contact the silica. The product of the step of contacting with compounds (1) and (2) is washed and then contacted with a vanadium compound which includes at least one halogen atom. Finally, the product of the vanadium compound contacting step is contacted with an alcohol.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: September 23, 1997
    Assignee: Quantum Chemical Corporation
    Inventors: Linda N. Winslow, Raghu K. Menon
  • Patent number: 5652303
    Abstract: A catalyst for polymerization of an olefin, said catalyst being formed from[A] a solid titanium catalyst component comprising magnesium, titanium, halogen and an electron donor as essential ingredients,[B] an organoaluminum compound catalyst component, and[C] an electron donor catalyst component comprising at least two electron donors including an electron donor (1) and an electron donor (2), the MFR (a) of homopolypropylene obtained by using the electron donor (1) together with the solid titanium catalyst component [A] and the organoaluminum compound catalyst component [B] has the following relation to the MFR (b) of homopolypropylene obtained by using the electron donor (2) under the same polymerization conditions as in the case of using the electron donor (1)log [MFR (b)/MFR (a)].gtoreq.1.5.This catalyst can give an olefin polymer having a broad molecular weight. Also provided is a process for polymerizing or copolymerizing an olefin in the presence of the above catalyst.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: July 29, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Naoshi Ishimaru, Mamoru Kioka, Akinori Toyota
  • Patent number: 5648428
    Abstract: The present invention is a process for producing a polymer blend in a single reactor, specifically a polymer blend of isotactic polyolefins and syndiotactic polyolefins. The catalyst system is a combination of at least one metallocene catalyst and at least one conventional supported Ziegler-Natta catalyst. The multi-catalyst system is obtained by mixing the components of at least one metallocene catalyst and at least one conventional supported Ziegler-Natta catalyst. The metallocene catalyst comprises a metallocene compound and an ionizing agent. The conventional supported Ziegler-Natta catalyst comprises an aluminum alkyl and a transition metal compound with, optionally, an electron donor.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 15, 1997
    Assignee: Fina Technology, Inc.
    Inventors: Baireddy Raghava Reddy, Edwar Shoukri Shamshoum
  • Patent number: 5641721
    Abstract: The present invention concerns prepolymerized catalyst composition for polymerization of .alpha.-olefins, a process for the preparation thereof and a process for polymerization of .alpha.-olefins. According to the polymerization process a procatalyst composition containing a transition metal is prepolymerized with a monomer in order to produce a prepolymerized Ziegler-Natta type catalyst composition and said catalyst composition is contacted with an alpha-olefin monomer, in particular with ethylene or propylene, for preparing a polymer. According to the invention the procatalyst composition is preferably prepolymerized in a medium which is inert to the catalyst components, the viscosity of the medium being so high that the catalyst does not substantially settle in this medium. Because the catalyst composition according to the invention does not have to be dried before being fed into the medium, its activity is high before and during polymerization.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: June 24, 1997
    Assignee: Neste Oy
    Inventors: Ismo Pentti, Pauli Leskinen
  • Patent number: 5627246
    Abstract: A supported catalyst system that is obtained bya) reacting a finely divided carrier with an a-trisalkoxy-silyl-.omega.-haloalkyl compound,b) adding a metallocene complex of the indicated formula I to the reaction product of a);c) reacting the product of b) with a quaternizing agent; andd) optionally adding an open-chain or cyclic alumoxane compound.The catalyst system can be used to prepare polymers of C.sub.2 -C.sub.10 -alk-1-enes.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: May 6, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz Langhauser, David Fischer, J urgen Kerth, G unther Schweier, Elke Barsties, Hans-Herbert Brintzinger, Stefan Schaible, Werner Roell
  • Patent number: 5622906
    Abstract: A composition, which can be used as catalyst for producing an olefin polymer having a multimodal molecular weight distribution, is provided that comprises a transition metal-containing catalyst, a metallocene, and a boron-containing organoaluminoxane, wherein each component of the composition is present in an effective amount so that an olefin polymer having a multimodal molecular weight distribution can be produced using the composition as catalyst, preferably in the presence of a cocatalyst. Also provided is a process for preparing the composition which comprises: (1) contacting a transition metal-containing catalyst with an organoaluminoxane dispersed in a solvent to form a slurry; (2) combining the slurry with a boroxine to prepare a combination of a transition metal-containing catalyst and boron-containing organoaluminoxane; and (3) contacting the combination with a metallocene. Further provided is a process for polymerizing an olefin to prepare an olefin polymer using the composition.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: April 22, 1997
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5607655
    Abstract: A generally dipyramidal-shaped catalyst precursor is prepared by dissolving magnesium dichloride and a suitable alcohol in a suitable solvent and then cooling to obtain a precipitate of the desired shape. The use of the precursor to prepare catalysts and the use of the catalysts to prepare polymers is also disclosed.
    Type: Grant
    Filed: March 6, 1995
    Date of Patent: March 4, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Joel L. Martin, Gil R. Hawley
  • Patent number: 5604172
    Abstract: A process is provided for preparing a shape-shifted catalyst component comprising (1) contacting a dihydrocarbyloxide magnesium compound with carbon dioxide in the presence of a slurrying agent to form a slurry of a carboxylated dihydrocarbyloxide magnesium compound; (2) adding a filler to the slurry either before or after the carboxylation of step (1); (3) spray drying the slurry of step (2) to evaporate the slurrying agent and to produce solid particles of the carboxylated dihydrocarbyloxide magnesium compound incorporating the filler; and, optionally, (4) heating the solid particles to remove carbon dioxide to produce a shape-shifted dihydrocarbyloxide magnesium compound component. A catalyst system using the component and a polymerization process employing the catalyst system are also provided.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: February 18, 1997
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Burkhard E. Wagner, Daniel P. Zilker, Jr., Robert J. Jorgensen
  • Patent number: 5597770
    Abstract: A catalyst compound of the formula (I) is useful in the polymerization of ethylene into homopolymers or copolymers of high density and high melt flow ratio. The catalyst is prepared with a partial activation step before its complete activation with a co-catalyst.Mg.sub.a Ti(OR).sub.b X.sub.c Al.sub.d (R").sub.ej X'.sub.fj H.sub.gj [ED].sub.h B.sub.i Br.sub.
    Type: Grant
    Filed: March 21, 1994
    Date of Patent: January 28, 1997
    Assignee: Hanwha Chemical Corporation
    Inventor: Yong C. Chee
  • Patent number: 5596053
    Abstract: Diene polymers having a high content of trans-1,4 addition and two distinct melting points in the ranges of 30.degree. C. to 50.degree. C. and 70.degree. C. to 130.degree. C. are prepared by polymerizing a 1,3-diene monomer in a hydrocarbon solvent in the presence of a catalyst composition comprising (a) a carboxylated nickel oxy borate compound; (b) an orKanoaluminum compound; (c) a triaryloxy phosphorus compound and (d) a carboxylic acid preferably a fluorinated carboxylic acid. The resultant polymers are useful as additives to tire rubbers to improve processability by reducing compound Mooney viscosity and reducing the shrinkage of various compound stocks.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: January 21, 1997
    Assignee: Bridgestone/Firestone, Inc.
    Inventors: Jung W. Kang, Jason T. Poulton
  • Patent number: 5585317
    Abstract: The present invention relates to spherical solid components of catalysts for the polymerization of olefins comprising, supported on a magnesium dihalide in active form, a titanium compound containing at least one Ti-halogen bond and one OR group, said OR group being bonded to Ti in an amount such that the OR/Ti molar ratio is greater than or equal to 0.5; optionally the component also comprises an electron donor compound. The spherical solid components of the invention are characterized by having a porosity comprised between 0.35 and 0.7 cm.sup.3 /g and by a pore size distribution such that at least 50% of the porosity is due to pores having an average radius greater than 800 .ANG..
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: December 17, 1996
    Assignee: Montell Technology Company bv
    Inventors: Mario Sacchetti, Gianni Pennini, Illaro Cuffiani
  • Patent number: 5578541
    Abstract: The present invention relates to spherical solid components of catalysts for the polymerization of olefins comprising, supported on a magnesium dihalide in active form, a titanium compound containing at least one Ti-halogen bond, and optionally an electron donor compound. The spherical solid components of the invention are characterized by porosity values higher than 1 cm.sup.3 /g and a pore size distribution such that at least 30% of their pores have an average radius greater than 10000 .ANG..
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: November 26, 1996
    Assignee: Montell Technology Company bv
    Inventors: Mario Sacchetti, Illaro Cuffiani, Gianni Pennini
  • Patent number: 5571877
    Abstract: Low or medium-density straight-chain ethylene polymers are prepared by copolymerising ethylene with a C.sub.4 -C.sub.6 alpha-olefin at elevated temperature and pressure in a tubular reactor and in the presence of a Ziegler-type catalyst comprising a trialkyl aluminium as co-catalyst and a solid component, the solid component being obtained:by spray-drying an ethanolic solution of magnesium chloride to obtain a solid substrate of magnesium chloride particles containing alcoholic hydroxyls,by reacting the substrate with titanium tetrachloride to form an activated substrate, andby reacting the activated substrate with an alkyl aluminium chloride to chlorinate the titanium and partially or completely reduce the titanium from the tetravalent to the trivalent state.
    Type: Grant
    Filed: May 8, 1995
    Date of Patent: November 5, 1996
    Assignee: Enichem Base S.p.A.
    Inventors: Mauro Mirra, Renzo Invernizzi, Francesco Masi, Antonio Bani
  • Patent number: 5567665
    Abstract: A process is provided for preparing a shape-shifted catalyst component comprising (1) contacting a dihydrocarbyloxide magnesium compound with carbon dioxide in the presence of a slurrying agent to form a slurry of a carboxylated dihydrocarbyloxide magnesium compound; (2) adding a filler to the slurry either before or after the carboxylation of step (1); (3) spray drying the slurry of step (2) to evaporate the slurrying agent and to produce solid particles of the carboxylated dihydrocarbyloxide magnesium compound incorporating the filler; and, optionally, (4) heating the solid particles to remove carbon dioxide to produce a shape-shifted dihydrocarbyloxide magnesium compound component. A catalyst system using the component and a polymerization process employing the catalyst system are also provided.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: October 22, 1996
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Burkhard E. Wagner, Daniel P. Zilker, Jr., Robert J. Jorgensen
  • Patent number: 5561091
    Abstract: A catalyst composition for producing linear low density polyethylene with relatively narrower molecular weight distributions is described. The catalyst is formed by treating silica having reactive OH groups with a dialkylmagnesium in a solvent for said dialkylmagnesium; then adding to said magnesium-containing support a mixture of ROH and SiCl.sub.4 to form an intermediate which is subsequently treated with a transition metal to form a transition metal-containing intermediate, the catalyst precursor. The catalyst precursor is activated with a trialkylaluminum compound.
    Type: Grant
    Filed: May 2, 1995
    Date of Patent: October 1, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin
  • Patent number: 5556822
    Abstract: There is an olefin catalyst system containing a Zielger-Natta catalyst with as an electron donor, an organosilane compound as represented by the formula (I); ##STR1## wherein R.sub.1 is trimethylsilylmethyl or 2-phenylpropyl; R.sub.2 is cyclopenty or cyclohexyl; and R.sub.3 is C.sub.1 -C.sub.3 alkyl.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: September 17, 1996
    Assignee: Korea Institute of Science and Technology
    Inventors: Il N. Jung, Joon S. Han, Eun J. Cho, Young T. Jeong, Kap K. Kang
  • Patent number: 5547675
    Abstract: This invention comprises a catalyst system and a process using such catalyst system for the production of high molecular weight polyolefins, particularly polyethylene and higher poly-.alpha.-olefin, and copolymers of ethylene and/or .alpha.-olefins with other unsaturated monomers, including diolefins, acetylenically unsaturated monomers and cyclic olefins. The catalyst system comprises three components, a monocyclopentadienyl Group IV B transition metal compound, an alumoxane, and a modifier. The catalyst system is highly active, at low ratios of aluminum to the Group IV B transition metal, hence catalyzes the production of a polyolefin product containing low levels of catalyst metal residue.
    Type: Grant
    Filed: November 30, 1994
    Date of Patent: August 20, 1996
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Jo Ann M. Canich
  • Patent number: 5543377
    Abstract: An olefin polymerization catalyst of the present invention comprises (A) a metallocene compound, (B) an organoaluminum oxy compound, and (C) at least one kind of carbonyl-containing compound selected from ketoalcohol and .beta.-diketone, and optionally (D) an organoaluminum compound, and therefore, the catalyst is excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having high molecular weight.A supported olefin polymerization catalyst and its olefin prepolymerized catalyst of the present invention are excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having uniform particle size.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: August 6, 1996
    Assignee: Mitsui Petrochemical Industries Co., Ltd.
    Inventors: Toshiyuki Tsutsui, Ken Yoshitsugu
  • Patent number: 5539069
    Abstract: An olefin polymerization catalyst of the present invention comprises (A) a metallocene compound, (B) an organoaluminum oxy compound, and (C) at least one kind of carbonyl-containing compound selected from ketoalcohol and .beta.-diketone, and optionally (D) an organoaluminum compound, and therefore, the catalyst is excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having high molecular weight.A supported olefin polymerization catalyst and its olefin prepolymerized catalyst of the present invention are excellent in polymerization activity per catalyst unit weight, and is capable of giving olefin (co)polymers having uniform particle size.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: July 23, 1996
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Toshiyuki Tsutsui, Ken Yoshitsugu
  • Patent number: 5539067
    Abstract: Disclosed are catalysts for the polymerization of alpha-olefins which comprise the reaction product of:(a) an Al alkyl compound;(b) a silicon compound containing at least a Si--OR or Si--OCOR or Si--NR.sub.2 bond, R being a hydrocarbyl radical;(c) a solid comprising, as essential support, a Mg dihalide in active form and, supported thereon, a Ti halide or a halo-Ti-alcoholate and a particular, selected type of electron-donor compound.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: July 23, 1996
    Assignee: Montedison S.p.A.
    Inventors: Sandro Parodi, Roberto Nocci, Umberto Giannini, Pier C. Barbe', Umerto Scata'