Inorganic Carbon Containing Patents (Class 502/174)
  • Publication number: 20080139862
    Abstract: Catalytic system for partial oxidation reactions of hydrocarbons characterized in that it contains: one or more metals belonging to the 1st, 2nd, and 3rd transition series; one or more elements of group IIIA, IVA or VA, wherein at least one of said metals or said elements is in the form of a nitride.
    Type: Application
    Filed: February 19, 2008
    Publication date: June 12, 2008
    Applicant: SNAMPROGETTI S.p.A.
    Inventors: Luca Basini, Domenico Sanfilippo, Alessandra Guarinoni
  • Publication number: 20080132589
    Abstract: A method for the preparation of a catalyst or catalyst precursor comprising: (a) admixing a carrier material, a homogeneous crystalline solid solution of a cobalt compound and one or more d-metal compounds and/or one or more co-catalysts or precursors thereof, and optionally a liquid; (b) forming the mixture of step (a); and (c) optionally drying and/or calcining the product of step (b).
    Type: Application
    Filed: November 20, 2007
    Publication date: June 5, 2008
    Inventor: Marinus Johannes REYNHOUT
  • Publication number: 20080127631
    Abstract: Disclosed herein is a catalyst composition comprising a halide of a Group Ib element and an inert powder. Disclosed herein too is a composition comprising a reaction product of a halide of a Group Ib element, an inert powder and mercury. Disclosed herein too is a method comprising injecting a catalyst composition comprising a halide of a Group Ib element and an inert powder into an emissions stream of a thermoelectric power plant; converting an elemental form of mercury present in the emissions stream into an oxidized form, an amalgamated form and/or a particulate bound form of mercury; and collecting the oxidized form, the amalgamated form and/or the particulate bound form of mercury prior to the entry of the emissions stream into the atmosphere.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Applicant: General Electric Company
    Inventors: Deborah Ann Haitko, Vitali Lissianski, Alison Liana Palmatier
  • Publication number: 20080125568
    Abstract: A lactone compound represented by following General Formula (1), such as ?-caprolactone, is reacted in the presence of a powdered activated carbon where necessary with an initiator such as a polyhydric alcohol, an aliphatic alcohol, or an aliphatic carboxylic acid to thereby yield, for example, a polylactone, a polylactone alkyl ether, or a polylactone alkyl ester. [Chemical Formula 1] Wherein R1 is an alkylene group having two to eighteen carbon atoms which may be substituted with one or more alkyl groups each having one to ten carbon atoms. Accordingly, a target compound can be produced in a high yield with high quality, from which the catalyst can be easily removed.
    Type: Application
    Filed: February 3, 2006
    Publication date: May 29, 2008
    Inventors: Toshio Endo, Hidetoshi Omori
  • Publication number: 20080119351
    Abstract: A decomposing catalyst for decomposing perfluorinated compound, carbon hydrofluoride, perchloro-carbon and carbon hydrochloride gas compounds as well as a method of producing the catalyst, the catalyst contains at least high temperature durable carrier with large surface areas and effectively decomposed components; the effectively decomposed components further includes transitional metal compounds, precious metals and phosphate. The above materials are mixed, granulated, sintered, immersed in solution and dried to form the decomposing catalyst able to decompose gaseous perfluorinated compound and fluorochloro-compounds. The method particularly suits decomposing perfluorinated compound, carbon hydrofluoride, perchloro-carbon and carbon hydrochloride gases exhausted from the processes of dry etch and chemical vapor deposition (CVD) in producing semiconductors and liquid crystal panels.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Inventor: Po-Chu Liu
  • Patent number: 7348289
    Abstract: A catalyst body of the present invention includes: a porous carrier in which a large number of aggregate particles containing a main component of a nonoxide ceramic are bonded to one another while a large number of pores are disposed; and a catalyst layer carried on the porous carrier and containing a compound of an alkali metal, wherein the porous carrier has an oxide film unavoidably formed on a part of the surface of the aggregate particles, and an oxide film protective layer formed of a material which does not form low-melting glass with the alkali metal is further disposed between the oxide film and the catalyst layer in such a manner as to coat at least a part of the oxide film.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 25, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuichi Ichikawa, Yasushi Uchida
  • Publication number: 20080033084
    Abstract: The present invention relates to a catalyst composition for producing polyethylene terephthalate from terephthalic acid and ethylene glycol, comprising: (i) an antimony compound, being present such that the elemental antimony is in a range of about 15 ppm to less than 150 ppm; (ii) a zinc compound, being present such that the elemental zinc is in a range of about 40 to about 160 ppm; as well as a process for the preparation thereof.
    Type: Application
    Filed: February 10, 2005
    Publication date: February 7, 2008
    Inventors: Zahir Bashir, Jamil Siddiqui, Venkatanathan Sampath, Khalid AL- Luhaidan
  • Patent number: 7314540
    Abstract: A diamond electrode having a sufficiently low resistance is disclosed which is realized by increasing the amount of boron added thereto. A method for producing a high-performance, high-durability electrode is also disclosed by which adhesiveness between a diamond coating and a substrate and separation resistance during electrolysis are sufficiently increased. An electrode composed of a substrate and a diamond layer coating the substrate is characterized in that the electrode is composed of a base coated with diamond and the diamond contains boron in such an amount that the boron concentration is not less than 10,000 ppm but not more than 100,000 ppm. The base is preferably made of an insulating material.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: January 1, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yuichiro Seki, Kenji Izumi, Takahiro Imai
  • Patent number: 7307038
    Abstract: Processes for preparing a composition comprising (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, and (iii) an oxygen storage component are disclosed. Preferably, the process comprise forming a single slurry of components (i)–(iii), spray drying and calcining to obtain metal oxide particles comprising components (i)–(iii). Preferably, the slurry comprise a base peptized acidic metal oxide containing slurry wherein the component (ii) is provided in the slurry as a metal of the base. Compositions prepared are impregnated with a noble metal to provide compositions useful to reduce gas phase reduced nitrogen species and NOx in an effluent off gas of a fluid catalytic cracking regenerator.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: December 11, 2007
    Assignee: W.R. Grace & Co. -Conn.
    Inventors: George Yaluris, John Allen Rudesill, Wilson Suárez
  • Patent number: 7208642
    Abstract: A production process and a catalyst are provided, which can be less decreased in activity of the catalyst even when CO2, water and the like are present in the starting material and/or the reaction system, and which can produce a formic ester or a methanol at a low temperature and a low pressure. The present invention relates to a process for producing methanol, comprising reacting carbon monoxide with an alcohol in the presence of an alkali metal-type catalyst, and/or an alkaline earth metal-type catalyst to produce a formic ester, wherein a hydrogenolysis catalyst of formic ester and hydrogen are allowed to be present together in the reaction system to hydrogenate the produced formic ester and thereby obtain a methanol.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: April 24, 2007
    Assignee: Nippon Steel Corporation
    Inventors: Kaoru Fujimoto, Noritatsu Tsubaki, Kenichiro Fujimoto
  • Patent number: 7169730
    Abstract: Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: January 30, 2007
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Patent number: 7153987
    Abstract: The invention relates to a process for preparing a catalyst which involves (a) preparing a paste having a uniform mixture of at least one alkaline earth metal carbonate; a liquid medium; a silver bonding additive; and, at least one extrusion aid and/or optionally a burnout additive; (b) forming one or more shaped particles from the paste; (c) drying and calcining the particles; and, (e) impregnating the dried and calcined particles with a solution containing a silver compound. The invention also relates to a process for preparing an olefin oxide comprising reacting a gas composition containing an olefin having at least two carbon atoms with oxygen in the presence of the catalyst composition obtained by the process of this invention.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: December 26, 2006
    Assignee: Shell Oil Company
    Inventors: Leonid Isaakovich Rubinstein, Candido Gutierrez
  • Patent number: 7148178
    Abstract: A catalyst bed combination comprising a bed of a particulate copper-containing catalyst and, upstream of the catalyst bed, a guard bed in the form of shaped units formed from lead oxide particles and a particulate support material. The guard bed extends the life of the copper catalyst by absorbing halide contaminants in the process stream.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: December 12, 2006
    Assignee: Johnson Matthey PLC
    Inventor: Gordon James Kelly
  • Patent number: 7148177
    Abstract: The invention relates to a process for the preparation of an alkali metal catalyst by mixing an alkali metal with pulverulent, solid potassium carbonate as support, wherein the potassium carbonate has a specific surface area of at least 0.3 m2/g, and to the use thereof for the side-chain alkylation of alkylbenzenes.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: December 12, 2006
    Assignee: BASF Aktiengesellschaft
    Inventor: Ulrich Steinbrenner
  • Patent number: 7115770
    Abstract: The invention concerns the use as catalyst for transforming carbamates of compounds corresponding to the general formula (I): —Sn (X) (X?) wherein: X? is selected among chloride, bromide, iodide, thiocyanate radicals, sulphonate radicals, advantageously perfluorinated on the carbon bearing the sulphonate function; X is selected among the values of X? and among radicals of formula Y-Z; Y is selected among the chalcogen groups, advantageously light (that is oxygen and sulphur); Z is selected in the group consisting of trisubstituted tin, monosubstituted zinc, and the oxygenated acid radicals after ignoring the OH function. The invention is applicable to the coating industry.
    Type: Grant
    Filed: October 8, 2001
    Date of Patent: October 3, 2006
    Assignee: Rhodia-Chimie
    Inventors: Jean-Marie Bernard, Bernard Jousseaume, Christian Laporte, Thierry Toupance
  • Patent number: 7087550
    Abstract: A combination comprising a bed of a particulate copper-containing catalyst bed, a guard bed in the form of shaped units formed from lead carbonate and/or basic lead carbonate particles having an average (by volume) particle size below 100 ?m.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: August 8, 2006
    Assignee: Johnson Matthey PLC
    Inventor: Michael John Watson
  • Patent number: 7067693
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl) glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: June 27, 2006
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Anthony Woods, Peter E. Rogers, Jingye Liu, William A. Scholle
  • Patent number: 6936565
    Abstract: Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: August 30, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Patent number: 6916762
    Abstract: An FCC catalyst which not only deactivates catalyst poison metals, such as nickel, vanadium and the like, in feedstock oils, inhibits the generation of hydrogen or coke, has excellent cracking activity and bottom oil-treating ability, and can yield a gasoline and LCO fraction in high yields, but also retains the performances on a high level over long and has an improved catalyst life; and an FCC method using the catalyst. The FCC catalyst has a compound of a bivalent metal or of bivalent and trivalent metals showing an XRD pattern of a carbonate of the bivalent metal; an inorganic oxide matrix and the compound dispersed therein; or an inorganic oxide matrix and the compound dispersed therein together with a crystalline aluminosilicate zeolite, and relates to an FCC method in which at least one of the catalysts are used in combination with an FCC catalyst obtained by evenly dispersing a crystalline aluminosilicate zeolite in an inorganic oxide matrix.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: July 12, 2005
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Tadashi Shibuya, Junko Naito, Hidenori Yamada, Nobuki Sekine
  • Patent number: 6864201
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: March 8, 2005
    Assignees: The Regents of the University of California, Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiaodong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Patent number: 6846772
    Abstract: Production of nickel/silica hydrogenation catalyst precursors by heating a slurry of particulate silica, e.g. kieselguhr, in an aqueous nickel ammine carbonate solution for a total period of at least 200 minutes at a pH above 7.5, followed by filtration, washing, drying, and optionally calcination.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: January 25, 2005
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Cornelis Martinus Lok, Gavin Gray, Stephen Derek Rogers, Stephen Bailey
  • Patent number: 6841508
    Abstract: Compositions including oxycarbide-based nanorods and/or carbide-based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including oxycarbide-based nanorods and/or carbide based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided. The fluid phase catalytic reactions catalyzed include hydrogenation, hydrodesulfurisation, hydrodenitrogenation, hydrodemetallisation, hydrodeoxigenation, hydrodearomatization, dehydrogenation, hydrogenolysis, isomerization, alkylation, dealkylation and transalkylation.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: January 11, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Chunming Niu, Jun Ma, James M. Willey
  • Patent number: 6824755
    Abstract: This invention relates generally to a method for producing single-wall carbon nanotube (SWNT) catalyst supports and compositions thereof. In one embodiment, SWNTs or SWNT structures can be employed as the support material. A transition metal catalyst is added to the SWNT. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 30, 2004
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Publication number: 20040225104
    Abstract: The invention pertains to new catalyst systems for polycondensation reactions, for example for producing polyethylene terephthalate. In accordance with the invention, complex compounds with hydrotalcite-analogous structures of general formula [M(II)1−xM(III)x(OH)2]x+(An−x/n).mH2O are used, wherein M(II) represents divalent metals, preferably Mg or Zn or NI or Cu or Fe(II) or Co, and M(III) represents trivalent metals, for example Al or Fe(III), and A represents anions, preferably carbonates or borates. These catalysts can be calcinated and can be used in combination with phosphorus compounds that contain at least one hydrolyzable phosphorus-oxygen bond.
    Type: Application
    Filed: June 7, 2004
    Publication date: November 11, 2004
    Inventors: Jene Peter Wiegner, Volkmar Voerckel, Rolf Eckert, Gunter Feix, Marion Sela, Sarat Munjal
  • Publication number: 20040192792
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions to prepare synthesis gas and ultimately C5+ hydrocarbons. In particular, preferred embodiments of the present invention comprise catalyst systems comprising a core and an outer region disposed on said core, wherein a substantial amount of the catalytic metal is located in the outer region of the catalyst support matrix. In addition, the catalyst systems are able to maintain high conversion and selectivity values with very low catalytically active metal loadings. The catalyst systems are appropriate for improved syngas, oxidative dehydrogenation and other partial oxidation reactions, including improved reaction schemes for the conversion of hydrocarbon gas to C5+ hydrocarbons.
    Type: Application
    Filed: December 29, 2003
    Publication date: September 30, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Tianyan Niu, Harold A. Wright, Shuibo Xie, Mary E. Wolf
  • Publication number: 20040162216
    Abstract: An improved catalyst for producing carbon fibrils is made by incorporating an effective yield-enhancing amount of a carboxylate into a fibril-forming catalyst. Alternatively, such a catalyst is made by coprecipitating a compound of a metal having fibril-forming catalytic properties and an aluminum and/or magnesium compound, optionally in the presence of carbon particles or carbon fibril aggregates. The catalyst may also be made by incorporating a compound of a fibril-forming metal onto magnesia particles in carbon particles or carbon fibril aggregates. The catalysts, methods of using them to form carbon fibrils and those carbon fibrils are also disclosed.
    Type: Application
    Filed: February 11, 2004
    Publication date: August 19, 2004
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Asif Chishti
  • Patent number: 6770589
    Abstract: An improved catalyst for producing carbon fibrils is made by incorporating an effective yield-enhancing amount of a carboxylate into a fibril-forming catalyst. Alternatively, such a catalyst is made by coprecipitating a compound of a metal having fibril-forming catalytic properties and an aluminum and/or magnesium compound, optionally in the presence of carbon particles or carbon fibril aggregates. The catalyst may also be made by incorporating a compound of a fibril-forming metal onto magnesia particles in carbon particles or carbon fibril aggregates. The catalysts, methods of using them to form carbon fibrils and those carbon fibrils are also disclosed.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: August 3, 2004
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Asif Chishti
  • Patent number: 6764977
    Abstract: Safety stabilized solid, free-flowing compositions based on t-butyl peroxy maleic acid as well as processes for their preparation and use are disclosed.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: July 20, 2004
    Assignee: ATOFINA Chemicals, Inc.
    Inventor: Terry Ned Myers
  • Patent number: 6723296
    Abstract: The invention relates to a material for treating gaseous media containing volatile organic components. According to the invention, the material is porous and exhibits an absorption capacity of approximately 20-30% in relation to the dry weight thereof, containing approximately 47-52% by weight of a composite carbon and silicon structure, approximately 12-20 wt. % carbon, approximately 5-7 wt % hydroxyl, and approximately 1-2 wt % oxygen. The invention can be used in atmospheric treatment for the preservation of living matter.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: April 20, 2004
    Assignee: Ectium B.V.
    Inventor: Henri Louis Drean
  • Publication number: 20040072682
    Abstract: A combination comprising a bed of a particulate copper-containing catalyst bed, a guard bed in the form of shaped units formed from lead carbonate and/or basic lead carbonate particles having an average (by volume) particle size below 100 &mgr;m.
    Type: Application
    Filed: August 19, 2003
    Publication date: April 15, 2004
    Inventor: Michael John Watson
  • Publication number: 20040059168
    Abstract: The invention relates to a process for the preparation of an alkali metal catalyst by mixing an alkali metal with pulverulent, solid potassium carbonate as support, wherein the potassium carbonate has a specific surface area of at least 0.3 m2/g, and to the use thereof for the side-chain alkylation of alkylbenzenes.
    Type: Application
    Filed: June 11, 2003
    Publication date: March 25, 2004
    Inventor: Ulrich Steinbrenner
  • Publication number: 20040035750
    Abstract: The present invention provides an FCC catalyst which not only deactivates catalyst poison metals, such as nickel, vanadium and the like, in feedstock oils, inhibits the generation of hydrogen or coke, has excellent cracking activity and bottom oil-treating ability, and can yield a gasoline and LCO fraction in high yields, but also retains the performances on a high level over long and has an improved catalyst life; and an FCC method using the catalyst.
    Type: Application
    Filed: February 25, 2003
    Publication date: February 26, 2004
    Inventors: Tadashi Shibuya, Junko Naito, Hidenori Yamada, Nobuki Sekine
  • Publication number: 20040002421
    Abstract: A method for manufacturing a catalytic stuff includes grinding the ore containing silica as main component, carbon, etc.; burning the powder object at high temperature after grinded the ore; emitting the carbon dioxide generated by combustion and churning of other substances which are sticking to silica during combustion of the powder object; and burning the remained catalytic stuff at high temperature again after carbon dioxide emits and manufacturing the catalytic stuff used for the mixed material with metal, filter medium of pollution water, propagation material etc. so that the tap water, the polluted water are improved efficient using the generated catalytic stuff, and it can be used broadly as water for home use, industrial use, agricultural use, and medical treatment, etc. and the balance of the body and cell can improve remarkably by holding the catalytic stuff since the generated catalytic stuff has the ultra-red ray effect etc.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Inventors: Tsuneo Nihei, Noriko Nihei
  • Publication number: 20030146165
    Abstract: A treatment agent for elimination of contaminated harmful substances, essentially comprised of high osmotic water prepared by fining treatment of water molecule cluster and activated carbon in the form of highly carbonaceous and porous fine powder mixed with the high osmotic water.
    Type: Application
    Filed: June 19, 2002
    Publication date: August 7, 2003
    Inventors: Toshiaki Katsube, Hatsuo Oyaizu
  • Patent number: 6602926
    Abstract: The present invention relates to a catalyst system for the production of polyurethane comprising catalysts for polyurethane formation and sterically hindered carbodiimides, which system is capable of lessening the “fogging” problem in the production of polyurethane materials, without impairing in particular the aging properties of the polyurethane materials thus produced.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: August 5, 2003
    Assignee: Rhein Chemie Rheinau GmbH
    Inventors: Ludger Heiliger, Reinhard Montag
  • Patent number: 6603039
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: August 5, 2003
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Peter E. Rogers, Jingyue Liu, Anthony Woods
  • Publication number: 20030139286
    Abstract: A process for preparing a cobalt based catalyst precursor includes, in a support impregnation stage, impregnating a coated catalyst support comprising porous catalyst support particles coated with carbon, with a cobalt salt, and partially drying the impregnated support. Thereafter, in a calcination stage, the partially dried impregnated support is calcined, to obtain the cobalt based catalyst precursor. The cobalt based catalyst precursor can then, in a reduction stage, be reduced to obtain a cobalt based Fischer-Tropsch catalyst.
    Type: Application
    Filed: November 26, 2002
    Publication date: July 24, 2003
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Jacobus Lucas Visagie
  • Publication number: 20030139639
    Abstract: There are disclosed a decompositionally treating agent for fluorocarbons which comprises an aluminum compound and a lanthanoid compound as effective ingredients; a decompositionally treating agent for fluorocarbons which comprises an aluminum compound, a lanthanoid compound and an alkaline earth metal compound as effective ingredients; and a decompositionally treating method for fluorocarbons which comprises decomposing a fluorocarbon by bringing a fluorocarbon-containing gas into contact under heating with a decompositionally treating agent mentioned above or by bringing the above gas into contact under heating with a decompositionally treating agent comprising aluminum oxide as an effective ingredient and thereafter with a decompositionally treating agent comprising a lanthanoid oxide and an alkaline earth metal oxide.
    Type: Application
    Filed: September 26, 2002
    Publication date: July 24, 2003
    Inventors: Kenji Otsuka, Youji Nawa, Tomohisa Ikeda, Koshi Ochi
  • Publication number: 20030104930
    Abstract: A granular photocatalytic material in the form of pellets or tablet is produced by compressing a photocatalyst mixture containing photocatalytic particles and a filler in air, a vacuum, or an inert gas at a temperature of 0 to 200° C., a pressure of 500 to 6000 kg/cm2, and a pressing time of 0.01 to 60 seconds. An alkali slurry is applied on the surface of the granular photocatalytic material. A method of restoring a function of granular photocatalytic material comprises washing the surface of the granular photocatalytic material with the slurry or an alkali solution of sodium hydroxide An apparatus for decomposing and removing toxic organic matter comprises a means of bringing the granular photocatalytic material into contact with the toxic organic matter in a liquid or air, and a means of irradiating the granular photocatalytic material with light having a wavelength of 400 nm or less.
    Type: Application
    Filed: October 24, 2002
    Publication date: June 5, 2003
    Inventors: Akira Osawa, Yoichi Nagasaki, Jun Yamamoto, Kunimasa Muroi
  • Publication number: 20030086851
    Abstract: In one embodiment, a catalyst configuration, comprises: a substrate, a NiO layer disposed on the substrate, wherein the NiO layer comprises greater than or equal to about 75 wt % of the NiO in the catalyst configuration; and a catalyst layer comprising a NOx adsorbing catalyst. In another embodiment, a catalyst configuration, comprises: a substrate, a catalyst layer disposed on the substrate, wherein the catalyst layer comprises a NOx adsorbing catalyst and thermally treated NiO.
    Type: Application
    Filed: July 1, 2002
    Publication date: May 8, 2003
    Inventor: Danan Dou
  • Patent number: 6544439
    Abstract: Applicants have developed a novel catalyst composition comprising a crystalline metal oxide having the empirical formula: AvBt+wNixD(Gu−)yOz, where A is an alkali metal (e.g. Na), B is a basic metal (e.g. Ca), D is a framework component (e.g. P), and G is an anionic species (e.g. OH−). Nickel may be present in the framework of the crystalline metal oxide, dispersed thereon, or both. Preferably, the metal oxide component has an apatite or hydroxyapatite crystal structure. These crystalline metal oxide components have been found to have improved performance in partial oxidation and light hydrocarbon (e.g. methane) reforming to produce synthesis gas. A new process for synthesizing these metal oxides is also disclosed.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: April 8, 2003
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, John E. Bauer
  • Publication number: 20030035769
    Abstract: Compositions including oxycarbide-based nanorods and/or carbide-based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided.
    Type: Application
    Filed: June 11, 2002
    Publication date: February 20, 2003
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Chunning Niu, Jun Ma, James M. Willey
  • Patent number: 6514897
    Abstract: The present invention relates to compositions and rigid porous structures that contain nanorods having carbides and/or oxycarbides and methods of making and using such compositions and such rigid porous structures. The compositions and rigid porous structures can be used either as catalysts and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided. The fluid phase catalytic reactions catalyzed include hydrogenation hydrodesulfuriaation, hydrodenitrogenation, hydrodemetallization, hydrodeoxygenation, hydrodearomatization, dehydrogenation, hydrogenolyis, isomerization, alkylation, dealkylation, oxidation and transalkylation.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: February 4, 2003
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Chunming Niu, Jun Ma, James M. Willey
  • Publication number: 20030008772
    Abstract: Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Application
    Filed: October 29, 2001
    Publication date: January 9, 2003
    Inventors: Jun Ma, David Moy
  • Patent number: 6503863
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 7, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Publication number: 20020169069
    Abstract: A base catalyst, obtained by formulating at least one alkali metal compound selected from the group consisting of alkoxides, hydroxides and oxides of alkali metals and an alkaline-earth metal oxide in a ratio of “the weight of alkaline metal compound/the weight of alkaline-earth metal oxide”=0.005 to 1, is used in a reaction of an aldehyde to produce a glycol monoester, thereby providing a base catalyst with an improved efficiency which can be applied to aldol reaction or the like and which has high activity to give target product in a high selectivity.
    Type: Application
    Filed: February 7, 2000
    Publication date: November 14, 2002
    Inventors: KAN-ICHIRO INUI, SHUNJI OSHIMA, TORU KURABAYASHI, SAKAE KAWAMURA, MASAHIRO YOKOTA
  • Patent number: 6432866
    Abstract: This invention relates to rigid porous carbon structures and to methods of making same. The rigid porous structures have a high surface area which are substantially free of micropores. Methods for improving the rigidity of the carbon structures include causing the nanofibers to form bonds or become glued with other nanofibers at the fiber intersections. The bonding can be induced by chemical modification of the surface of the nanofibers to promote bonding, by adding “gluing” agents and/or by pyrolyzing the nanofibeirs to cause fusion or bonding at the interconnect points.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: August 13, 2002
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Howard Tennent, David Moy, Chun-Ming Niu
  • Publication number: 20020094471
    Abstract: A catalyst support material useful in a membrane electrode assembly is presented. The support catalyst material is elongate electrically anisotropic particles of flexible graphite, and the membrane electrode assembly includes a pair of electrodes, an ion exchange membrane having opposed surfaces positioned between the electrodes and a catalyst material on the inventive support, at least a portion of an opposed surface of the ion exchange membrane being adjacent the catalyst which is supported on the elongate electrically anisotropic particles of flexible graphite sheet.
    Type: Application
    Filed: November 30, 2000
    Publication date: July 18, 2002
    Inventor: Robert Angelo Mercuri
  • Patent number: 6417133
    Abstract: This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: July 9, 2002
    Assignee: Monsanto Technology LLC
    Inventors: Jerry R. Ebner, Mark A. Leiber, Kam-To Wan, Peter E. Rogers, Jingyue Liu, Anthony Woods
  • Patent number: 6403523
    Abstract: The present invention provides a catalyst for the oxidative dehydrogenation of a lower hydrocarbon to form at least one higher hydrocarbon and/or lower olefin. In one embodiment, the catalyst includes a nonstoichiometric rare earth oxycarbonate of the formula MXCYOZ having a disordered and/or defect structure, wherein M is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; X=2; Z=3+AY; A is less than about 1.8, and Y is the number of carbon atoms in the oxycarbonate. When used for the oxidative dehydrogenation of a lower hydrocarbon at a pressure above about 100 psig, the catalyst has a selectivity of at least about 40% to at least one higher hydrocarbon and/or lower olefin. Methods for preparing catalysts taught by the invention and processes for using the catalysts for the oxidative dehydrogenation of lower hydrocarbons are also provided.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: June 11, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Rick David Cantrell, Anca Ghenciu, Kenneth Dwight Campbell, David Michael Anthony Minahan, Madan Mohan Bhasin, Alistair Duncan Westwood, Kenneth Andrew Nielsen