Of Group Viii (i.e., Iron Or Platinum Group) Patents (Class 502/185)
  • Patent number: 8273679
    Abstract: A porous catalyst includes at least one noble nano-metal particle, an oxide for forming porous structures, and a carrier material for supporting the oxide and the at least one noble nano-metal particle. The porous catalyst shows a large electrochemical surface area and a highly conductive ability. Further, the noble nano-metal particles are separated on the oxides uniformly, and the oxide of the catalyst forms a porous structure to provide a large electrochemical surface area. The porous catalyst provides excellent proton/electron transfer ability and increases the reaction rate.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 25, 2012
    Assignee: National Central University
    Inventors: Po-Jen Chu, Jhuh-Wei Yang, Chieh-Chun Chang, Huang-Yu Lee
  • Publication number: 20120238440
    Abstract: This invention provides novel fuel cell electrodes and catalysts comprising a series of catalytically active thin-film metal alloys with low platinum concentration supported on nanostructured materials (nanoparticles). Processing of the electrodes and catalysts can include electrodeposition methods, and high-pressure coating techniques. In certain embodiments, an integrated gas-diffusion/electrode/catalyst layer can be prepared by processing catalyst thin films and nanoparticles into gas-diffusion media such as Toray or SGL carbon fiber papers. The catalysts can be placed in contact with an electrolyte membrane for PEM fuel cell applications.
    Type: Application
    Filed: May 30, 2012
    Publication date: September 20, 2012
    Applicant: Intematix Corporation
    Inventors: Tao Gu, Thomas R. Omstead, Ning Wang, Yi Dong, Yi-Qun Li
  • Patent number: 8252963
    Abstract: A catalyst composition can include: a support; a ruthenium catalyst (Ru) nanoparticle; and a linker linking the Ru nanoparticle to the support, wherein the linker is stable under hydrogenolysis conditions. In one aspect, the linker can include 3-aminopropyl trimethoxysilane (APTS) or derivatives thereof, such as those with amine functionality. In another aspect, the linker can include phosphotungstic acid (PTA) or other similar solid acid agents. In another aspect, the support can be selected from alumina, carbon, silica, a zeolite, TiO2, ZrO2, or another suitable material. A specific example of a support includes zeolite, such as a NaY zeolite. The Ru nanoparticle can have a size range from about 1 nm to about 25 nm, and can be obtained by reduction of Ru salts.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: August 28, 2012
    Assignee: University of Kansas
    Inventors: Raghunath V. Chaudhari, Debdut S. Roy, Bala Subramaniam
  • Publication number: 20120214664
    Abstract: The disclosed technology relates to nanotechnology, petrochemistry, gas chemistry, coal chemistry, in particular to a catalyst based on carbon nanotubes for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The carbon nanotubes fixed in the catalyst pellet pores improve mass and heat transfer in the catalyst pellet and the catalyst bed.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 23, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Aida Razimovna Karaeva, Lilia Vadimovna Sineva, Eduard Borisovich Mitberg, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev
  • Publication number: 20120208103
    Abstract: A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 16, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Hyuk CHANG, Chan-Ho PAK, Jian Nong WANG
  • Publication number: 20120198769
    Abstract: A catalyst-coated support including a sheetlike support, a primer layer applied thereto and composed of nanoparticles composed of silicon oxide-comprising material, and at least one catalyst layer applied to the primer layer. The layers applied are notable for a particularly good adhesive bond strength and can be used particularly efficiently in heterogeneously catalyzed gas phase reactions, especially in microreactors.
    Type: Application
    Filed: June 23, 2010
    Publication date: August 9, 2012
    Inventors: Steffen Schirrmeister, Martin Schmitz-Niederau, Ingo Klüppel, Christoph Filthaut
  • Publication number: 20120202128
    Abstract: A solid electrolyte including a layered metal oxide represented by the formula (1), (La1-xAx)(Sr1-yBy)3(Co1-zCz)3O10-???(1) [wherein A represents a rare earth element other than La; B represents Mg, Ca, or Ba; C represents Ti, V, Cr, or Mn; 0?x?1, 0?y?1, 0?z<1; and ? represents an oxygen deficiency amount].
    Type: Application
    Filed: February 7, 2012
    Publication date: August 9, 2012
    Applicants: National University Corporation Hokkaido University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Tatsuya Takeguchi, Hiroki Takahashi, Ayaka Nakamura, Saburo Hosokawa
  • Patent number: 8236724
    Abstract: An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: August 7, 2012
    Assignee: NEC Corporation
    Inventors: Tsutomu Yoshitake, Shin Nakamura, Sadanori Kuroshima, Hidekazu Kimura, Hideto Imai, Yuichi Shimakawa, Takashi Manako, Yoshimi Kubo
  • Patent number: 8236207
    Abstract: Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: August 7, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Yu Seung Kim, Kwan-Soo Lee, Tommy Q. T. Rockward
  • Publication number: 20120196207
    Abstract: An electrode catalyst for a fuel cell, a method of preparing the same, and a membrane electrode assembly and a fuel cell including the same. The electrode catalyst includes a catalyst particle that incorporates a plurality of palladium atoms, a plurality of atoms of a transition metal, and a plurality of atoms of a precious metal having a higher standard reduction potential than the transition metal, where all of the plurality of atoms of the transition metal are respectively surrounded by at least one of the palladium atoms, the neighboring atoms of the transition metal, or the atoms of the precious metal.
    Type: Application
    Filed: August 9, 2011
    Publication date: August 2, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Dae-jong YOO, Chan-ho PAK, Kang-hee LEE
  • Publication number: 20120196743
    Abstract: An oxidation catalyst containing a carbon material prepared by calcining a transition metal compound and a nitrogen-containing organic substance, or a transition metal compound, a nitrogen-containing organic substance, and a carbon compound not containing nitrogen, the oxidation catalyst oxidizing CO and/or a hydrocarbon.
    Type: Application
    Filed: May 28, 2010
    Publication date: August 2, 2012
    Applicant: Nisshinbo Holdings Inc.
    Inventors: Seizo Miyata, Hideo Kameyama, Yu Guo
  • Patent number: 8231857
    Abstract: Disclosed are catalysts and methods that can reform aqueous solutions of oxygenated compounds such as ethylene glycol, glycerol, sugar alcohols, and sugars to generate products such as hydrogen and alkanes. In some embodiments, aqueous solutions containing at least 20 wt % of the oxygenated compounds can be reformed over a catalyst comprising a Group VIII transition metal and a Group VIIB transition metal, preferably supported on an activated carbon-supported catalyst. In other embodiments, catalysts are provided for the production of hydrogen or alkanes at reaction temperatures less than 300° C.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 31, 2012
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Nicholas W. Vollendorf, Charles C. Hornemann, Shawn P. McMahon
  • Publication number: 20120190899
    Abstract: The hydrogenation catalyst comprises from 1 to 50% by weight, based on the total catalyst, of nickel on a carbon support, wherein the hydrogenation catalyst does not comprise any rhenium. Coconut shell carbon is preferably used as support.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 26, 2012
    Applicant: BASF SE
    Inventor: Annemarie Elisa Wilhelmina Beers
  • Publication number: 20120190536
    Abstract: A supported catalyst is prepared by a process that includes establishing shell-removal conditions for a supported catalyst intermediate that includes capped nanoparticles of a catalyst material dispersed on a carbon support. The capped nanoparticles each include a platinum alloy core capped in an organic shell. The shell-removal conditions include an elevated temperature and an inert gas atmosphere that is substantially free of oxygen. The organic shell is removed from the platinum alloy core under the shell-removal conditions to limit thermal decomposition of the carbon support and thereby limit agglomeration of the catalyst material such that the supported catalyst includes an electrochemical surface area of at least 30 m2/g Pt.
    Type: Application
    Filed: December 17, 2009
    Publication date: July 26, 2012
    Inventors: Chuan-Jian Zhong, Brigid Wanjala, Jin Luo, Peter N. Njoki, Rameshwori Loukrakpam, Minhua Shao, Lesia V. Protsailo, Tetsuo Kawamura
  • Patent number: 8227372
    Abstract: The invention is directed to core/shell type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, 5 preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The inner particle core (Mcore) of the particles comprises metal or ceramic materials, whereas the material of the outer shell (Mshell) comprises precious metals and/or alloys thereof. The core/shell type catalyst particles are preferably supported on suitable support materials such as carbon black and can be used as electrocatalysts for fuel cells and for other catalytic applications.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: July 24, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
  • Publication number: 20120175306
    Abstract: The present invention relates to active charcoals with improved mechanical properties. They can advantageously be used in the sweetening of petroleum fractions, as oxidation catalyst support in the conversion of mercaptans to disulphides, but also in any other type of reaction, such as, for example, for the oxidation of cyanide present in water or in the synthesis of glyphosate, and in processes for purification and/or separation by selective adsorption in a liquid phase and/or in a gas phase (decolouration of liquid foodstuffs, water treatment, air treatment, recovery of solvents, and the like).
    Type: Application
    Filed: November 14, 2011
    Publication date: July 12, 2012
    Inventor: Remy LeBec
  • Patent number: 8211594
    Abstract: A composition comprising an admixture of at least platinum particles and metal nanoparticles of metal that, when in admixture with the platinum particles, beneficially alters the characteristics of the platinum, including metals selected from one or more of the metals in groups 3-16, lanthanides, combinations thereof, and/or alloys thereof. The composition could be used to form an ink that further comprises an ionically conductive material, such as a polymer, capable of ionic networking throughout the ink composition so as to create a substantially structurally coherent mass without significantly impacting the reactivity of a substantial number of the nanoparticles. In one application, the ink may be used to form a catalyst whereby the ink is applied to an electrically conductive backing material, such as carbon paper or fibers.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 3, 2012
    Assignee: QuantumSphere, Inc.
    Inventors: Kimberly McGrath, R. Douglas Carpenter
  • Publication number: 20120165184
    Abstract: The present invention is directed to a composite material of a carbonaceous substance comprising a doped catalytic compound obtained by a sol-gel method. In one embodiment, the method comprises mixing a hydrolyzed solution comprising a precursor of a catalytic material with a carbonaceous material to obtain a sol. The sol is afterwards incubated while at the same time it is mixed. After incubation the sol is condensated to form a gel. After condensation the gel formed is subjected to a first calcination carried out in an oxidizing environment followed by a second calcination carried out in a non-oxidizing environment. The non-oxidizing environment comprises a second dopant comprising precursor material. Also, a solution of a first dopant comprising precursor material is added to the solution comprising an organometallic precursor of a catalytic material before hydrolyzation or before subjecting the gel to calcination, i.e. after hydrolyzation.
    Type: Application
    Filed: June 22, 2010
    Publication date: June 28, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Teik Thye Lim, Pow Seng Yap, Madhavi Srinivasan, Anthony Gordon Fane
  • Publication number: 20120157298
    Abstract: The invention is directed to a process for producing carbon nanofibres and/or carbon nanotubes, which process comprises pyrolysing a particulate cellulosic and/or carbohydrate substrate that has been impregnated with a compound of an element or elements, the metal or alloy, respectively, of which is capable of forming carbides, in a substantially oxygen free, volatile silicon compound containing atmosphere, optionally in the presence of a carbon compound.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 21, 2012
    Inventors: J. Hoekstra, John Wilhelm Geus, L. W. Jenneskens
  • Publication number: 20120157299
    Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
    Type: Application
    Filed: March 1, 2012
    Publication date: June 21, 2012
    Inventors: Thien Duyen Thi NGUYEN, Krishniah Parimi
  • Publication number: 20120149555
    Abstract: A method for producing an alloy catalyst for redox reaction comprising alloy particles of platinum and nickel, wherein the alloy particles are equipped at an outer surface with a crystal lattice plane represented by a Miller index {111} and have an average particle diameter in a range of 6 to 20 nm, the method comprising: dissolving, in an alcohol, a salt and/or complex of platinum, a salt and/or complex of nickel, and a polymer containing a plurality of salt structures comprising an organic cation and a halogen anion in a polymer chain and heating the resulting solution to reflux under an inert atmosphere.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 14, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Ryogo Sakamoto, Kaoru Omichi, Masao Ichikawa
  • Publication number: 20120149551
    Abstract: A catalyst material for preparing nanotubes, especially carbon nanotubes, said material being in the form of solid particles, said particles including a porous substrate supporting two superposed catalytic layers, a first layer, directly positioned on the substrate, including at least one transition metal from column VIB of the Periodic Table, preferably molybdenum, and a second catalytic layer, positioned on the first layer, comprising iron. Also, a process for preparing same and to a process for the synthesis of nanotubes using this catalyst material.
    Type: Application
    Filed: August 16, 2010
    Publication date: June 14, 2012
    Applicants: INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE (INPT), ARKEMA FRANCE
    Inventors: Patrice Gaillard, Serge Bordere, Philippe Serp, Brigitte Caussat, Julien Beausoleil
  • Publication number: 20120149933
    Abstract: The present invention provides an ammoxidation catalyst containing vanadium oxide, titanium oxide and diamond.
    Type: Application
    Filed: June 10, 2010
    Publication date: June 14, 2012
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Kazunari Yamamoto, Youichi Kyuuko, Atsushi Okamoto
  • Patent number: 8197786
    Abstract: Porous carbon materials and methods of manufacturing the same are provided. One method includes forming a carbon-metal oxide composite by heating a coordination polymer to form a carbon-metal oxide composite, and then removing the metal oxide from the carbon-metal oxide composite. The porous carbon material has an average pore diameter ranging from about 10 nm to about 100 nm, and a d002 ranging from about 3.35 to 3.50 ?.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 12, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-min Im, Jeong-hee Lee, Yong-nam Ham, Chan-ho Pak
  • Patent number: 8198206
    Abstract: The invention relates to an ink for producing catalyst layers for electrochemical devices. The ink comprises catalyst materials, ionomer material, water and at least one organic solvent. The organic solvent belongs to the class of tertiary alcohols and/or the class of aliphatic diketones and bears functional groups which are stable to oxidative degradation in the ink. This prevents formation of decomposition products in the ink. The ink of the invention displays a high storage stability and is used for producing catalyst-coated substrates for electrochemical devices, in particular fuel cells (PEMFCs, DMFCs).
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: June 12, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Walter Behl, Marco Lopez
  • Publication number: 20120135137
    Abstract: Techniques herein prepare an alloy catalyst using a protective conductive polymer coating. More particularly, an alloy catalyst is prepared by: preparing a platinum catalyst supported on carbon; coating the surface of the platinum catalyst with a conductive polymer; supporting a transition metal salt on the coated catalyst; and heat treating the catalyst on which the transition metal salt is supported. Also, an alloy catalyst may be prepared by: preparing a platinum-transition metal catalyst supported on carbon; coating the surface of the platinum-transition metal catalyst with a conductive polymer; and heat treating the coated catalyst. Accordingly an alloy catalyst with superior dispersity can be prepared by increasing the degree of alloying of the catalyst through heat treatment while preventing the increase of catalyst particle size through carbonization of the conductive polymer. The prepared catalyst may be useful, for example, for a fuel cell electrode.
    Type: Application
    Filed: May 17, 2011
    Publication date: May 31, 2012
    Applicants: Hyundai Motor Company, Industry-Academic Cooperation Foundation, Yonsei University, Kia Motors Corporation
    Inventors: Bum Wook Roh, In Chul Hwang, Han Sung Kim, Hyung-Suk Oh
  • Publication number: 20120129686
    Abstract: Catalyst comprising a support and a catalytically active material for use as heterogeneous catalyst for electrochemical reactions, wherein the support is a carbon support having a BET surface area of less than 50 m2/g. The invention further relates to the use of the catalyst as electrode catalyst in a fuel cell.
    Type: Application
    Filed: July 28, 2010
    Publication date: May 24, 2012
    Applicant: BASF SE
    Inventors: Claudia Querner, Ekkehard Schwab, Oemer Uensal, Sigmar Braeuninger, Thomas Justus Schmidt
  • Patent number: 8178463
    Abstract: A multimetallic nanoscale catalyst having a sore portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 15, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Patent number: 8178462
    Abstract: Disclosed is a method for producing an electrode catalyst for a fuel cell, which comprises a Ru-containing metal microparticle supported on an electrically conductive carbon carrier, wherein M2RuX6 [M=at least one member selected from H, Li, Na, K and NH4; X=at least one member selected from Cl, Br, I and NO3] is used as a precursor of Ru. It becomes possible to produce an electrode catalyst for a fuel cell, which is improved in the methanol oxidation activity per mass or surface area of the catalyst compared with a conventional Pt- and Ru-carrying carbon catalyst prepared by using a Ru raw material having an average valency of 3.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: May 15, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Shigeru Konishi
  • Patent number: 8168559
    Abstract: According to a first embodiment of a production method of an oxidation catalyst device for exhaust gas purification of the present invention, a plurality of slurries containing a catalyst precursor prepared from mutually different organic acids is coated respectively on a porous filter carrier (2) and calcined. According to a second embodiment of the present invention, the slurry contains the catalyst precursor having a particle diameter distribution ranging from 0.5 to 10 ?m, and the slurry has a viscosity equal to or below 2.0 mPa·s. The oxidation catalyst device of the present invention is composed of a composite metal oxide on a surface of a cell division and a surface of an air pore of the porous filter carrier having a wall-flow structure.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: May 1, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kiyoshi Tanaami, Yuji Isogai
  • Publication number: 20120094199
    Abstract: The invention relates to a catalyst for electro-chemical applications comprising an alloy of platinum and a transition metal, wherein the transition metal has an absorption edge similar to the absorption edge of the transition metal in oxidic state, measured with x-ray absorption near-edge spectroscopy (XANES) wherein the measurements are performed in concentrated H3PO4 electrolyte. The invention further relates to a process for an oxygen reduction reaction using the catalyst as electrocatalyst.
    Type: Application
    Filed: May 27, 2010
    Publication date: April 19, 2012
    Applicant: BASF SE
    Inventors: Ekkehard Schwab, Sigmar Braeuninger, Alexander Panchenko, Claudia Querner, Oemer Uensal, Markus Vogt, Qinggang He, Nagappan Ramaswamy, Sanjeev Mukerjee
  • Publication number: 20120077672
    Abstract: A porous catalyst includes at least one noble nano-metal particle, an oxide for forming porous structures, and a carrier material for supporting the oxide and the at least one noble nano-metal particle. The porous catalyst shows a large electrochemical surface area and a highly conductive ability. Further, the noble nano-metal particles are separated on the oxides uniformly, and the oxide of the catalyst forms a porous structure to provide a large electrochemical surface area. The porous catalyst provides excellent proton/electron transfer ability and increases the reaction rate.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Po-Jen Chu, Jhih-Wei Yang, Chieh-Chun Chang, Huang-Yu Lee
  • Publication number: 20120077671
    Abstract: Nanoparticles which contain noble metals alone or noble metals in combination with base metals. The nanoparticles are embedded in an aqueous solution of a temporary stabilizer based on a polysaccharide.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Karl-Anton Starz, Dan Goia, Joachim Koehler, Volker Bänisch
  • Patent number: 8143185
    Abstract: A photocatalytic metal deposition process and a resulting nanocomposite are described. The nanocomposite includes an electrically conducting carbonaceous material, a photoactive metal oxide and a metal. Metals for deposition include noble metals, metal alloys and other transition metals in which the metal is laid down precisely and in a predetermined fashion on one or more surfaces of a composite. Deposition provides a high performance electrocatalyst for a number of suitable applications.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 27, 2012
    Assignees: Board of Regents, The University of Texas System, Sid Richardson carbon & Energy Co.
    Inventors: Krishnan Rajeshwar, Norma Tacconi, Chakkankal R. Chenthamarakshan, Wesley Wampler, Thomas F. Carlson, Wen-Yuan Lin
  • Patent number: 8124043
    Abstract: The present teachings are directed toward a matrix containing nanosized metal components and carbon nanotubes, with the carbon nanotubes being produced in situ by the nanosized metal components upon the contacting of the nanosized metal components with a carbon source under conditions sufficient to produce the carbon nanotubes. Also disclosed are methods of producing the matrix containing the nanosized metal components and carbon nanotubes.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: February 28, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik Harutyunyan, Elena Mora
  • Publication number: 20120046161
    Abstract: A platinum alloy catalyst PtXY, wherein X is nickel, cobalt, chromium, copper, titanium or manganese and Y is tantalum or niobium, characterised in that in the alloy the atomic percentage of platinum is 46-75 at %, of X is 1-49 at % and of Y is 1-35 at %; provided that the alloy is not 66 at % Pt20 at % Cr14 at % Ta or 50 at % Pt, 25 at % Co, 25 at % Ta is disclosed. The catalyst has particular use as an oxygen reduction catalyst in fuel cells, and in particular in phosphoric acid fuel cells.
    Type: Application
    Filed: February 3, 2010
    Publication date: February 23, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Sarah Ball, Thomas Robertson Ralph, Brian Ronald Theobald, David Thompsett
  • Publication number: 20120046162
    Abstract: The invention is directed to the production of metal-carbon containing bodies, which process comprises impregnating cellulose, cellulose-like or carbohydrate bodies with an aqueous solution of at least one metal compound, followed by heating the impregnated bodies in an inert and substantially oxygen-free atmosphere, thereby reducing at least part of the at least one metal compound to the corresponding metal or metal alloy.
    Type: Application
    Filed: March 1, 2010
    Publication date: February 23, 2012
    Inventors: Jacobus Hoekstra, John Wilhelm Geus, Leonardus Wijnand Jenneskens, Dirk van de Kleut, Edward Jan Vlietstra
  • Patent number: 8119555
    Abstract: The invention provides a method of increasing the mesopore volume of a porous activated carbon, comprising coating a porous activated carbon with a metal oxide or metal oxide precursor to form a treated activated carbon; and calcining the treated activated carbon, in a dry atmosphere, for a time and at a temperature sufficient to increase the mesopore volume of the treated activated carbon. The invention also provides an activated carbon having a total mesopore volume of at least about 0.10 cc/g and less than about 0.25 cc/g, and a percentage of mesopore volume per total pore volume of at least about 15% and less than about 35%. Activated carbon modified according to the invention, cigarette filters incorporating such activated carbon, and smoking articles made with such filters are included in the invention.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: February 21, 2012
    Assignee: R. J. Reynolds Tobacco Company
    Inventors: Chandra Kumar Banerjee, Stephen Benson Sears, Thaddeus Jude Jackson
  • Publication number: 20120035388
    Abstract: This invention provides a platinum/carbon nanotube catalyst applicable to heterogeneous asymmetric hydrogenation, which is fabricated by supporting platinum on carbon nanotube carriers. The catalyst is prepared by the steps of: heating purified carbon nanotubes in nitric acid, filtering and washing the same with water until pH value of the filtrate becomes neutral, drying the carbon nanotubes; immersing the carbon nanotube carriers obtained in an aqueous chloroplatinic acid solution and carrying out ultrasonic treatment at room temperature; immersing the mixture of the carbon nanotubes and the aqueous chloroplatinic acid solution under stirring; drying the material by heating to 110° C. from room temperature and maintaining this temperature; grinding the product to fine powders, reducing the fine powders with an aqueous sodium formate solution under a heating condition, filtering and washing the product with deionized water, and drying the product.
    Type: Application
    Filed: May 11, 2010
    Publication date: February 9, 2012
    Applicant: Dalian Institute of Chemical Physics Chinese Academy of Sciences
    Inventors: Can Li, Zhijian Chen
  • Patent number: 8110521
    Abstract: The present invention features a method for preparing core-shell nanoparticles supported on carbon. In particular, the present invention features a method for preparing core-shell nanoparticles supported on carbon, including: dispersing core nanoparticle powder supported on carbon in ethanol; adding a metal precursor which forms a shell and hydroquinone thereto; and mixing and reducing the same. Preferably, the disclosed method for preparing core-shell nanoparticles supported on carbon enables coating of transition metal nanoparticles including platinum on the surface of core metal nanoparticles at a monolayer level. Prepared core-shell nanoparticles of the present invention may be useful as catalysts or electrode materials of fuel cells.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: February 7, 2012
    Assignees: Hyundai Motor Company, SNU R&DB Foundation
    Inventors: Jae Seung Lee, Yung-Eun Sung, Tae-Yeol Jeon, Hee-Young Park
  • Publication number: 20120024757
    Abstract: The present invention relates to a method for forming a catalyst comprising catalytic nanoparticles and a catalyst support, wherein the catalytic nanoparticles are embedded in the catalyst support, comprising forming the catalytic nanoparticles on carbon particle, dispersing the carbon particle in a solution comprising precursors of the catalyst support to form a suspension, heating the suspension to form a gel, subjecting the gel to incineration to form a powder, and sintering the powder to form the catalyst.
    Type: Application
    Filed: July 13, 2011
    Publication date: February 2, 2012
    Inventors: Zetao Xia, Liang Hong, Wei Wang, Zhao Lin Liu
  • Publication number: 20120015284
    Abstract: A catalyst support for an electrochemical system includes a high surface area carbon core structure and a surface modifier modifying the surface of the carbon core structure. The surface modifier includes boron-doped diamond (BDD) and a high surface area refractory material. The high surface area refractory material includes metal oxides, metal phosphates, metal borides, metal nitrides, metal silicides, metal carbides and combinations thereof.
    Type: Application
    Filed: February 10, 2009
    Publication date: January 19, 2012
    Applicant: UTC POWER CORPORATION
    Inventors: Belabbes Merzougui, Lesia V. Protsailo, Minhua Shao
  • Publication number: 20120003569
    Abstract: A method of forming a supported catalyst for a fuel cell includes depositing platinum onto a carbon support material, depositing a first alloy metal onto the carbon support material following the deposition of the platinum, and depositing a second alloy metal onto the carbon support material following the deposition of the first alloy metal. The first alloy metal is selected from iridium, rhodium, palladium, and combinations thereof, and the second alloy metal includes a first or second row transition metal.
    Type: Application
    Filed: March 18, 2009
    Publication date: January 5, 2012
    Inventors: Tetsuo Kawamura, Lesia V. Protsailo
  • Publication number: 20120004098
    Abstract: A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Inventors: Xin Xiao, William L. West, William D. Rhodes
  • Publication number: 20110312487
    Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is performed in a continuous or batch manner. Generating the polyol involves, contacting, hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one unsupported component and at least one supported component.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal
  • Patent number: 8080495
    Abstract: A catalyst composition comprises a particulate support and catalyst nanoparticles on the particulate support. The catalyst nanoparticles comprise an alloy of platinum and palladium in an atomic ratio of from about 25:75 to about 75:25 and are present in a concentration of between about 3 and about 10 wt % weight percent of the catalyst composition. The catalyst composition has an X-ray diffraction pattern that is substantially free of the (311) diffraction peak assignable to PtxPd1-x, where 0.25?x?0.75.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 20, 2011
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Ranko P Bontchev, Paolina Atanassova, Berislav Blizanac, Yipeng Sun, Matthew Ezenyilimba, George Fotou, Kenneth Koehlert
  • Publication number: 20110306489
    Abstract: Disclosed is an ammonia decomposition catalyst which is obtained by heat-treating a complex at a temperature of 360° C. to 900° C. in a reducing atmosphere, wherein the complex containing a polymer having a molecular weight of 1,000 to 500,000 represented by the formula [I], a transition metal coordinated with the polymer, and an activated carbon or a carbon nanotube added thereto. In a case of using the carbon nanotube, an alkali metal compound or an alkaline earth metal compound is added to the heat-treated complex. R1 represents H or hydrocarbon having 1 to 10 carbon atoms, R2 and R3 each represent H, halogen, nitro, acyl, ester, carboxyl, formyl, nitrile, sulfone, aryl, or alkyl group having 1 to 15 carbon atoms, X and Y each represent H or OH, Z represents CH or N, R4 and R5 each represent H, OH, ether, amino, aryl, or alkyl group having 1 to 15 carbon atoms, x represents a real number of 1 to 2, y represents a real number of 1 to 3, and n represents a real number of 2 to 120.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 15, 2011
    Applicants: HITACHI ZOSEN CORPORATION, IHARA CHEMICAL INDUSTRY CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Susumu Hikazudani, Takuma Mori, Chikashi Inazumi, Haruyuki Nakanishi, Hidekazu Arikawa, Hironobu Kumagai
  • Patent number: 8076260
    Abstract: After a titanium nitride (TiN) thin film is formed on a silicon substrate, cobalt (Co) fine particles and nickel (Ni) fine particles are deposited in a mixed state on the titanium nitride (TiN) thin film, and CNTs are sequentially grown from the cobalt (Co) fine particles and the nickel fine particles by varying growth conditions.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: December 13, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Daiyu Kondo
  • Patent number: 8076261
    Abstract: The present invention features a method for preparing a PtCo nanocube catalyst, the method comprising dissolving a platinum (Pt) precursor, a cobalt (Co) precursor, a surface stabilizer and a reducing agent in a solvent to prepare a solution; heating the solution under an inert gas atmosphere; maintaining the temperature of the solution to obtain PtCo alloy nanocubes; adsorbing the PtCo alloy nanocubes on a carbon support to obtain a catalyst; and removing the surface stabilizer from the catalyst. The disclosed method for preparing a PtCo nanocube catalyst enables preparation of nanocubes with uniform size and cubic shape through a simple process and application for development of high-efficiency fuel cells by preventing change in shape, surface area and composition caused by agglomeration of the nanocubes.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 13, 2011
    Assignees: Hyundai Motor Company, Korea Advanced Institute of Science and Technology
    Inventors: Inchul Hwang, Nak Hyun Kwon, Jae Seung Lee, Joon Taik Park, Sang-Il Choi
  • Patent number: 8071503
    Abstract: An electrocatalyst, suitable for use in a fuel cell, comprises an alloy having a single crystalline phase, wherein the alloy consists of 5-95 at % palladium, 5-95 at % ruthenium and less than 10 at % of other metals, provided that the alloy does not consist of 50 at % palladium and 50 at % ruthenium.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: December 6, 2011
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett