Silicon Containing Or Process Of Making Patents (Class 502/232)
  • Patent number: 6884746
    Abstract: Described herein is a prepolymerized catalyst encapsulated with macromolecular monomers which is prepared by adding olefin mononers and diene compounds to a solid complex titanium catalyst for olefin polymerization and then polymerizing, and also relates to a method for polymerization or copolymerization capable of preparing polyolefins with high melt strength by polymerizing the olefin by using said catalyst.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: April 26, 2005
    Assignee: Samsung General Chemicals, Co., Ltd.
    Inventors: Young-Soo Ko, Ki-Su Ro, Young-Jun Lee, Yong Chun
  • Patent number: 6878658
    Abstract: The present invention provides a Ziegler-Natta catalyst useful in solution processes for the polymerization of olefins having a low amount of aluminum and magnesium. The catalysts of the present invention contain an alkyl silanol and have a molar ratio of Si:Ti from 0.25:1 to 4:1. The catalysts are effective for the solution polymerization of olefins at high temperatures.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: April 12, 2005
    Assignee: Nova Chemicals (International) S.A.
    Inventor: Isam Jaber
  • Patent number: 6846546
    Abstract: A mesostructured material, which has plural tubular mesopores and is arranged on a polymer surface, characterized in that the mesopores are oriented in on direction parallel to the surface. The mesostructured material can be developed to functional devices.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: January 25, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuyuki Kuroda, Hirokatsu Miyata
  • Patent number: 6838410
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an ?-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described. Additionally, supported and unsupported indeno[1,2-b]indolyl catalysts provide exceptional activities in the preparation of elastomeric polypropylene and ethylene copolymers.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: January 4, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie, Craig C. Meverden
  • Patent number: 6822341
    Abstract: A latent catalyst particularly useful in epoxy molding compositions for use in electronic packaging materials is provided. The latent catalyst is in the form of a curative represented by a combination of an inorganic-based carrier having an activated surface and a catalyst compound including a moiety capable of accelerating curing of the epoxy resin, such as the reaction product of silica and 1,8-diazobicyclo(5.4.0)undecene-7 (DBU). The activated surface of the inorganic-based carrier includes reactive surface groups capable of bonding to the moiety through a hydrogen bond, and also includes a high surface area porous surface, such that the catalyst compound is sorbed on the activated surface. The invention further provides epoxy compositions including the curative with an epoxy resin and a curing agent for the epoxy resin, which compositions are particularly useful as molding powders for semiconductors with prolonged shelf life stability.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: November 23, 2004
    Assignee: Henkel Corporation
    Inventor: Tanweer Ahsan
  • Publication number: 20040224839
    Abstract: A method for the post synthesis modification of molecular sieves with organometallic reagents. The method may be used for large pore molecular sieves and small pore molecular sieves, such as SAPO-34. SAPO-34 is a useful catalyst for the conversion of oxygenates, such as methanol, to olefins. Post synthesis organometallic modification improves catalyst performance and increases light olefin selectivity in the conversion of methanol to olefins.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 11, 2004
    Inventors: Kun Wang, Guang Cao, Michael Joseph Brennan, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 6815390
    Abstract: The present invention relates to a new catalyst system for fluorous biphasic catalysis processes which comprises functionalized polymeric beads, monodisperse SiO2 or SiO2 flakes associated with the catalyst. These functionalized particles are used as a support for catalysts in fluorous biphasic catalysis (FBC).
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: November 9, 2004
    Assignee: Merck Patent GmbH
    Inventors: Julian F. S. Vaughan, Martin G. Pellatt, James Sherrington, Eric George Hope
  • Publication number: 20040214965
    Abstract: A moisture curable composition capable of cure to an elastomeric body, comprising a polymeric material having not less than two hydroxyl or hydrolysable groups an alkoxysilane curative and a catalyst comprising:
    Type: Application
    Filed: October 3, 2002
    Publication date: October 28, 2004
    Inventors: Mamoru De Tachikawa, Toshio Saruyama, Kazutoshi Okabe, Hiroshi Adachi, Francois De Buyl, Luo Cheng Zhang
  • Patent number: 6784134
    Abstract: A catalyst suited for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. Said catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6762149
    Abstract: The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 13, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Yufei Gao
  • Publication number: 20040097367
    Abstract: The present invention discloses a process for preparing a supported catalyst system for the production of polymers by polymerising or copolymerising one or more olefins comprising 2 to 10 carbon atoms, vinyl aromatic compounds or vinyl acetate, which process comprises the steps of providing a mesoporous support of controlled morphology and of depositing a catalyst component on the support. It further discloses the catalyst system obtained by said process and the use thereof for preparing polymers of controlled morphology.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Inventors: Philippe Rodart, Dominique Plee, Liliane Peters
  • Publication number: 20040076563
    Abstract: Particles constituted of either a single element selected from the group consisting of silicon, titanium, nickel, and samarium or a carbon fluoride are disposed in such respective positions that the wave energy inherent in the element or carbon fluoride is amplified to thereby enable the particles to have, among these, a field where energy concentration occurs. Thus, an active structure is obtained which is capable of generating hydrogen by liberating hydrogen from the hydrogen bonds of water or a hydrocarbon without applying an external energy thereto.
    Type: Application
    Filed: December 2, 2003
    Publication date: April 22, 2004
    Inventor: Masayoshi Kitada
  • Patent number: 6723296
    Abstract: The invention relates to a material for treating gaseous media containing volatile organic components. According to the invention, the material is porous and exhibits an absorption capacity of approximately 20-30% in relation to the dry weight thereof, containing approximately 47-52% by weight of a composite carbon and silicon structure, approximately 12-20 wt. % carbon, approximately 5-7 wt % hydroxyl, and approximately 1-2 wt % oxygen. The invention can be used in atmospheric treatment for the preservation of living matter.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: April 20, 2004
    Assignee: Ectium B.V.
    Inventor: Henri Louis Drean
  • Patent number: 6709570
    Abstract: A method for preparing a catalyst comprising a zeolite and a low acidity refractory oxide binder which is essentially free of alumina which method comprises: (a) preparing an extrudable mass comprising a substantially homogenous mixture of zeolite, water, a source of the low acidity refractory oxide binder present which comprises an acid sol, and an amine compound, (b) extruding the extrudable mass resulting from step (a), (c) drying the extrudate resulting from step (b); and, (d) calcining the dried extrudate resulting from step (c).
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: March 23, 2004
    Assignee: Shell Oil Company
    Inventors: Maria Barbara Hendrica Van Crijnen-Beers, Jean-Paul Darnanville, Carolus Matthias Anna Maria Mesters, Thomas Joris Remans
  • Publication number: 20040038811
    Abstract: The invention relates to a catalyst, in particular for the partial oxidation of methane or natural gas to formaldehyde and/or methanol in the tange of 550-800° C.
    Type: Application
    Filed: July 17, 2003
    Publication date: February 26, 2004
    Inventors: Adolfo Parmaliana, Francesco Arena, Francesco Frusteri
  • Patent number: 6686309
    Abstract: A catalyst for selective hydrogenation of unsaturated diolefinic and styrenic compounds in gasolines without hydrogenating the aromatic and mono-olerinic compounds is described. It can also eliminate marcaptans when they are present in these gasolines. The catalyst comprises particulate support on which palladium is deposited, distributed at the periphery of the catalyst particles, and at least one metal selected from molybdenum and tungsten, in the form of at least one oxide.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: February 3, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Charles Cameron, Christophe Gautreau
  • Publication number: 20040014596
    Abstract: Activator solid support for metallocenes as catalysts in the polymerization of olefins, characterized in that it consists of a group of support particles for a solid catalytic component, which are formed from at least one porous mineral oxide, the said particles having been modified in order to carry, on the surface, aluminium and/or magnesium Lewis-acid sites of formula: 1
    Type: Application
    Filed: April 1, 2003
    Publication date: January 22, 2004
    Inventors: Thierry Saudemont, Roger Spitz, Jean-Pierre Broyer, Jean Malinge, Nathalie Verdel
  • Patent number: 6679945
    Abstract: Pyrogenically prepared silicon dioxide with the following physicochemical properties: 1. Average particle size (D50 value)D50≧150 nm (dynamic light scattering, 30 wt %) 2. Viscosity (5 rpm, 30 wt %) &eegr;≦100 m·Pas 3. Thixotropy of Ti (&eegr;(5 rpm))/(&eegr;(50 rpm))≦2 4. BET surface area 30-60 m2/g 5. Compacted bulk=100-160 g/L 6. Original pH≦4.5 can be used for the preparation of dispersions and glass bodies.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 20, 2004
    Assignee: Degussa AG
    Inventors: Monika Oswald, Gerrit Schneider, Klaus Deller
  • Patent number: 6638889
    Abstract: A method of treating a catalyst support comprises introducing onto and/or into an untreated catalyst support which is partially soluble in an aqueous acid solution and/or a neutral aqueous solution, Si, Zr, Cu, Zn, Mn, Ba, Co, Ni and/or La as a modifying component. The modifying component is capable, when present in and/or on the catalyst support, of suppressing the solubility of the catalyst support in the aqueous acid solution and/or the neutral aqueous solution. A protected modified catalyst support which is less soluble or more inert in the aqueous acid solution and/or the neutral aqueous solution, than the untreated catalyst support, is thus formed. A method of forming a catalyst from the modified catalyst support is also provided.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 28, 2003
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Elsie Adriana Caricato, Sean Barradas
  • Patent number: 6638890
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6627571
    Abstract: A method and system for the in situ synthesis of a combinatorial library including impregnating a first component with a second component. The method and system advantageously may be employed in the synthesis of materials for screening for usefulness as a catalyst.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: September 30, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Damodara M. Poojary, Alfred Hagemeyer
  • Patent number: 6624256
    Abstract: Disclosed is a method of preparation of a siloxane-functionalized high 1,4-cis polybutadiene using a siloxane compound, in which the siloxane group expands the usage of the high 1,4-cis polybutadiene.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 23, 2003
    Assignee: Korea Kumho Petrochemical Co. Ltd.
    Inventors: Gwanghoon Kwag, Aju Kim, Seunghwon Lee
  • Publication number: 20030162917
    Abstract: A chromium containing catalyst wherein the chromium atom is in one of its higher valence states and is immobilized to a support-agglomerate composed of at least one inorganic oxide component and at least one ion-containing layered component.
    Type: Application
    Filed: April 10, 2002
    Publication date: August 28, 2003
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Patent number: 6610806
    Abstract: Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: August 26, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Richard R. Schrock, Robert Baumann
  • Patent number: 6605561
    Abstract: Activator solid support for metallocenes as catalysts in the polymerization of olefins, characterized in that it consists of a group of support particles for a solid catalytic component, which are formed from at least one porous mineral oxide, the said particles having been modified in order to carry, on the surface, aluminium and/or magnesium Lewis-acid sites of formula: or —Mg—F, the groups coming from a functionalization agent having reacted with —OH radicals carried by the base particles of the support, the functionalization reaction having been followed by a fluorination reaction. The catalytic system according to the invention comprises (a) a metallocene catalyst, which has, if required, been subjected to a prealkylation treatment; (b) a cocatalyst; and (c) an activator solid support for metallocene, as defined above, it being possible for the cocatalyst (b) to be absent if the metallocene catalyst (a) has been prealkylated.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: August 12, 2003
    Assignee: Elf Atochem, S.A.
    Inventors: Thierry Saudemont, Roger Spitz, Jean-Pierre Broyer, Jean Malinge, Nathalie Verdel
  • Publication number: 20030148878
    Abstract: The present invention relates to a new catalyst system for fluorous biphasic catalysis processes which comprises functionalized polymeric beads, monodisperse SiO2 or SiO2 flakes associated with the catalyst. These functionalized particles are used as a support for catalysts in fluorous biphasic catalysis (FBC).
    Type: Application
    Filed: January 9, 2003
    Publication date: August 7, 2003
    Inventors: Julian F.S. Vaughan, Martin G. Pellatt, James Sherrington, Eric George Hope
  • Publication number: 20030125199
    Abstract: A process for treating a hydrocarbonaceous material comprising contacting such material with catalysts made from a newly discovered phase of aluminum trihydroxide.
    Type: Application
    Filed: October 25, 2002
    Publication date: July 3, 2003
    Inventors: James Donald Carruthers, Eduardo A. Kamenetzky, Peter J. Achorn
  • Publication number: 20030115800
    Abstract: Disclosed is a method of gasifying a biomass, comprising heating a fluidized bed reactor loaded with a catalyst represented by Rh/CeO2/M, where M represents SiO2, Al2O3 or ZrO2, to temperatures lower than 800° C., introducing biomass particles into the fluidized bed reactor from an upper portion thereof, introducing air and steam into the fluidized bed reactor from a lower portion thereof, and allowing the biomass particles to react at the surface of the Rh/CeO2/M catalyst so as to manufacture hydrogen and a syngas.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 26, 2003
    Inventors: Muneyoshi Yamada, Keiichi Tomishige, Mohammad Asadullah, Kimio Kunimori
  • Publication number: 20030118497
    Abstract: A siliceous support for use in a catalyst for producing a lower aliphatic carboxylic acid ester by reacting a lower olefin with a lower aliphatic carboxylic acid in a gas phase, which has a silicon content of from 39.7 to 46.3% by mass or a silicon content of from 85 to 99% by mass in terms of silicon dioxide or a crush strength of 30 N or more. By the use of a catalyst comprising the support, a lower aliphatic carboxylic acid ester is produced from lower olefin and a lower aliphatic carboxylic acid without causing great reduction of catalytic activity or cracking or abrasion of the catalyst.
    Type: Application
    Filed: March 4, 2002
    Publication date: June 26, 2003
    Inventors: Etsuko Kadowaki, Kousuke Narumi, Hiroshi Uchida
  • Patent number: 6583330
    Abstract: New catalysts that contain heteropolyanions of the 12-tungstophosphoric acid or the 12-tungstomolybdic acid, and, for some of these, at least one metal of group VIII, and that are deposited on substrates that develop a specific surface area and a high pore volume, such as zirconium oxide (ZrO2), silicas, silica-aluminas or aluminas, are used in particular in isomerization of paraffinic fractions that contain in large part n-paraffins that have, for example, 4 to 8 carbon atoms per molecule and in aliphatic alkylation of isoparaffins (for example isobutane and/or isopentane) by at least one olefin that comprises, for example, 2 to 6 carbon atoms per molecule (C2 to C6).
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: June 24, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Maryline Delage, Eric Benazzi, Jean-François Joly
  • Publication number: 20030109377
    Abstract: The present invention provides a catalyst composition and process for preparing olefin polymers. The catalyst composition includes a metallocene catalyst or a single-site catalyst, a mesoporous molecular sieve, and an aluminum-containing cocatalyst such as MAO. The cocatalyst is present in an amount such that the molar ratio of aluminum content in cocatalyst to the metal content in metallocene is from 0 to 200. When the catalyst composition is used for preparing polyolefins, the MAO amount can be decreased; thus, the production costs are greatly reduced.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 12, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hua Chan, Ching Ting, Chung-Yuan Mou, Hong-Ping Lin
  • Patent number: 6576584
    Abstract: A method for producing a hydrotreating catalyst which relates to the production of a solid catalyst composed of a carrier impregnated with an active component, to give a catalyst for hydrotreating hydrocarbon oils, which contains a large quantity of a hydrogenation-active component and uniform, crystalline composite metal compound, and shows high catalytic activity.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 10, 2003
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Publication number: 20030092564
    Abstract: The present invention provides a metallocene catalyst supported on a molecular seive having “tubules-within-a-tubule” morphology. When the metallocene catalyst is used for preparing polyolefin, the MAO amount can be decreased to an amount such that the molar ratio of Al/Zr is below 200. Thus, production costs are greatly reduced.
    Type: Application
    Filed: November 15, 2001
    Publication date: May 15, 2003
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shu-Hua Chan, Ching Ting, Chung-Yuan Mou, Hong-Ping Lin
  • Publication number: 20030092858
    Abstract: Silica powders and mixed silica-oxide powders and methods of preparing such powders for use as catalyst supports for polymerization processes.
    Type: Application
    Filed: February 27, 2002
    Publication date: May 15, 2003
    Inventors: Theresa A. Pecoraro, Ignatius Y. Chan, Darryl K. Whaley, Pamela R. Auburn
  • Publication number: 20030091474
    Abstract: A method of forming a catalyst body by forming a first layer of hemispherical grain polysilicon over a substrate, and oxidizing at least a portion of the first layer to form a second layer of silica. Additionally, forming a third layer of nitride material over the second layer, and forming a catalyst material over the nitride layer, can be performed before annealing to form a catalyst body.
    Type: Application
    Filed: March 14, 2001
    Publication date: May 15, 2003
    Inventors: Yongjun Jeff Hu, Er-Xuan Ping
  • Publication number: 20030065112
    Abstract: High melt index polyolefins have been obtained with chromium silica catalysts under conventional polymerization conditions without the use of titanium or other additives. The useful chromium silica catalysts have a pore volume in the range of 1.9-2.9 cc/g and a narrow pore size distribution. The silica is a silica gel preferably obtained from a low solids, rapid gelation process.
    Type: Application
    Filed: October 31, 2002
    Publication date: April 3, 2003
    Inventors: Rimantas Glemza, Dean A. Denton
  • Patent number: 6541663
    Abstract: Raney copper, which is doped (promoted) with an effective quantity of a doping (promoting) agent selected from the group boric acid, onium fluorides, salts of fluorine complex anions, and heteropoly acids, represents an outstanding oxidation catalyst for amine-group-containing primary amines to carboxylic acids.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: April 1, 2003
    Assignee: Syngenta Participations AG
    Inventors: Bernd Siebenhaar, Milos Rusek
  • Publication number: 20030060582
    Abstract: Silica powders and mixed silica-oxide powders and methods of preparing such powders for use as catalyst supports for polymerization processes.
    Type: Application
    Filed: February 27, 2002
    Publication date: March 27, 2003
    Inventors: Theresa A. Percoraro, Ignatius Y. Chan, Darryl K. Whaley, Pamela R. Auburn
  • Publication number: 20030036477
    Abstract: The present invention relates to monolith catalysts comprising a catalytic metal deposited onto a coated monolith substrate comprising a wash coat applied to a monolith substrate wherein the monolith catalysts have a surface area ranging from 0.1 to 25 m2/gram as measured by adsorption of N2 or Kr using the BET method. The invention also relates to the coated monolith substrates used in such monolith catalysts. The monolith catalysts of the present invention are particularly suited toward use in hydrogenation processes which employ an immiscible mixture of an organic reactant in water.
    Type: Application
    Filed: October 26, 2001
    Publication date: February 20, 2003
    Inventors: Andrew Francis Nordquist, Frederick Carl Wilhelm, Francis Joseph Waller, Reinaldo Mario Machado
  • Patent number: 6518375
    Abstract: A catalyst for the production of an ethylene polymer comprising a specific trivalent alkyl chromium compound, an inorganic oxide solid and optionally an organoaluminum compound (first catalyst), a catalyst for the production of an ethylene polymer comprising the specific trivalent alkyl chromium compound, a specific tetravalent alkyl chromium compound and an inorganic oxide solid (second catalyst) and a process for producing an ethylene polymer using those catalysts. The first catalyst of the present invention does not cause deterioration with the passage of time, is stable to heat and light, has greatly improved activity and can efficiently produce an ethylene copolymer with &agr;-olefin.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Takashi Monoi, Haruhiko Ikeda, Hidenobu Torigoe
  • Patent number: 6518218
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Publication number: 20030023125
    Abstract: An improved catalyst composition for the metathesis of olefins comprises at least one porous mineral carrier based on alumina, at least one compound of rhenium, molybdenum, or tungsten, and further includes silicon in an oxide form.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 30, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Patrick Euzen, Severine Guibert, Virginie Kruger-Tissot, Georges Vidouta
  • Publication number: 20030008773
    Abstract: An exhaust gas emission purifying catalyst has a catalyst layer (20) supported on a carrier (10). The catalyst layer includes a composite oxide, in which noble metals and occluding agents are mixed in order to inhibit the movement of the occluding agents even at high temperatures and to prevent deterioration of the purifying performance of the catalyst after operation at a high temperature. The composite oxide is comprised of silicon (Si) and at least one of cobalt (Co), zirconium (Zr), iron (Fe), and manganese (Mn).
    Type: Application
    Filed: June 7, 2002
    Publication date: January 9, 2003
    Inventor: Tetsuya Watanabe
  • Patent number: 6503867
    Abstract: The present invention pertains to a quasi-crystalline boehmite containing additive in a homogeneously dispersed state. Suitable additives are compounds containing elements selected from the group of alkaline earth metals, alkaline metals, transition metals, actinides, silicon, gallium, boron, titanium, and phosphorus. Said QCBs according to the invention may be prepared in several ways. In general, a quasi-crystalline boehmite precursor and an additive are converted to a quasi-crystalline boehmite containing the additive in a homogeneously dispersed state.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: January 7, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, Gregory Pearson, William Jones
  • Publication number: 20020183193
    Abstract: A process for preparing a silicate porous product, which comprises a step of forming a clay mineral into a dispersion by means of a dispersant, a step of removing gases dissolved in the dispersion, a step of freezing the dispersion and drying it in its frozen state under reduced pressure, and a step of firing the dried product obtained by the drying.
    Type: Application
    Filed: March 27, 2002
    Publication date: December 5, 2002
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yoshihisa Beppu, Shinji Kondoh
  • Patent number: 6489428
    Abstract: The present invention relates to a supported chromium-based catalyst titanated under specific conditions and used for the homopolymerisation or the copolymerisation of ethylene. The polyethylene obtained with this catalyst has high shear resirance and environmental stress crack resistance, and can be used for manufacturing films with improved tear properties.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: December 3, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Publication number: 20020169073
    Abstract: A dental resin material mixed with a composition containing, as a maincomponent, titanium dioxide whose surface has been partly coated with apatite. In the dental resin material, it is preferable that anatase-, rutile-, brookit-type titanium dioxide or a mixture of these components is used as the titanium dioxide. The apatite for partial coating of titanium dioxide is produced by immersing powdery titanium dioxide in a pseudo body fluid and stirring the immersed titanium dioxide approximately at the same temperature as a human body temperature, i.e., 36° C. In this instance, it is important that the apatite is deposited in the form of platy crystals of less than 2 mm in thickness to cover 0.001-10% of the surface of titanium dioxide.
    Type: Application
    Filed: April 4, 2002
    Publication date: November 14, 2002
    Inventors: Toru Nonami, Takayuki Kumagai, Hiroshi Taoda
  • Patent number: 6479427
    Abstract: Noval silico-titanates and the methods of making and using the said titanates are disclosed. Nb-doped silico-titanates are particularly useful for selectively removing cesuim from radioactive wastes.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: November 12, 2002
    Assignees: The Texas A&M University System, Sandia Corporation
    Inventors: Rayford G. Anthony, Robert G. Dosch, C. V. Philip
  • Patent number: 6472569
    Abstract: A catalyst system comprising a silicoaluminophosphate impregnated with a compound selected from the group consisting of phosphoric acid, boric acid, tributyltin acetate, and combinations of any two or more thereof, and a method of preparing such catalyst system, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the conversion of a hydrocarbon feedstock comprising oxygenated hydrocarbons to olefins and/or ethers.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 29, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6471930
    Abstract: A method for the production of silicon oxide particles includes the pyrolysis of a molecular stream with a silicon compound precursor, an oxygen source and a radiation absorbing gas. The pyrolysis is driven by a light beam such as an infrared laser beam. The method can be used in the production of nanoscale particles including highly uniform nanoscale particles.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: October 29, 2002
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Xiangxin Bi