Molybdenum Patents (Class 502/255)
  • Publication number: 20090209414
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Application
    Filed: April 29, 2009
    Publication date: August 20, 2009
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Rober Van Veen
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Patent number: 7563743
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Patent number: 7553794
    Abstract: A supported catalyst comprising a support having supported thereon at least one member selected from the group consisting of heteropolyacids and heteropolyacid salts, in which the heteropolyacid and/or heteropolyacid salt is substantially present in a surface layer region of the support to a depth of 30% from the support surface. The catalyst has a high performance when used for the production of compounds by various reactions.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: June 30, 2009
    Assignee: Showa Denko K.K.
    Inventor: Masaaki Sakai
  • Publication number: 20090145808
    Abstract: This invention relates to a hydrodesulfurization catalyst and a method for preparing the catalyst by spray pyrolysis. The catalyst is useful for the hydrodesulfurization of gas oils, particularly diesel. The catalyst particles can include at least one metal selected from molybdenum, cobalt and nickel, and a silicon dioxide support. The spray pyrolysis technique allows for the preparation of catalyst particles having high loading of catalyst on the substrate.
    Type: Application
    Filed: November 24, 2008
    Publication date: June 11, 2009
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Isao Mochida
  • Patent number: 7544285
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: June 9, 2009
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 7541012
    Abstract: The present invention features a catalytic material which includes a metal catalyst anchored to a nano-sized crystal containing a metal oxide. Furthermore, the present invention features a method of producing the catalytic material described herein. Finally, the present invention features using the catalytic material for removing contaminants and for getting the desired products.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 2, 2009
    Assignee: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Nan Yao, Ka Yee Ho
  • Patent number: 7538066
    Abstract: This invention relates to supported multi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIII metal and a Group VI metal and an organic agent selected from the group consisting of amino alcohols and amino acids.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: May 26, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Jeffrey T. Elks
  • Publication number: 20090118119
    Abstract: A water gas shift catalyst comprising a precious metal deposited on a support, wherein the support is prepared from a mixture comprising a low surface area material, such as an aluminate, particularly a hexaaluminate, and a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and an additional dopant selected from Ga, Nd, Pr, W, Ge, Au, Ag, Fe, oxides thereof and mixtures thereof.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Chandra Ratnasamy, Jon P. Wagner
  • Publication number: 20090108238
    Abstract: A catalyst for reforming hydrocarbons comprising a precious metal, preferably selected from the group consisting of rhodium, platinum, palladium, osmium, iridium, ruthenium, rhenium, and combinations thereof deposited on a support, wherein the support is produced from a mixture of a low surface area material and a high surface area material.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Jon P. Wagner, Chandra Ratnasamy, Charles D. Faulk
  • Publication number: 20090092534
    Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.
    Type: Application
    Filed: September 11, 2008
    Publication date: April 9, 2009
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Vithal Revankar, Jameel Ibrahim
  • Publication number: 20090078157
    Abstract: The invention is directed to a synthetic inorganic material, comprising inorganic compounds based on elementary particles with a sheet (phyllosilicate) structure, the elementary particles consisting of a central layer of octahedrally coordinated divalent metal ions between two layers of tetrahedrally surrounded silicon ions, which particles are substantially free of aluminum, free silica and salts and hydroxides of the divalent metal ions, the material not containing any metal ions that can be reduced to the corresponding metals at temperatures of 700° C. or less.
    Type: Application
    Filed: May 1, 2006
    Publication date: March 26, 2009
    Applicant: Eurosupport B.V.
    Inventors: John Wihelm Geus, Jacobus Berend Dirksen
  • Patent number: 7504357
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 17, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7501377
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3-5.0, c:a=2.0-6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95-1.10.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 10, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
  • Patent number: 7494952
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a synthesis of the catalyst with aging or digestion of the reaction slurry with little or no agitation. A catalyst precursor is formed from the water insoluble and water soluble components and is dried. The metal oxide catalyst is formed by calcination of the catalyst precursor.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 24, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Angela McGuffey
  • Publication number: 20090036558
    Abstract: The present invention relates to a process for the conversion of synthesis gas to hydrocarbons in the presence of a modified supporter Fischer-Tropsch catalyst composition.
    Type: Application
    Filed: September 29, 2008
    Publication date: February 5, 2009
    Applicants: BP Exploration Operating Company Limited, Davy Process Technology Limited
    Inventors: Josephus Johannes Helena Maria Font Freide, Lawrence Trevor Hardy
  • Patent number: 7473667
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof, b) Co, Mo, their oxides or mixtures thereof, and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: January 6, 2009
    Assignees: Honda Giken Koygo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7473666
    Abstract: A particulate porous ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile by reacting propylene, isobutene or tert-butyl alcohol with molecular oxygen and ammonia in a fluidized-bed reactor, the catalyst comprising a metal oxide and a silica carrier having supported thereon the metal oxide, wherein the metal oxide contains at least two elements selected from the group consisting of molybdenum, bismuth, iron, vanadium, antimony, tellurium and niobium, and the catalyst having a particle diameter distribution wherein the amount of catalyst particles having a particle diameter of from 5 to 200 ?m is from 90 to 100% by weight, based on the weight of the catalyst, and having a pore distribution wherein the cumulative pore volume of pores having a pore diameter of 80 ? or less is not more than 20%, based on the total pore volume of the catalyst and wherein the cumulative pore volume of pores having a pore diameter of 1,000 ? or more is not more than 20%, based on the total pore volume of the
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: January 6, 2009
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hiroyuki Yanagi, Hideo Midorikawa, Tutomu Ueda
  • Publication number: 20080318765
    Abstract: There is disclosed a composition comprising an alloy represented by the following generic formula Aa)n(Bb)n(Cc)n(Dd)n(ee)n( . . . )n; wherein A is an oxygen storage agent; B is an anti-sintering agent; C is an oxidation catalyst; D is a reduction catalyst; and E is a NOx absorbing agent; wherein each subscript letter represents compositional stoichiometry; wherein n is greater than or equal to zero; wherein the sum of the n's is equal to or greater than 2, and wherein the alloy comprises at least two different metals. There is also disclosed a washcoat composition; a catalyst support; methods of making the alloy, the washcoat composition, and the catalyst support.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Inventors: Allen A. Aradi, C. S. Warren Huang
  • Patent number: 7468341
    Abstract: Catalysts for oxidation of methanol to formaldehyde, comprising a catalytic mixtures of Fe2(MoO4)3/MoO3, wherein the Mo/Fe atomic ratio ranges from 1.5 to 5, and a compound of cerium molybdenum and oxygen in a quantity from 0.1 to 10% by weight expressed as cerium.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: December 23, 2008
    Assignee: Sud-Chemie Catalysts Italia S.R.L.
    Inventors: Esterino Conca, Carlo Rubini, Marcello Marchi
  • Patent number: 7456129
    Abstract: A support for a gas-phase oxidation catalyst, the support including a solid acid, of which acid strength (H0) meets an inequality: ?5.6?H0?1.5; a gas-phase oxidation catalyst including the above support and a complex oxide containing molybdenum and vanadium as essential components, the complex oxide being supported on the support; a process for producing acrylic acid by gas-phase catalytic oxidation of acrolein with molecular oxygen, the process including carrying out the gas-phase catalytic oxidation in a presence of the above gas-phase oxidation catalyst; and a process for producing the above support, the process including controlling an acid strength (H0) of a solid acid so as to meet an inequality: ?5.6?H0?1.5 by adjusting a calcination temperature in a preparation of the solid acid contained in the support.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: November 25, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Naohiro Fukumoto, Michio Tanimoto
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20080262270
    Abstract: The present invention refers to a catalyst for the manufacture of methyl mercaptan from carbon oxides comprising Mo and K compounds and oxides or sulfides of metals chosen from the manganese group. The improvement of the present process consists of the fact that carbon dioxide can be converted with higher conversions and selectivities to methyl mercaptan as compared to state-of-the-art technologies, with only minor amounts of carbon monoxide being formed as side product. Simultaneously, carbon monoxide can be easily converted into carbon dioxide and hydrogen by reaction with water using established water-gas-shift-technologies thus increasing the overall selectivity to methyl mercaptan.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 23, 2008
    Inventors: Jan-Olaf Barth, Hubert Redlingshofer, Christoph Weckbecker, Klaus Huthmacher, Horst-Werner Zanthoff, Ralf Mayer
  • Patent number: 7432393
    Abstract: A silica support for use in the manufacture of a silica supported heteropolyacid catalyst for use in producing a carboxylic ester from a monocarboxylic acid, olefin and water wherein the support is produced by treating silica-gel granules with steam at a temperature in the range 100 to 300° C. for a period of time in the range 0.1 to 200 hours.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: October 7, 2008
    Assignee: BP Chemicals Limited
    Inventors: Craig Bailey, Benjamin Patrick Gracey
  • Publication number: 20080242815
    Abstract: The invention provides a process which enables, in preparation of acrolein by catalytic gas-phase oxidation of propylene in the presence of molecular oxygen or a molecular oxygen-containing gas or in preparation of acrylic acid by catalytic gas-phase oxidation of acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, using single kind of atalyst, to suppress occurrence of localized extraordinarily high temperature spots (hot spots) in the catalyst layer and can stably maintain high acrolein or acrylic acid yield for a long time. The process is characterized by use of an oxide catalyst containing molybdenum as an essential component and having relative standard deviation of its particle size in a range of 0.02 to 0.20.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 2, 2008
    Inventor: Naohiro Fukumoto
  • Publication number: 20080241639
    Abstract: There is provided a catalyst for a fuel cell, which simultaneously realizes excellent catalytic activity and catalytic stability. The catalyst for a fuel cell comprises a fine particle of a metal represented by formula: PtxRuySizT1u wherein T1 represents at least one element selected from the group consisting of nickel (Ni), tungsten (W), vanadium (V), and molybdenum (Mo); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %, or comprises a fine particle of a metal represented by formula: PtxRuySizT2u wherein T2 represents at least one element selected from the group consisting of hafnium (Hf), tin (Sn), zirconium (Zr), niobium (Nb), titanium (Ti), tantalum (Ta), chromium (Cr), and aluminum (Al); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %.
    Type: Application
    Filed: March 17, 2008
    Publication date: October 2, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Wu MEI, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Yoshihiko Nakano
  • Publication number: 20080219918
    Abstract: A catalyst for fuel reforming including a metal catalyst that includes at least one active component A selected from the group consisting of Pt, Pd, Ir, Rh and Ru; and an active component B that is at least one metal selected from the group consisting of Mo, V, W, Cr, Re, Co, Ce and Fe, oxides thereof, alloys thereof, or mixtures thereof, and a carrier impregnated with the metal catalyst, and a method of producing hydrogen by performing a fuel reforming reaction using the catalyst for fuel reforming. The catalyst for fuel reforming has excellent catalytic activity at a low temperature and improved hydrogen purity. Therefore, when the catalyst for fuel reforming is used, high-purity hydrogen, which can be used as a fuel of a fuel cell, can be produced with high purity.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 11, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Doo-hwan Lee, Yulia Potapova, Soon-ho Kim, Hyun-chul Lee, Kang-hee Lee
  • Publication number: 20080176070
    Abstract: Carbon fibers containing at least one element (I) selected from the group consisting of Fe, Co and Ni, at least one element (II) selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, a lanthanide, Hf, Ta, Re, Os, Ir, Pt and Au, and at least one element (III) selected from the group of W and Mo, wherein the element (II) and the element (III) each is 1 to 100 mol % relative to the mols of element (I).
    Type: Application
    Filed: December 21, 2007
    Publication date: July 24, 2008
    Applicant: SHOWA DENKO K. K.
    Inventors: Akihiro KITAZAKI, Eiji Kanbara
  • Patent number: 7365041
    Abstract: An ammoxidation catalyst comprising a molybdenum (component (1)), bismuth (component (2)), at least one element selected from the group consisting of nickel, cobalt, zinc, magnesium, manganese and copper (component (3)) and at least one element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium (component (4)), over which an organic compound is subject to ammoxidation which is a composite oxide fluid bed catalyst, is prepared by i) preparing a first solution that comprises at least a portion of component (1), at least a portion of component (2), and at least a portion of component (3) but none of component (4); ii) preparing a second solution by adding a solution of component (4) to the first solution; and iii) drying the second solution obtained and calcining the solid matter obtained from the drying step.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 29, 2008
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Kenichi Miyaki, Motoo Yanagita, Kunio Mori
  • Patent number: 7348289
    Abstract: A catalyst body of the present invention includes: a porous carrier in which a large number of aggregate particles containing a main component of a nonoxide ceramic are bonded to one another while a large number of pores are disposed; and a catalyst layer carried on the porous carrier and containing a compound of an alkali metal, wherein the porous carrier has an oxide film unavoidably formed on a part of the surface of the aggregate particles, and an oxide film protective layer formed of a material which does not form low-melting glass with the alkali metal is further disposed between the oxide film and the catalyst layer in such a manner as to coat at least a part of the oxide film.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: March 25, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuichi Ichikawa, Yasushi Uchida
  • Patent number: 7335800
    Abstract: The present invention provides a hydrogenation catalyst effective for hydrogenating 3-hydroxypropionaldehyde to 1,3-propanediol. The hydrogenation catalyst comprises an ?-alumina support, nickel, ruthenium, and a promoter. The nickel is deposited on the ?-alumina support, and the ruthenium and the promoter are deposited on the nickel and the ?-alumina support. The ?-alumina support comprises at least 92 wt. % of the catalyst, and the nickel comprises from 1 wt. % to 6 wt. % of the catalyst. The present invention also provides a process of hydrogenating 3-hydroxypropionaldehyde to 1,3-propanediol with the catalyst.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 26, 2008
    Assignee: Shell Oil Company
    Inventors: Glenn Charles Komplin, John Anthony Smegal
  • Patent number: 7329628
    Abstract: The present invention relates to a process for preparing a catalyst for partial oxidation of propylene and iso-butylene, and more particularly to a process for preparing a catalyst for partial oxidation of propylene and iso-butylene that can stably prepare a catalyst that shows high activity for conversion of propylene and iso-butylene to obtain acrolein and methacrolein with a high yield, by dissolving salts of metals acting as a catalyst in a nitric acid aqueous solution or in an organic acid solution to prepare a catalyst suspension, drying the catalyst solution in a microwave oven, and then pulverizing and molding the dried catalyst, and calcining the catalyst.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: February 12, 2008
    Assignee: LG Chem, Ltd.
    Inventors: Jung-Hwa Kang, Won-Ho Lee, Min-Ho Kil
  • Patent number: 7304199
    Abstract: A catalyst composition includes an oxygen compound of an element selected from Group IVB or Group IVA of the Periodic Table of the Elements; an oxygen compound of an element selected from Group VIB or Group VIA of the Periodic Table of the Elements; and at least about 1% by weight based upon total catalyst weight of fumed silica particles. The catalyst composition is advantageously employed in hydrocarbon conversion processes such as isomerization.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: December 4, 2007
    Assignee: ABB Lummus Global Inc.
    Inventors: Jinsuo Xu, Chuen Y. Yeh, Philip J. Angevine
  • Patent number: 7304180
    Abstract: The invention relates to a process for producing a metal oxide catalyst capable of producing acrylic acid, acrylonitrile or the like in one stage by catalytic oxidation reaction of propane in a high yield. The invention is characterized by using one obtained by finely ground metallic Te or metallic Sb in water or an organic solvent as a raw material for the production of an oxide catalyst made of metal elements Mo—V—Nb—Te or metal elements Mo—V—Nb—Sb. The powder of the metallic Te or metallic Sb obtained by grinding preferably has a mode size of not more than 20 ?m. By using the metal oxide obtained by the invention as a catalyst, it is possible to produce acrylic acid in a high yield of 35% or more from propane by a one-stage oxidation reaction.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: December 4, 2007
    Assignee: Toagosei Co., Ltd.
    Inventors: Xinlin Tu, Yuuichi Sumida, Mamoru Takahashi, Hiroshi Niizuma
  • Patent number: 7294604
    Abstract: A process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of a crystalline calcium silicate having a surface area of at least 30 m2/g, the support being in the form of substantially spherical particles having a mean diameter of from 10 to 200 microns and pores in the particles having a diameter of from 100 to 2000 Angstroms, at a temperature of from 0 to 550° C. and a pressure of from 3 to 150 barg.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: November 13, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7285514
    Abstract: The present invention relates to a method for preparing a catalyst for partial oxidation of acrolein, particularly to a method for preparing a catalyst for partial oxidation of acrolein that has a superior acrolein conversion rate, acrylic acid activity, selectivity, and yield, by introducing a base solution and an acid solution into a catalyst suspension prepared by dissolving salts of metal ingredients of the catalyst in water to control the acidity of the catalyst suspension, contacting the catalyst suspension of which acidity is controlled with an inert support to support the catalyst thereon, and then drying and firing the supported catalyst.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: October 23, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Jung-Hwa Kang, Won-Ho Lee, Min-Ho Kil, Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Hyun Choe, Ju-Yeon Park
  • Patent number: 7270738
    Abstract: This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics: A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 ?, a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a BET specific surface area encompassed between 100 and 550 m2/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 ?, of less than 0.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 18, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Euzen, Carole Bobin, Magalie Roy-Auberger, Eric Benazzi, Patrick Bourges, Christophe Gueret
  • Patent number: 7256154
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: August 14, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee
  • Patent number: 7232788
    Abstract: A catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, contains oxides of molybdenum, bismuth, iron, cesium and, optionally, other metals. The catalyst has a certain relative amount ratio of cesium to bismuth, a certain relative amount ratio of iron to bismuth and a certain relative amount ratio of bismuth, iron, cesium and certain other metals to molybdenum and, optionally, tungsten. For a catalyst of the formula: Mo12BiaWbFecCodNieSbfCsgMghZniPjOx wherein a is 0.1 to 1.5, b is 0 to 4, c is 0.2 to 5.0, d is 0 to 9, e is 0 to 9, f is 0 to 2.0, g is from 0.4 to 1.5, h is 0 to 1.5, i is 0 to 2.0, j is 0 to 0.5 and x is determined by the valences of the other components, c:g=3.3–5.0, c:a=2.0–6.0 and (3a+3c+2d+2e+g+2h+2i)/(2×12+2b)=0.95–1.10.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 19, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, Scott A. Stevenson, James W. Kauffman, John S. Ledford, Joseph R. Linzer
  • Patent number: 7229946
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7229945
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a two-part synthesis of the catalyst with the water insoluble components in one part and the water soluble components in the other part. The water insoluble components are co-precipitated to form an intermediate catalyst precursor of a precipitated support incorporating oxides of the metal components. The intermediate catalyst precursor is filtered and washed to remove nitrates. The intermediate catalyst precursor is slurried with the remaining water soluble components. A final catalyst precursor is formed by removing the water and incorporating the water soluble components. This two-part process reduces the amount of nitrates in the final catalyst precursor.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industrics Corporation
    Inventor: James W. Kauffman
  • Patent number: 7179366
    Abstract: A catalyst contains at least one group VIII element and at least molybdenum and/or tungsten, said elements being present at least in part in the catalyst in the dry state in the form of at least one heteropolyanion with formula MxAB6O24H6C(3-2x), tH2O; MxAB6O24H6C(4-2x), tH2O; MxA2B10O38H4C(6-2x), tH2O; MxA2B10O38H4C(8-2x), tH2O; or MxA2B10O38H4C(7-2x), tH2O, in which M is cobalt and/or nickel and/or iron and/or copper and/or zinc, A is one or two elements from group VIII of the periodic table, B is molybdenum and/or tungsten and C is an H+ ion and/or a (NR1R2R3R4)+ type ammonium ion, in which R1, R2, R3 and R4, which may be identical or different, correspond either to a hydrogen atom or to an alkyl group and/or caesium and/or potassium and/or sodium, t is a number between 0 and 15 and x takes a value in the range 0 to 4 depending on the formula.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: February 20, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Catherine Martin, Edmond Payen, Carole Lamonier, Pascal Blanchard
  • Patent number: 7169294
    Abstract: The invention pertains to a hydroprocessing catalyst suitable for the conversion of heavy hydrocarbon oils, which comprises 7–20 wt. % of Group VI metal, calculated as trioxide, and about 0.5–6 wt. % of Group VIII metal, calculated as oxide, on a carrier comprising alumina, the catalyst having a surface area of about 100–180 m2/g, a total pore volume of about 0.55 ml/g or more, a % PV(>200 ? d) of at least about 50%, a % PV(>1,000 ? d) of at least about 5%, a % PV(100–1,200 ? d) of at least about 85%, a % PV(>4,000 ? d) of about 0–2%, and a % PV(>10,000 ? d) of about 0–1%. The catalyst of the present invention shows improved metals and asphaltene removal, combined with appropriate sulfur, nitrogen, and Conradson carbon removal. Additionally, the catalyst shows a decrease in sediment formation and an improved conversion in ebullating bed operations. In fixed bed operation, the catalyst produces product with an improved storage stability.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 30, 2007
    Assignee: Nippon Ketjen Co., Ltd.
    Inventors: Satoshi Abe, Akira Hino, Katsuhisa Fujita
  • Patent number: 7132092
    Abstract: A metallized mesoporous silicate which is obtained by (i) reacting (a) either a metal peroxide obtained by the reaction of an aqueous hydrogen peroxide solution with at least one metal or metal compound selected from the group consisting of the following 1) to 4) 1) tungsten 2) molybdenum 3) vanadium 4) compounds comprising 4a) any of tungsten, molybdenum, and vanadium and 4b) at least one element selected from Groups 13 to 16 (excluding oxygen) or a solution of the metal peroxide with (b) a silicon compound in the presence of an alkylamine or a quaternary ammonium salt and separating the resultant silicate; and a process for producing the metallized mesoporous silicate. Also provided is a method of organic synthesis with the silicate.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: November 7, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Koji Hagiya
  • Patent number: 7129195
    Abstract: The invention relates to a method for the heterogenically catalyed gas-phase partial oxidation of precursor compounds of (meth)acrylic acid in a fixed catalyst bed, containing as the catalyst an activated mass of mixed oxide, shaped to form a geometric body. Said geometric body is a geometric base body, into whose surface a cavity is incorporated.
    Type: Grant
    Filed: January 12, 2002
    Date of Patent: October 31, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Raimund Felder, Signe Unverricht, Heiko Arnold, Jochen Petzoldt
  • Patent number: 7122707
    Abstract: Coated catalysts which are suitable for the gas-phase catalytic oxidation of propene to acrolein are prepared by a process in which rings are used as supports and water is used as a binder.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: October 17, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Jochen Petzoldt, Signe Unverricht, Heiko Arnold
  • Patent number: 7060651
    Abstract: A silica-rich support and a catalyst containing the silica-rich support and a catalytic component. The support has a specific structure characterized by a set of claimed physicochemical properties: in the 29Si MAS NMR spectrum the state of silicon is characterized by the presence of lines with chemical shifts ?100±3 ppm (line Q3) and ?110±3 ppm (line Q4), with the ratio of the integral intensities of the lines Q3/Q4 of from 0.7 to 1.2 (FIG. 1); in the IR spectrum there is an absorption band of hydroxyl groups with the wave number 3620–3650 cm?1 and half-width 65–75 cm?1 (FIG. 2); the carrier has a specific surface area, as measured by the BET techniques from the thermal desorption of argon, SAR=0.5–30 m2/g and the surface, as measured by alkali titration techniques, SNa=10–250 m2/g, with SNa/SAr=5–30.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 13, 2006
    Assignee: Zakrytoe Aktsionernoe Obschestvo “Kholdingovaya Katalizatornaya Kompania”
    Inventors: Viktor Vladimirovich Barelko, Bair Sydypovich Balzhinimaev, Sergei Petrovich Kildyashev, Mikhail Grigorievich Makarenko, Anatoly Nikolaevich Parfenov, Ljudmila Grigorievna Simonova, Alexandr Viktorovich Toktarev
  • Patent number: 7022643
    Abstract: There is disclosed a production process for a catalyst which process makes it possible to efficiently carry out the supporting of a catalytic component onto a carrier and to obtain the catalyst excellent in quality and performance. This production process is a production process for the catalyst including a particulate lump carrier and a catalytic component supported thereon; with the production process comprising the step of carrying out simultaneous revolution and rocking of a treatment container 20 as charged with the carrier and a catalyst precursor including the catalytic component, thereby supporting the catalytic component onto the carrier.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: April 4, 2006
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiromi Yunoki, Michio Tanimoto, Daisuke Nakamura
  • Patent number: 6998366
    Abstract: Raney alloy catalysts applied to a support are described, said catalysts having an extremely thin layer of Raney alloy with a thickness of 0.01 to 100 ?m. These catalysts are prepared by vapor deposition of the appropriate metals under reduced pressure. They are generally suitable for all known hydrogenation and dehydrogenation reactions and are extremely abrasion-resistant.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: February 14, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Mathias Haake, Gerhard Dörsam, Helmut Boos
  • Patent number: 6989347
    Abstract: A catalyst composition for the production of carboxylic acids by the oxidation of the corresponding unsaturated aldehydes, and methods for making and using the catalyst compositions. The catalysts include compositions of the formula: MoaVbAlcXdYeOz wherein X is at least one element selected from W and Mn; Y is at least one element selected from Pd, Sb, Ca, P, Ga, Ge, Si, Mg, Nb, and K; a is 1; b is 0.01–0.9; c is 0<0.2; d is 0<0.5; e is 0<0.5; and z is an integer representing the number of oxygen atoms required to satisfy the valency of the remaining elements in the composition. Using the catalyst composition of the present invention, one may effectively oxidize the desired starting materials at relatively high levels of conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 24, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Asad Ahmad Khan