Vanadium Containing Patents (Class 502/312)
  • Patent number: 7304180
    Abstract: The invention relates to a process for producing a metal oxide catalyst capable of producing acrylic acid, acrylonitrile or the like in one stage by catalytic oxidation reaction of propane in a high yield. The invention is characterized by using one obtained by finely ground metallic Te or metallic Sb in water or an organic solvent as a raw material for the production of an oxide catalyst made of metal elements Mo—V—Nb—Te or metal elements Mo—V—Nb—Sb. The powder of the metallic Te or metallic Sb obtained by grinding preferably has a mode size of not more than 20 ?m. By using the metal oxide obtained by the invention as a catalyst, it is possible to produce acrylic acid in a high yield of 35% or more from propane by a one-stage oxidation reaction.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: December 4, 2007
    Assignee: Toagosei Co., Ltd.
    Inventors: Xinlin Tu, Yuuichi Sumida, Mamoru Takahashi, Hiroshi Niizuma
  • Patent number: 7288669
    Abstract: An improved catalyst comprising a mixed metal oxide, either promoted or not, is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: October 30, 2007
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 7285514
    Abstract: The present invention relates to a method for preparing a catalyst for partial oxidation of acrolein, particularly to a method for preparing a catalyst for partial oxidation of acrolein that has a superior acrolein conversion rate, acrylic acid activity, selectivity, and yield, by introducing a base solution and an acid solution into a catalyst suspension prepared by dissolving salts of metal ingredients of the catalyst in water to control the acidity of the catalyst suspension, contacting the catalyst suspension of which acidity is controlled with an inert support to support the catalyst thereon, and then drying and firing the supported catalyst.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: October 23, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Jung-Hwa Kang, Won-Ho Lee, Min-Ho Kil, Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Hyun Choe, Ju-Yeon Park
  • Patent number: 7271126
    Abstract: A method for producing a catalyst for use in the dehydrogenation of ethylbenzene to styrene is disclosed. The catalyst of the present invention comprises a high purity metal and at least one promoter in the form of solid oxides, oxide hydrates, hydroxides, hydroxycarbonates or metals. The catalyst is prepared via a method which comprises the preparation of at least one high purity iron precursor with or without an additional support material and which uses a nominal amount of water in the catalyst production. The catalyst pellets prepared with the high purity metal precursor are essentially free of sulfur and chloride contaminants.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: Dennis J. Smith, Robert J. O'Brien, X. D. Hu
  • Patent number: 7256155
    Abstract: Provided are a flue gas denitration catalyst having high denitration activity and capable of suppressing a side reaction, that is, oxidation of SO2; and a preparation process of the catalyst. The flue gas denitration catalyst comprises TiO2, WO3 and V2O5. In the surface layer of the catalyst within 200 ?m from the surface thereof, V2O5 is supported on a carrier containing TiO2 and WO3. The supported amounts of V2O5 range from 0.4 to 5 wt. % based on the weight of the surface layer and range from 0.1 to 0.9 wt. % based on the total weight of the catalyst. The V2O5 thus supported has a crystallite size of less than 10 nm as measured by X-ray diffraction. The catalyst can be available by preparing a mixture containing TiO2 and WO3 and having V2O5 supported on the surface of an extruded product of the prepared mixture by a vapor phase method.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: August 14, 2007
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Katsumi Nochi, Masashi Kiyosawa
  • Patent number: 7250386
    Abstract: A quantum limit catalyst. The instant quantum limit catalyst is comprised of atomic aggregations whose dimensions correspond to the quantum limit. In the quantum limit, the atomic aggregations acquire structural configurations and electronic interactions not attainable in the macroscopic limit. The structural configurations possible in the quantum limit correspond to atomic aggregations having bond lengths, bond angles, topologies and coordination environments that differ from those found in the macroscopic limit. The electronic interactions possible in the quantum limit originate from wavefunction overlap and tunneling between atoms and lead to modifications in the magnitude and/or spatial distribution of electron density at catalytic sites to provide improved catalytic properties. Representative quantum limit catalysts include quantum scale atomic aggregations of metal atoms. Examples including catalysts derived from Fe, Mg, V and Co are disclosed.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 31, 2007
    Assignee: Energy Conversion Devices, Inc.
    Inventor: Stanford R. Ovshinsky
  • Patent number: 7229945
    Abstract: The present invention is for a process for making a catalyst for production of unsaturated aldehydes, such as methacrolein, by gas phase catalytic oxidation of olefins, such as isobutylene, said catalyst containing oxides of molybdenum, bismuth, iron, cesium, tungsten, cobalt, nickel, antimony, magnesium and zinc. The process is a two-part synthesis of the catalyst with the water insoluble components in one part and the water soluble components in the other part. The water insoluble components are co-precipitated to form an intermediate catalyst precursor of a precipitated support incorporating oxides of the metal components. The intermediate catalyst precursor is filtered and washed to remove nitrates. The intermediate catalyst precursor is slurried with the remaining water soluble components. A final catalyst precursor is formed by removing the water and incorporating the water soluble components. This two-part process reduces the amount of nitrates in the final catalyst precursor.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industrics Corporation
    Inventor: James W. Kauffman
  • Patent number: 7229946
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7220698
    Abstract: There are provided a catalyst for catalytic gas phase oxidation of acrolein with molecular oxygen to produce acrylic acid, the catalyst including molybdenum and vanadium and further including at least one volatile catalyst poison ingredient in an amount of 10 to 100 ppb by mass as measured by ion chromatography; and a process for producing acrylic acid, including a step of carrying out catalytic gas phase oxidation of acrolein with molecular oxygen using the catalyst. The catalyst of the present invention can lower a hot spot temperature and suppress reduction in a reaction efficacy accompanied with thermal degradation, so that the acrolein conversion can stably be kept higher over a long term.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: May 22, 2007
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiromi Yunoki, Michio Tanimoto
  • Patent number: 7217680
    Abstract: A method for producing a composite oxide catalyst for gas phase catalytic oxidation of an unsaturated aldehyde with a molecular oxygen-containing gas to produce the corresponding unsaturated carboxylic acid in good yield, is presented. A method for producing a composite oxide catalyst, which is a method for producing a composite oxide catalyst having the following formula (I), characterized in that Sb2O3 of isometric system is used as at least a part of an antimony-supplying source compound: Mo12XaVbSbcCudSieCfOg ??(I) (wherein the respective components and variables have the following meanings: X is at least one element selected from the group consisting of Nb and W; a, b, c, d, e, f and g represent atomic ratios of the respective elements, and against 12 of molybdenum atom, 0<a?10, 0<b?10, 0<c?5, 0<d?5, 0?e?1,000, and 0?f?1,000, and g is a number determined by the degrees of oxidation of the above respective components.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: May 15, 2007
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Isao Teshigahara, Hisao Kinoshita
  • Patent number: 7214822
    Abstract: A coated catalyst whose coating of active composition is a multimetal oxide comprising the elements Mo, V and Te and/or Sb can be used for the gas-phase catalytic oxidation of propane to acrylic acid.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: May 8, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Andreas Tenten, Hartmut Hibst
  • Patent number: 7208445
    Abstract: An orthorhombic phase mixed metal oxide is produced selectively in quantitative yield.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: April 24, 2007
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Daniel A. Bors, Fernando Antonio Pessoa Cavalcanti, Michael Bruce Clark, Jr., Anne Mae Gaffney, Scott Han
  • Patent number: 7176159
    Abstract: A catalyst and sorbent is disclosed which comprises pellets with an absorbent core and a protective shell with a catalyst in the shell. Such material is especially well suited for steam reforming of hydrocarbons to produce hydrogen since a reforming catalyst can be incorporated in the shell and a sorbent for the by-product carbon dioxide can be used for the core. It is also well suited for producing hydrogen from carbon monoxide by means of the water gas shift reaction. The shell can be made sufficiently strong and durable for moving bed applications as well as fixed bed applications.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: February 13, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Thomas D. Wheelock, Brent H. Shanks
  • Patent number: 7138358
    Abstract: A catalyzed diesel particulate matter exhaust filter with improved diesel particulate matter oxidation activity and thermal stability including a porous filter substrate for filtering the diesel particulate matter washcoated with high surface area support alumina, titania, silica and zirconia promoted with one of ceria, lanthanum oxide, tungsten oxide, molybdem oxide, tin oxide for catalytic materials which includes an alkaline earth metal vanadate, and a precious metal
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: November 21, 2006
    Assignee: Sud-Chemie Inc.
    Inventors: Yinyan Huang, Zhongyuan Dang, Amiram Bar-llan
  • Patent number: 7129195
    Abstract: The invention relates to a method for the heterogenically catalyed gas-phase partial oxidation of precursor compounds of (meth)acrylic acid in a fixed catalyst bed, containing as the catalyst an activated mass of mixed oxide, shaped to form a geometric body. Said geometric body is a geometric base body, into whose surface a cavity is incorporated.
    Type: Grant
    Filed: January 12, 2002
    Date of Patent: October 31, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Raimund Felder, Signe Unverricht, Heiko Arnold, Jochen Petzoldt
  • Patent number: 7109144
    Abstract: Disclosed is an oxide catalyst for use in catalytic oxidation or ammoxidation of propane or isobutane in the gaseous phase, which comprises a composition represented by the Mo1VaSbbNbcZdOn (wherein: Z is at least one element selected from the group consisting of tungsten, chromium, titanium, aluminum, tantalum, zirconium, hafnium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, zinc, boron, indium, germanium, tin, lead, bismuth, yttrium, gallium, rare earth elements and alkaline earth metals: and a, b, c, d, and n are, respectively, the atomic ratios of V, Sb, Nb, Z and O, relative to Mo), wherein 0.1?a<0.4, 0.1<b?0.4, 0.01?c?0.3, 0?d?1, with the proviso that a<b, and n is a number determined by and consistent with the valence requirements of the other elements present. Also disclosed is a process for producing an unsaturated carboxylic acid or an unsaturated nitrile by using the above-mentioned oxide catalyst.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: September 19, 2006
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hidenori Hinago, Mamoru Watanabe
  • Patent number: 7091377
    Abstract: A multimetal oxide material contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and promoters and has a specific X-ray diffraction pattern. Moreover, such a multimetal oxide material is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations of hydrocarbons.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 15, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Martin Dieterle, Hartmut Hibst
  • Patent number: 7053022
    Abstract: Hydrothermally synthesized catalysts comprising a mixed metal oxide are utilized to produce unsaturated carboxylic acids by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, in the presence thereof; or to produce unsaturated nitriles by the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, and ammonia in the presence thereof.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 30, 2006
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Ruozhi Song
  • Patent number: 7038082
    Abstract: A process for preparing a multimetal oxide material which contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and if desired promoters and has a specific X-ray diffraction pattern, in which process the last process step comprises washing with acidic liquids. In addition, a multimetal oxide material obtainable in such a way is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations and/or ammoxidation of hydrocarbons.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: May 2, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Klaus Joachim Müller-Engel, Hartmut Hibst, Martin Dieterle
  • Patent number: 7033566
    Abstract: A photocatalyst including a metal oxide semiconductor represented by the formula: In1?xMxAO4 wherein M represents a transition metal element, A represents an element belonging to the Group 5a of the Periodic Table and x is a number greater than 0 but smaller than 1.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 25, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Arakawa, Zhigang Zou, Kazuhiro Sayama
  • Patent number: 7030055
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 18, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7018951
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitriles, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contact member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; calcining the recovered insoluble material in a non-oxidizing atmosphere; admixing the calcined recovered insoluble material with (i) at least one promoter element or compound thereof and (ii) at least one solvent for the at least one promoter element or compound thereof; removing the at least one solvent to form a catalyst precursor; and calcining the catalyst precursor.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: March 28, 2006
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 7005402
    Abstract: The invention is to provide (i) a catalyst which does not require an activation of catalyst components by means of a calcination which has become a hindrance in the way of obtaining a catalyst having a high activity through a conventional technology and in which catalyst the compositing of vanadium with molybdenum is contemplated more than enough; ii) a method for producing the catalyst; (iii) a catalyst having an activity, especially having an activity at low temperatures and a durability both greatly increased; (iv) a catalyst compound for purifying an exhaust gas, in which compound the ratio of vanadium atom to molybdenum atom (V/Mo) is 3/2 or close thereto and which compound is expressed by the rational formula (NH4)xMo2VxO(3x+6) wherein x is 2.8 to 3.2; and (v) a method for producing the catalyst compound through a step for reacting molybdenum oxide (MoO3) with ammonium metavanadate (NH4VO3) in the co-presence of water for a prescribed period of time.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: February 28, 2006
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Kouichi Yokoyama, Masatoshi Fujisawa
  • Patent number: 7005403
    Abstract: A coated catalyst whose coating of active composition is a multimetal oxide comprising the elements Mo, V and Te and/or Sb can be used for the gas-phase catalytic oxidation of propane to acrylic acid.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: February 28, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Andreas Tenten, Hartmut Hibst
  • Patent number: 6989460
    Abstract: Unsaturated carboxylic acids are produced by the vapor phase catalytic oxidation of mixtures of alkenes and alkanes in the presence of a catalyst containing a mixed metal oxide. Similarly, unsaturated nitriles are produced by the vapor phase catalytic oxidation of alkenes or mixtures of alkenes and alkanes and ammonia in the presence of a catalyst containing a mixed metal oxide.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 24, 2006
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Scott Han, Bradley Anson Jacobs, Frederick William Kaiser, Peter David Klugherz, Manhua Lin, Richard David Link, III, Michael William Linsen
  • Patent number: 6989347
    Abstract: A catalyst composition for the production of carboxylic acids by the oxidation of the corresponding unsaturated aldehydes, and methods for making and using the catalyst compositions. The catalysts include compositions of the formula: MoaVbAlcXdYeOz wherein X is at least one element selected from W and Mn; Y is at least one element selected from Pd, Sb, Ca, P, Ga, Ge, Si, Mg, Nb, and K; a is 1; b is 0.01–0.9; c is 0<0.2; d is 0<0.5; e is 0<0.5; and z is an integer representing the number of oxygen atoms required to satisfy the valency of the remaining elements in the composition. Using the catalyst composition of the present invention, one may effectively oxidize the desired starting materials at relatively high levels of conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 24, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Asad Ahmad Khan
  • Patent number: 6982343
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile. The catalyst is treated with a source of hydrogen, an alcohol, a source of NOx or a mixture thereof.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 3, 2006
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Dominique Hung Nhu Le
  • Patent number: 6921836
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and antimony and one or more specific other metals and having a multicomponent structure are used for the gas-phase catalytic oxidative preparation of acrylic acid from acrolein.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: July 26, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Signe Unverricht
  • Patent number: 6919472
    Abstract: A catalyst composition for the selective conversion of an alkane to an unsaturated carboxylic acid having the general formula: MoVaNbbAgcMdOx wherein optional element M may be one or more selected from aluminum, copper, lithium, sodium, potassium, rubidium, cesium, gallium, phosphorus, iron, rhenium, cobalt, chromium, manganese, arsenic, indium, thallium, bismuth, germanium, tin, cerium or lanthanum; a is 0.05 to 0.99, b is 0.01 to 0.99, c is 0.01 to 0.99, d is 0 to 0.5 and x is determined by the valence requirements of the other components of the catalyst composition. This catalyst is prepared by co-precipitation of compounds of molybdenum, vanadium, niobium, silver and M to form a mixed metal oxide catalyst. This catalyst can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process or the ammoxidation of alkanes and olefins.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 19, 2005
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 6919295
    Abstract: A supported catalyst comprising a mixed metal oxide is useful for the vapor phase catalytic partial oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 19, 2005
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Scott Han, Michelle Doreen Heffner, Nneka Namono McNeal, Elsie Mae Vickery
  • Patent number: 6916945
    Abstract: A catalyst comprising a mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 12, 2005
    Assignee: Rohm and Haas Company
    Inventors: Anne Mae Gaffney, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6903047
    Abstract: The present invention concerns a method for enhancing the activity of vanadium phosphorus oxide (VPO) catalysts. Promoter reagents are grafted onto or reacted with the catalyst surface. An optional calcination and activation heating cycle transforms the catalyst precursor into a final active phase. A preferred VPO catalyst produced has a ratio of molybdenum to vanadium on the surface of the catalyst to molybdenum to vanadium in the overall bulk of the catalyst represented by the equation (Mo/V) Surface?1.10 (Mo/V) overall bulk.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: June 7, 2005
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Pratibha Laxman Gai
  • Patent number: 6887825
    Abstract: Vanadium antimony oxide catalysts useful for the selective oxidation and ammoxidation of paraffins, olefins, and aromatic compounds are manufactured in a process comprising (i) forming a catalyst precursor slurry comprising a vanadium containing compound and an antimony containing compound in a liquid solvent medium which comprises an organic solvent, and (ii) recovering a vanadium antimony oxide from the slurry by drying the slurry in order to remove water and organic solvent.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: May 3, 2005
    Assignee: The Standard Oil Company
    Inventor: James F. Brazdil
  • Patent number: 6884402
    Abstract: The present invention provides: a catalyst for purification of exhaust gases which catalyst is excellent as a denitrification catalyst which has still more excellent ability to remove nitrogen oxides and of which the ability to oxidize sulfur dioxide into sulfur trioxide is extremely suppressed and further as a catalyst which is favorable for efficiently removing organohalogen compounds, such as dioxins, from exhaust gases; a production process therefor; and a process for purification of exhaust gases. The catalyst for purification of exhaust gases comprises titanium oxide, molybdenum oxide, and vanadium oxide as catalytic components, wherein the titanium oxide and the molybdenum oxide are included in the catalyst in the form of: a binary closely mixed oxide which is beforehand prepared and includes titanium and molybdenum; and/or a trinary closely mixed oxide which is beforehand prepared and includes titanium, silicon, and molybdenum.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: April 26, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Shinyuki Masaki, Ryoji Kuma, Noboru Sugishima
  • Patent number: 6881390
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: April 19, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6864384
    Abstract: A process for the manufacture of an improved iron promoted vanadium antimony oxide catalyst useful in the ammoxidation of propane to acrylonitrile wherein the source of iron (i.e. an iron containing compound such as Fe2O3) employed in the catalyst preparation has a BET surface area greater than 120 m2/gram. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding ?-?-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: March 8, 2005
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Joseph P. Bartek, Steven S. Trail
  • Patent number: 6841699
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is improved as a catalyst for the production of unsaturated carboxylic acids, or unsaturated nitriles, from alkanes, or mixtures of alkanes and alkenes, by: contacting with a liquid contacting member selected from the group consisting of organic acids, alcohols, inorganic acids and hydrogen peroxide to form a contact mixture; recovering insoluble material from the contact mixture; and calcining the recovered insoluble material in a non-oxidizing atmosphere.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: January 11, 2005
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20040249183
    Abstract: Catalytically active multielement oxide materials which contain at least one of the elements Nb and W and the elements Mo, V and Cu are prepared by a process in which an intimate dry blend containing ammonium ions is prepared and said dry blend is subjected to a thermal treatment in an atmosphere having a low molecular oxygen content at elevated temperatures, a portion of the ammonium ions contained in the intimate dry blend being decomposed with liberation of ammonia and the oxygen content of the thermal treatment atmosphere being increased in the course of the thermal treatment.
    Type: Application
    Filed: May 7, 2004
    Publication date: December 9, 2004
    Applicant: BASF Aktiengesellschaft
    Inventors: Martin Dieterle, Hartmut Hibst, Wolfgang Jurgen Popel, Jochen Petzoldt, Klaus Joachim Muller-Engel
  • Patent number: 6825145
    Abstract: The present invention provides an exhaust gas purifying catalyst that is capable of substantially reducing the degree of deterioration in an exhaust gas purifying capability, which results from dissipation of an absorbent agent. Accordingly, an exhaust gas purifying catalyst, which includes a carrier and a catalyst layer, and to which at least one material selected from a group of alkali metals and alkali earth metals is added as an absorbent agent, is characterized in that acid material with a high affinity with respect to the absorbent agent is mixed in the catalyst layer so as to fix the absorbent agent, and an inhibiting layer is formed between the catalyst layer and the carrier so as to inhibit the movement of the absorbent agent toward the carrier.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: November 30, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Tanada, Osamu Nakayama, Keisuke Tashiro, Kinichi Iwachido, Tetsuya Watanabe, Kazuo Koga
  • Patent number: 6825380
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 30, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20040229753
    Abstract: Multimetal oxide materials which contain Mo and V and, if required, one or more of the elements from the group consisting of lanthanides, transition elements of the Periodic Table of the Elements and elements of the third to sixth main group of the Periodic Table of the Elements and which are prepared in the presence of an alkali metal other than Li and have the i-phase structure are used as active material in catalysts for partial gas-phase oxidations.
    Type: Application
    Filed: May 12, 2004
    Publication date: November 18, 2004
    Applicant: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Gerhard Cox, Frieder Borgmeier
  • Patent number: 6809219
    Abstract: A catalyst useful for the gas phase oxidation of alkanes to unsaturated aldehydes or carboxylic acids is disclosed. Processes for preparing the catalyst and using the catalyst to convert alkanes to unsaturated aldehydes or carboxylic acids are also disclosed.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: October 26, 2004
    Assignee: Rohm and Haas Company
    Inventors: Scott Han, Dominique Hung Nhu Le, Nneka Namono McNeal
  • Patent number: 6803340
    Abstract: A catalyst for removing dioxin and a preparation method thereof. The catalyst is prepared by recycling a spent catalyst discharged from a hydro-desulfurization process of an oil refinery in which the spent catalyst comprises an alumina support (preferably, gamma alumina) with a large specific surface area impregnated with high contents of vanadium. The spent catalyst is mixed with a tungsten-impregnated titania, whereby a catalyst comprising suitable metal components and a mixture support of alumina and titania may be prepared. The catalyst in accordance with the present invention has excellent dioxin removal performance and low preparation cost because of recycling the spent catalyst.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: October 12, 2004
    Assignee: SK Corporation
    Inventors: Sang-Ho Lee, Jun-Seong Ahn, Jong-Hyun Kim, Bong-Jea Kim
  • Publication number: 20040192966
    Abstract: A catalyst composition having the formula:
    Type: Application
    Filed: March 23, 2004
    Publication date: September 30, 2004
    Applicant: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis
  • Patent number: 6797840
    Abstract: A catalyst comprising an In promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: September 28, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Elsie Mae Vickery
  • Patent number: 6797839
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, antimony, one or more of the elements W, Nb, Ta, Cr and Ce and nickel and, if required, one or more of the elements Cu, Zn, Co, Fe, Cd, Mn, Mg, Ca, Sr and Ba and having a 2-component structure are used for the gas-phase catalytic oxidative preparation of acrylic acid.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: September 28, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Signe Unverricht
  • Patent number: 6794539
    Abstract: In a process for preparing a multiplephase multimetal oxide composition comprising Mo, V, Cu and, if desired, further elements, at least one phase is preformed separately and dispersed in a plastically deformable precursor composition of a further phase. The mixture is dried and calcined. The multimetal oxide composition is suitable as active composition of catalysts for the catalytically oxidation of organic compounds in the gas phase, in particular for the oxidation of acrolein to acrylic acid.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: September 21, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Signe Unverricht, Raimund Felder, Heiko Arnold, Jochen Petzoldt
  • Publication number: 20040181072
    Abstract: A process for the manufacture of an improved vanadium antimony oxide oxidation or ammoxidation catalyst which comprises heat treating the catalyst at a temperature above 780° C. in the presence of an oxygen enriched environment. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding &agr;-&bgr;-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 16, 2004
    Inventors: James F. Brazdil, Fernando Antonio Pessoa Cavalcanti
  • Patent number: 6790988
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: September 14, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6790808
    Abstract: In an exhaust gas purifying catalyst, an acid material with a high affinity with respect to an absorbing agent is dispersed and mixed in a catalyst layer, to which the absorbing agent is added, or a layer of the acid material is formed inside the catalyst layer in order to prevent the absorbing agent from moving from the catalyst layer into the carrier. This reduces the permeation of the absorbing agent added to the catalyst layer into a carrier, the evaporation and splash of the absorbing agent from the catalyst, and the deterioration in the durability and the exhaust gas purifying performance of the catalyst.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: September 14, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Tanada, Osamu Nakayama, Keisuke Tashiro, Kinichi Iwachido, Tetsuya Watanabe