And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/313)
  • Patent number: 8058204
    Abstract: An electrocatalyst is described. The electrocatalyst includes a core of a non-noble metal or non-noble metal alloy; and a continuous shell of a noble metal or noble metal alloy on the core, the continuous shell being at least two monolayers of the noble metal or noble metal alloy. Methods for making the electrocatalyst are also described.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Junliang Zhang, Frederick T. Wagner, Zhongyi Liu, Michael K. Carpenter
  • Publication number: 20110274615
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Application
    Filed: January 6, 2010
    Publication date: November 10, 2011
    Inventor: Yasuo Ishikawa
  • Patent number: 8039173
    Abstract: A cathode catalyst for a fuel cell includes a carrier and an A-B alloy supported on the carrier, where A is at least one metal selected from the group consisting of Pd, Ir, Rh, and combinations thereof, and B is at least one metal selected from the group consisting of Mo, W, and combinations thereof. The carrier is composed of at least one chalcogen element selected from the group consisting of S, Se, Te, and combinations thereof.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: October 18, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Patent number: 8012343
    Abstract: The present invention pertains to a process for the hydroprocessing of heavy hydrocarbon feeds, preferably in an ebullating bed process, by contacting the feed with a mixture of two hydroprocessing catalysts meeting specified pore size distribution requirements. The process combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: September 6, 2011
    Inventors: Frans Lodewijk Plantenga, Katsuhisa Fujita, Satoshi Abe
  • Publication number: 20110207972
    Abstract: Catalysts for replacing rhenium-containing multimetallic catalysts for the hydrogenolysis of organic compounds to desired polyols, including the conversion of glycerol to propylene glycol, are described. The catalysts are carried on carbon supports, as well as carbon supports impregnated with Zirconium Scandium (ZrSc), Zirconium Yttrium (ZrY), Titanium Scandium (TiSc), or Titanium Yttrium (TiY) to texture the carbon support and to create oxygen-ion vacancies that can be used during the desired reactions. Processes for the hydrogenolysis of organic compounds to desired polyols using the disclosed catalysts, including the conversion of glycerol to propylene glycol, are also described.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Heather M. Brown, John G. Frye, Jonathan L. Male, Daniel M. Santosa, Alan H. Zacher
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7988848
    Abstract: This invention relates to a process for activating a hydroprocessing catalyst and the use of activated catalyst for hydroprocessing. More particularly, hydroprocessing catalysts are activated in the presence of carbon monoxide. The catalysts that have been activated by CO treatment have improved activity.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 2, 2011
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Garland B. Brignac, Andrew C. Moreland, Thomas R. Halbert
  • Publication number: 20110184216
    Abstract: The present invention relates to a process of formulating and preparing supported multi-metal catalysts based on metal oxides and inorganic salts of metals. The impregnation technique is employed by two methods: the slurry method and the modified-pH variation method, which are used in two steps for obtaining the catalyst. The present invention also relates to a process called Glycerol to Propene (GTP) process, corresponding to the transformation of glycerol or glycerin to propene. The reaction involved in the process of the present invention is the selective hydrogenation of glycerin, which takes place by contact of the charge of glycerin carried by hydrogen in a continuous stream system on the catalytic bed containing multi-metal catalysts, specifically prepared for this purpose.
    Type: Application
    Filed: June 24, 2009
    Publication date: July 28, 2011
    Inventors: Jose Carlos Sousa Fadigas, Rossano Gambetta, Cláudio José Araújo Mota, Valter Luiz da Conceicão Goncalves
  • Patent number: 7985830
    Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Publication number: 20110176988
    Abstract: The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and at
    Type: Application
    Filed: September 17, 2009
    Publication date: July 21, 2011
    Inventors: Junji Okamura, Masaru Kirishiki, Masanori Yoshimune, Hideaki Tsuneki
  • Patent number: 7981831
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 19, 2011
    Assignee: Velocys
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Patent number: 7981830
    Abstract: Supports having a catalytic coating comprising at least one porous and cavity-containing catalyst layer are described, cavities being irregular spaces having dimensions greater than 5 ?m in at least two dimensions or having cross-sectional areas of at least 10 ?m2. The catalytic coatings are distinguished by a high adhesive strength and can preferably be used in microreactors.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: July 19, 2011
    Assignees: Uhde GmbH, Evonik Degussa GmbH
    Inventors: Steffen Schirmeister, Karsten Büker, Martin Schmitz-Niederau, Bernd Langanke, Andreas Geisselmann, Georg Markowz, Klaus Thomas Schwarz, Elias Johannes Klemm, Frank Becker, Reinhard Machnik
  • Patent number: 7981275
    Abstract: The present invention relates to the novel catalytic composition having a high specific activity in reactions involving hydroprocessing of light and intermediate petroleum fractions, and preferably in hydrodesulphurization and hydrodenitrogenation reactions. The inventive catalyst contains at least one element of a non-noble metal from group VIII, at least one element from group VIB and, optionally, a group one element of the VA group, which are deposited on a novel catalytic support comprising of an inorganic metal oxide from group IVB, consisting of an (1D) one-dimensional nanostructured material having nanofibers and/or nanotube morphology with high specific surface area of between 10 and 500 m2/g.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: July 19, 2011
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, José Escobar Aguilar, María Antonia Cortés Jacome, Maria de Lourdes Mosqueira Mondragon, Víctor Pérez Moreno, Carlos Angeles Chávez, Esteban López Salinas, Marcelo Lozada y Cassou
  • Publication number: 20110150742
    Abstract: Disclosed is a catalyst composition for reducing NOx through two steps including reacting NOx with H2 thus producing ammonia which is then reacted with NOx, instead of direct NOx reduction by H2, and a method of reducing NOx using the catalyst composition.
    Type: Application
    Filed: August 6, 2008
    Publication date: June 23, 2011
    Applicant: HEESUNG CATALYSTS CORPORATION
    Inventors: Hyun-Sik Han, Eun-seok Kim, Gon Seo, Se-Min Park, Yun-Je Lee
  • Patent number: 7964528
    Abstract: The invention relates to a process for the preparation of a shaped bulk catalyst comprising metal oxide particles comprising one or more Group VIII metals and two or more Group VIB metals which process comprises the steps of providing first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals, providing separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, combining the first and second metal oxidic particles before and/or during shaping and shaping the combined first and second metal oxide particles to form a shaped bulk catalyst. The invention further relates to the shaped bulk catalyst obtainable with the process In sulphided or unsulphided form and the use thereof in hydroprocessing.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: June 21, 2011
    Assignee: Albemarle Netherlands, B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Johannes Cornelis Sitters, Marinus Bruce Cerfontain, Bob Gerardus Oogjen
  • Publication number: 20110143934
    Abstract: A stabilized platinum nanoparticle has a core portion surrounded by a plurality of outer surfaces. The outer surfaces include terrace regions formed of platinum atoms, and edge and corner regions formed of atoms from a second metal. The stabilized nanoparticle may be formed by combining a platinum nanoparticle with a metal salt in a solution. Ions of the second metal react with platinum and replace platinum atoms on the nanoparticle. Platinum atoms from the edge and corner regions react with the second metal ions quicker than surface atoms from the terraces, due to a greater difference in electrode potential between the platinum atoms at the edge and corner regions, as compared to the second metal in the solution. The platinum nanoparticle may include surface defects, such as steps and kinks, which may also be replaced with atoms of the second metal. In an exemplary embodiment, the platinum nanoparticle is a cathode catalyst in an electro-chemical cell.
    Type: Application
    Filed: May 16, 2008
    Publication date: June 16, 2011
    Applicant: UTC POWER CORPORATION
    Inventors: Minhua Shao, Belabbes Merzougui, Patrick L. Hagans, Susanne M. Opalka
  • Patent number: 7956000
    Abstract: The invention pertains to a process for activating an hydrotreating catalyst comprising a Group VIB metal oxide and a Group VIII metal oxide which process comprises contacting the catalyst with an acid and an organic additive which has a boiling point in the range of 80-500° C. and a solubility in water of at least 5 grams per liter (20° C., atmospheric pressure), optionally followed by drying under such conditions that at least 50% of the additive is maintained in the catalyst. The hydrotreating catalyst may be a fresh hydrotreating catalyst or a used hydrotreating catalyst which has been regenerated.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: June 7, 2011
    Assignees: Albemarle Europe, SPRL, Nippon Ketjen Co., Ltd.
    Inventors: Marcel Adriaan Jansen, Franciscus Wilhelmus Van Houtert, Toshiyuki Ado, Tetsuro Kamo, Naohiro Nishimoto
  • Patent number: 7951741
    Abstract: The present invention pertains to a catalyst composition comprising at least one non-noble Group VIII metal component, at least two Group VIB metal components, and at least about 1 wt. % of a combustible binder material selected from combustible binders and precursors thereof, the Group VIII and Group VIB metal components making up at least about 50 wt. % of the catalyst composition, calculated as oxides. The invention also pertains to a process for preparing the catalyst, to its use in hydroprocessing and to its recycling. The catalyst according to the invention has a higher strength than corresponding binder-free catalysts, and are easier to recycle than catalysts containing a non-combustible binder.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: May 31, 2011
    Assignee: Albemarle Netherlands, B.V.
    Inventor: Sonja Eijsbouts
  • Publication number: 20110120100
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20110107752
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component in a first catalytic layer and a rhodium component in a second catalytic layer and related methods of preparation and use are disclosed. Also disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 2-5% by weight of the second layer, wherein the palladium component is substantially the only platinum group metal component, and a palladium-free third layer comprising a rhodium component supported on a thermostable oxygen storage component which is about 80-99% by weight of the second layer. One or more improved properties are exhibited by the catalyst article.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 12, 2011
    Applicant: BASF Corporation
    Inventors: Michael P. Galligan, Pascaline H. Tran, Keshavaraja Alive, Ye Liu
  • Publication number: 20110094939
    Abstract: The invention pertains to a process for activating an hydrotreating catalyst comprising a Group VIB metal oxide and a Group VIII metal oxide which process comprises contacting the catalyst with an acid and an organic additive which has a boiling point in the range of 80-500° C. and a solubility in water of at least 5 grams per liter (20° C., atmospheric pressure), optionally followed by drying under such conditions that at least 50% of the additive is maintained in the catalyst. The hydrotreating catalyst may be a fresh hydrotreating catalyst or a used hydrotreating catalyst which has been regenerated.
    Type: Application
    Filed: December 21, 2010
    Publication date: April 28, 2011
    Inventors: Marcel Adriaan JANSEN, Franciscus Wilhelmus VAN HOUTERT, Toshiyuki ADO, Tetsuro KAMO, Naohiro NISHIMOTO
  • Patent number: 7927551
    Abstract: There is disclosed a catalytic body with purifying efficiency and smaller pressure loss and its manufacturing method. Provided is a catalytic body wherein a porous honeycomb structure including partition walls defining a plurality of cells acting as fluid passages which extend through the honeycomb structure from one end surface to the other end surface thereof is formed of at least one type of (a) a catalytic substance and (b) a substance including an oxide and at least one type of noble metal carried on the oxide. The catalytic converter is characterized in that (c) 10% or more of a plurality of cells are plugged by plugging parts formed at one ends or in the middles of passages, that (d) the average pore diameter of the honeycomb structure is 10 ?m or more, or that (e) the porosity is 40% or more.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: April 19, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Naomi Noda, Mikio Makino, Shinichi Miwa
  • Patent number: 7922894
    Abstract: The present invention pertains to a process for hydroprocessing a heavy hydrocarbon oil, comprising contacting a heavy hydrocarbon oil in the presence of hydrogen with a mixture of hydroprocessing catalyst I and hydroprocessing catalyst II. The process of the invention combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: April 12, 2011
    Assignees: Albemarle Netherlands, B.V., Nippon Ketjen Co., Ltd.
    Inventors: Frans Lodewijk Plantenga, Katsuhisa Fujita, Satoshi Abe
  • Publication number: 20110081599
    Abstract: Non-platinum (Pt) electrode catalysts for fuel cells, methods of manufacturing the same, and fuel cells including the non-Pt electrode catalysts. Each of the non-Pt electrode catalysts for fuel cells includes at least palladium (Pd) and iridium (Ir), and further includes a metal, oxide of the metal, or mixture thereof for compensating for the activity of Pd and Ir.
    Type: Application
    Filed: October 6, 2010
    Publication date: April 7, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kang-hee LEE, Chan-ho Pak, Kyung-jung Kwon, Seon-ah Jin, Dae-jong Yoo, Jong-won Lee
  • Publication number: 20110082026
    Abstract: The present invention provides a photocatalyst composite in which brittleness and ease of coming-off of a photocatalyst layer are reduced. The photocatalyst composite includes a base material, at least the surface of which is formed of a plastic-deformable solid material; an inorganic particle layer containing inorganic particles disposed on the surface of the base material; and a photocatalyst layer containing a photocatalyst disposed on the surface of the inorganic particle layer; wherein at least one portion of voids in the inorganic particle layer is filled with the solid material, and the surface of the inorganic particle layer is coated with the solid material except for at least one portion.
    Type: Application
    Filed: September 14, 2010
    Publication date: April 7, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshiaki SAKATANI, Kohei Sogabe, Makiko Hara, Hitoshi Takami
  • Publication number: 20110077147
    Abstract: A method of preparing a nanosegregated Pt alloy having enhanced catalytic properties. The method includes providing a sample of Pt and one or more of a transition metal in a substantially inert environment, and annealing the sample in such an environment for a period of time and at a temperature profile to form a nanosegregated Pt alloy having a Pt-skin on a surface. The resulting alloy is characterized by a plurality of compositionally oscillatory atomic layers resulting in an advantageous electronic structure with enhanced catalytic properties.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic
  • Publication number: 20110068045
    Abstract: The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 24, 2011
    Applicant: INTEVEP, S.A.
    Inventors: Pedro Pereira, Guaicaipuro Rivas, José Córdova, Francisco Granadillo, Roger Marzin, Bruno Solari, Luis Zacarías
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Patent number: 7906689
    Abstract: A catalyst composition for use in manufacturing methacrolein by reacting with one of isobutene and t-butanol, the catalyst composition being represented by the formula of: x (Mo12BiaFebCocAdBeOf)/y Z. Mo12BiaFebCocAdBeOf is an oxide compound. Z is a catalyst carrier is one of graphite, boron, silicon, germanium powder, and a mixture thereof. Mo, Bi, Fe, Co, and O are chemical symbols of molybdenum, bismuth, iron, cobalt, and oxygen respectively. A is one of W, V, Ti, Zr, Nb, Ni, and Re. B is one of K, Rb, Cs, Sr, and Ba. The catalyst is adapted to not only enhance the production of methacrolein with high activeness and high selectivity but also effectively control the heat point of the catalyst during the methacrolein manufacturing process to prolong the catalyst life.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 15, 2011
    Inventors: Yan Zhuang, Chunlei Zhang, Xin Wen, Jun Li, Jingming Shao, Peizhang Zhang
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20110028312
    Abstract: There are disclosed a method for recovering both of molybdenum and cobalt at once with a sufficiently high recovery, and a method for producing a composite oxide, etc., using molybdenum and cobalt recovered by the above method. In this method for recovering molybdenum and cobalt, a composite oxide containing molybdenum and cobalt is mixed with an aqueous extracting solution obtained by dissolving at least one of ammonia and an organic base in water, to thereby extract, from the composite oxide, molybdenum and cobalt into an aqueous phase. In the method for producing a composite oxide, the above aqueous phase containing molybdenum and cobalt is dried and is then calcined.
    Type: Application
    Filed: July 19, 2010
    Publication date: February 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naoki MIURA, Eiichi SHIRAISHI
  • Patent number: 7875571
    Abstract: A method for producing a catalyst by contacting a mixed metal oxide catalyst with water, and optionally, an aqueous metal oxide precursor to produce a modified mixed metal oxide, and calcining the modified mixed metal oxide.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: January 25, 2011
    Assignee: Rohm and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Ruozhi Song
  • Publication number: 20110014101
    Abstract: A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
    Type: Application
    Filed: May 8, 2008
    Publication date: January 20, 2011
    Inventors: Tadashi Suzuki, Satoru Kato, Naoki Takahashi, Takaaki Kanazawa, Masanori Yamato, Kazuhiro Yoshimoto, Michihiko Takeuchi, Yuuji Matsuhisa
  • Patent number: 7871513
    Abstract: Described is a catalyst useful in the hydroprocessing of a heavy hydrocarbon feedstock wherein the catalyst comprises a calcined mixture made by calcining a formed particle of a mixture comprising molybdenum trioxide, a nickel compound, and an inorganic oxide material. The catalyst may be made by mixing an inorganic oxide material, molybdenum trioxide, and a nickel compound to form a mixture that is formed into a particle and calcined to provide a calcined mixture. The process involves the hydrodesulfurization and hydroconversion of a heavy hydrocarbon feedstock which process may include the conversion of a portion of the pitch content of the heavy hydrocarbon feedstock and the yielding of a treated product having an enhanced stability as reflected by its P-value.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 18, 2011
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 7863216
    Abstract: The invention provides a discharge gas treatment catalyst which can effectively decreases NOx and SO3 contained in a discharge gas. The discharge gas treatment catalyst, for removing nitrogen oxide and sulfur trioxide from a discharge gas, includes a carrier which is formed of titania-tungsten oxide and which carries ruthenium, and a titania-tungsten oxide-based NOx removal catalyst serving as a substrate which is coated with the carrier. When a discharge gas to which ammonia has been added and which contains SO3 and NOx is brought into contact with the catalyst, decomposition of ammonia is suppressed by ruthenium, and reduction of SO3 and NOx contained in the discharge gas is promoted, whereby SO3 concentration and NOx concentration can be further decreased.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 4, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshiaki Obayashi, Toshiyuki Onishi, Kozo Iida
  • Patent number: 7851401
    Abstract: The invention concerns solids comprising a single tungsten oxide layer on a zirconia support and/or titanium dioxide support, characterized in that the tungsten exhibits tetrahedral co-ordination, before and after calcining. The invention also concerns the method for preparing the solids, and their uses as acid catalysis reactions catalyst.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: December 14, 2010
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Francois Figueras, Nadine Essayem, Cyril Feche, Stephane Loridant, Jorge Palomeque, Georges Gelbard
  • Publication number: 20100310950
    Abstract: A catalyst for a fuel cell, a fuel cell system including the same, and associated methods, the catalyst including a platinum-metal alloy having a face-centered tetragonal structure, and a carrier, wherein the platinum-metal alloy shows a broad peak or a peak having two split tips at a 2? of about 65 to about 75 degrees in an XRD pattern using a Cu—K ? line, and the platinum-metal alloy is supported in the carrier and has an average particle size of about 1.5 to about 5 nm.
    Type: Application
    Filed: January 22, 2010
    Publication date: December 9, 2010
    Inventors: Myoung-Ki Min, Geun-Seok Chai, Hee-Tak Kim, Tae-Yoon Kim, Sang-Il Han, Sung-Yong Cho, Kah-Young Song
  • Publication number: 20100304268
    Abstract: Alloy catalysts have the formula of PtiIrjXk, wherein X represents an element from the group consisting of Ti, Mn, Co, V, Cr, Ni, Cu, Zr, Zn, and Fe. These catalysts can be used as electrocatalysts in fuel cells.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 2, 2010
    Inventors: Tetsuo Kawamura, Lesia Protsailo
  • Publication number: 20100292075
    Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Inventors: Kayo NAKANO, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
  • Publication number: 20100286448
    Abstract: This invention is related to a preparation method of a supported catalyst Mo—O—K-MexOy for the synthesis of methanethiol from H2S-containing syngas. The catalyst comprises of an active component of Mo—O—K-based species, an active promoter and a support denoted as metal (or metals)-carrier. The support is prepared by electroless plating method in such a way that the metal or metals chosen are plated onto the surface of the carrier. Transition metal, especially Fe, Co or Ni are selected to be the plating metal, while SiO2, Al2O3 or TiO2 are selected to be carrier. The catalyst thus prepared is found to be efficient for the synthesis of methanethiol from H2S-containing syngasor carbon oxides/hydrogen mixtures, especially regarding a minor formation of the by-product CO2.
    Type: Application
    Filed: November 28, 2008
    Publication date: November 11, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Yiquan Yang, Yingjuan Hao, Aiping Chen, Qi Wang, Lingmei Yang, Qiaoling Li, Shenjun Dai, Weiping Fang, Jan-Olaf Barth, Christoph Wecbecker, Klaus Hutmacher
  • Patent number: 7824656
    Abstract: The present invention relates to catalysts for the production of hydrogen using the water gas shift reaction and the carbon dioxide reforming of hydrocarbon-containing fuels. The catalysts nickel and/or copper on a ceria/zirconia support, where the support is prepared using a surfactant templating method. The invention also includes processes for producing hydrogen, reactors and hydrogen production systems utilizing these catalysts.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 2, 2010
    Assignee: University of Regina
    Inventors: Raphael Oyom Idem, Prashant Kumar, Yanping Sun
  • Patent number: 7824541
    Abstract: Described is a catalyst and process useful in the hydrodesulfurization of a distillate feedstock to manufacture a low-sulfur distillate product. The catalyst comprises a calcined mixture of inorganic oxide material, a high concentration of a molybdenum component, and a high concentration of a Group VIII metal component. The mixture that is calcined to form the calcined mixture comprises molybdenum trioxide, a Group VIII metal compound, and an inorganic oxide material. The catalyst is made by mixing the aforementioned starting materials and forming therefrom an agglomerate that is calcined to yield the calcined mixture that may be used as the catalyst or catalyst precursor.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 2, 2010
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 7825064
    Abstract: A process for making a porous catalyst, comprises a) providing an aqueous solution containing a nanoparticle precursor, b) forming a composition containing nanoparticles, c) adding a first catalytic component or precursor thereof and a pore-forming agent to the composition containing nanoparticles and allowing the first catalytic component, the pore-forming agent, and the nanoparticles form an organic-inorganic structure, d) removing water from the organic-inorganic structure; and e) removing the pore-forming agent from the organic-inorganic structure so as to yield a porous catalyst.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: November 2, 2010
    Assignee: William Marsh Rice University
    Inventors: Michael S. Wong, Israel E. Wachs, William V. Knowles
  • Publication number: 20100274056
    Abstract: The present invention relates to a process for producing an aliphatic amine, comprising the step of contacting a linear or branched, or cyclic aliphatic alcohol having 6 to 22 carbon atoms with ammonia and hydrogen in the presence of a catalyst formed by supporting at least (A) a ruthenium component produced by hydrolysis of a ruthenium compound on a carrier, or by further supporting, in addition to the component (A), a specific second metal component or a specific third metal component on the carrier. According to the process of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with a high catalytic activity and a high selectivity.
    Type: Application
    Filed: December 21, 2006
    Publication date: October 28, 2010
    Applicant: KAO CORPORATION
    Inventors: Tetsuaki Fukushima, Masaharu Jono, Michio Terasaka
  • Publication number: 20100267973
    Abstract: A method for enhancing the efficiency of a rhenium-promoted epoxidation catalyst is provided. Advantageously, the method may be carried out in situ, i.e., within the epoxidation process, and in fact, may be carried out during production of the desired epoxide. As such, a method for the epoxidation of alkylenes incorporating the efficiency-enhancing method is also provided, as is a method for using the alkylene oxides so produced for the production of 1,2-diols, 1,2-carbonates, 1,2-diol ethers, or alkanolamines.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Albert C. Liu, Liping Zhang
  • Publication number: 20100266478
    Abstract: The present invention provides a metal nano catalyst, a method for preparing the same and a method for controlling the growth types of carbon nanotubes using the same. The metal nano catalyst can be prepared by burning an aqueous metal catalyst derivative comprising Co, Fe, Ni or a combination thereof in the presence of a supporting body precursor.
    Type: Application
    Filed: November 30, 2009
    Publication date: October 21, 2010
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Byeong Yeol KIM, Seung Yong BAE, Young Sil LEE
  • Patent number: 7816299
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7815792
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Leonard, Peter Kokayeff
  • Patent number: 7807600
    Abstract: A catalyst for acrylonitrile synthesis is disclosed which is composed of particles containing silica and a composite oxide including at least molybdenum. When the Mo/Si atomic ratio in bulk composition of the catalyst is represented by A and the Mo/Si atomic ratio in surface composition of the particles is represented by B, B/A is not more than 0.6.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: October 5, 2010
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Seigo Watanabe, Koichi Mizutani, Motoo Yanagita, Jinko Izumi
  • Publication number: 20100248945
    Abstract: The invention relates to a process for preparing bulk metal oxide particles comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles. It also relates to bulk metal hydroprocessing catalysts obtainable by such method.
    Type: Application
    Filed: December 4, 2008
    Publication date: September 30, 2010
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Henk Jan Tromp, Stuart Leon Soled, Sabato Miseo