And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/320)
  • Patent number: 6703343
    Abstract: The lean NOx catalyst includes a substrate, an oxide support material, preferably &ggr;-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The &ggr;-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m2/g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the &ggr;-alumina is prepared by a sol-gel method, with the metal doping of the &ggr;-alumina preferably accomplished using an incipient wetness impregnation technique.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 9, 2004
    Assignee: Caterpillar Inc
    Inventor: Paul W. Park
  • Patent number: 6696388
    Abstract: A gel composition substantially contained within the pores of a solid material for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: February 24, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 6683022
    Abstract: Method for the discontinuous thermal treatment of catalyst material comprising the steps (a) introducing the catalyst material into a reactor, (b) heating the catalyst material, (c) thermally treating the catalyst material in the reactor at the reactor temperature, (d) discharging the catalyst material from the reactor and (e) cooling the catalyst material, wherein the reactor temperature is kept constant during the steps (a) to (e), step (b) is carried out during and/or after step (a), step (e) is carried out during and/or after step (d), and step (c) is carried out after step (b) and before step (e). The method is used primarily for the calcination or activation of catalysts or catalyst supports which are used in polyolefin production.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: January 27, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus De Lange, Michael Kämmerer, Thomas Brauch, Kaspar Evertz, Thomas Letzelter, Peter Kölle, Hans-Jacob Feindt
  • Patent number: 6660683
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: December 9, 2003
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6589908
    Abstract: A method for making alumina having a pore structure characterized by the absence of macropores, no more than 5% of the total pore volume in pores greater than 350 Å, a high pore volume (greater than 0.8 cc/g measured by mercury intrusion) and a bi-modal pore volume distribution character, where the two modes are separated by 10 to 200 Å, and the primary pore mode is larger than the median pore diameter (MPD), calculated either by volume or by surface area, the MPD by volume being itself larger than the MPD by surface area. Alumina made by such process and catalyst made therefrom.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: July 8, 2003
    Assignee: Shell Oil Company
    Inventors: Josiane M. Ginestra, Russell C. Ackerman, Christian G. Michel
  • Publication number: 20030119667
    Abstract: A ferritic stainless steel alloy useful as a substrate for catalytic converter material consists of, by weight: 15-21% Cr, 8-12% Al, 0.01-0.09% Ce, 0.02-0.1% total of REM, and possible minor amounts of further elements, other than the ones mentioned, the balance being Fe with normally occurring impurities. These alloys have managed to combine a high content of Al with a good hot and cold workability.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 26, 2003
    Inventors: Simon Johansson, Bo Rogberg
  • Patent number: 6555496
    Abstract: A microcrystalline boehmite containing additive in a homogeneously dispersed state. Suitable additives are compounds containing elements selected from the group consisting of alkaline earth metals, alkaline metals, rare earth metals, transition metals, actinides, silicon, gallium, boron, titanium, and phosphorus. The microcrystalline boehmite according to the invention may be prepared in several ways. In general, a microcrystalline boehmite precursor and an additive are converted to a microcrystalline boehmite containing the additive in a homogeneously dispersed state. The additive does not contain zirconia or magnesia.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: April 29, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, Gregory Pearson, William Jones
  • Publication number: 20030073574
    Abstract: A process for the production mixed metal oxide containing catalysts comprising the steps of:
    Type: Application
    Filed: October 7, 2002
    Publication date: April 17, 2003
    Inventors: Keld Johansen, Petru Gordes
  • Patent number: 6518218
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Patent number: 6514902
    Abstract: Disclosed is a process for producing an oxide catalyst for use in producing (meth)acrylonitrile from propane or isobutane by ammoxidation in the gaseous phase, the oxide catalyst comprising a compound oxide containing Mo, V and Sb as essential component elements, which process comprises subjecting a solution or slurry, in water and/or an alcohol, of a raw-material mixture comprising a Mo compound, a V compound and an Sb compound as essential raw materials to a specific oxidation treatment using an oxidizing gas and/or an oxidizing liquid before subjecting the solution or slurry to drying and subsequent calcination. Further, also disclosed is a process for producing a base-treated oxide catalyst by treating the above-mentioned oxide catalyst with an aqueous basic solution.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: February 4, 2003
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Tomoya Inoue, Hiroshi Ishida
  • Patent number: 6514901
    Abstract: A process for preparing a catalyst is disclosed. The catalyst is useful for the gas phase oxidation of alkanes to unsaturated aldehydes or carboxylic acids.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: February 4, 2003
    Assignee: Rohm and Haas Company
    Inventors: Manhua Lin, Michael William Linsen
  • Patent number: 6503865
    Abstract: A method of preparing pentafluoroethane wherein chlorine-containing carbon compounds are fluorinated in the presence of chromium catalysts that are in an amorphous state and wherein the main component is chromium compounds with the addition of at least one metal element selected from the group composed of indium, gallium, cobalt, nickel, zinc and aluminum and the average valence of the chromium in said chromium compounds is not less than +3.5 but not more than +5.0. And said chromium catalysts and a preparation method thereof. A method of preparing pentafluoroethane wherein the total yield of chlorofluoroethane by-products can be decreased without significantly deteriorating the generation activity of the pentafluoroethane and compounds which can be recycled in the reaction system. And to provide catalysts for this fluorination and a preparation method thereof.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: January 7, 2003
    Assignee: Daikin Industries Ltd.
    Inventors: Takashi Kanemura, Takashi Shibanuma
  • Patent number: 6489264
    Abstract: A catalyst for oxidation of ammonia is of the general formula (AxByO3z)k (MEmOn)f, wherein: A is a cation of Ca, Sr, Ba, Mg, Be, La or mixtures thereof, B is cations of Mn, Fe, Ni, Co, Cr, Cu, V or mixtures thereof, x=0-2, y=1-2, z=0.8-1.7; MemOn is an aluminum oxide and/or oxide of silicon zirconium, chromium, aluminosilicates, oxides of rare earth elements (REE) or mixtures thereof, m=1-3, n=1-2, k and f are % by weight, with the ratio f/k=0.01-1. The catalyst may be granules of different configuration, including blocks of honeycomb structure. The catalyst is thermally stable, resistant to thermal shocks. There is no water runoff.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: December 3, 2002
    Assignee: Institut Kataliza Imeni G.K.
    Inventors: Lubov Alexandrovna Isupova, Vladislav Alexandrovich Sadykov, Olga Ivanovna Snegurenko, Evgeny Abramovich Brushtein, Tatyana Viktorovna Telyatnikova, Valery Vasilievich Lunin
  • Patent number: 6479691
    Abstract: A catalyst composition represented by the following empirical formula which is useful in production of unsaturated nitrites by ammoxidation: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j wherein F represents at least one element selected from the group consisting of zirconium, lanthanum and cerium, G represents at least one element selected from the group consisting of magnesium, cobalt, manganese and zinc, H represents at least one element selected from the group consisting of vanadium, niobium, tantalum and tungsten, x represents at least one element selected from the group consisting of phosphorus, boron, and tellurium, Y represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, the suffixes a-k, x and y represent a ratio of atoms or atomic groups, and a=0.1-3, b=0.3-15, c=0-20, d=3-8, e=0.2-2, f=0.05-1, e/f>1, g=0-5, h=0-3, k=0.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 12, 2002
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yutaka Sasaki, Kunio Mori, Yoshimi Nakamura, Takao Shimizu, Yuichi Tagawa, Kenichi Miyaki, Seiichi Kawato
  • Patent number: 6475950
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: November 5, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20020073895
    Abstract: A method for continuously calcinating product to form mixed metal oxide powders comprising providing a continuously operated indirectly heated rotary furnace having a heating cavity, introducing raw feedstock including product to be calcined into the heating cavity of the furnace while the heating cavity is maintained at temperature, and maintaining a controlled atmosphere in the heating cavity during the heating of the feedstock, and discharging and recovering the mixed metal oxide powders.
    Type: Application
    Filed: August 13, 2001
    Publication date: June 20, 2002
    Inventors: Raymond E. Barnes, Richard A. Pipoly, Ivan H. Joyce, Javier Garcia Sainz
  • Patent number: 6399530
    Abstract: An acidic amorphous silica-amumina has a large specific surface area and a large pore volume. A carrier complex and a hydrotreating catalyst containing acidic amorphous silica-alumina, in particular a hydrocracking catalyst containing acidic amorphous silica-alumina in combination with a modified zeolite-Y, treats petroleum hydrocarbon materials to produce middle distillates. The amorphous silica-alumina has a SiO2 content of 10-50 wt. %, a specific surface area of 300-600 m2/g, a pore volume of 0.8-1.5 ml/g and an IR acidity of 0.25-0.60 mmol/g. The catalyst shows a relatively high activity and mid-distillate selectivity and can be particularly used in hydrocracking process for producing mid-distillates with a higher yield.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: June 4, 2002
    Assignees: China Petrochemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC
    Inventors: Song Chen, Tingyu Li, Guangwei Cao, Minghua Guan
  • Patent number: 6383974
    Abstract: Hydrorefining catalyst contains 0.1 to 25 wt % in total of at least one hydrogenation active metal element selected from elements of Group 6, Group 8, Group 9, and Group 10 of the Periodic Table, and 0.1 to 3 wt % potassium on a carrier formed of porous inorganic oxide. The concentration distribution of the hydrogenation active metal element is higher in the central part than in the peripheral part of the catalyst, and the concentration distribution of potassium is higher in the peripheral part than in the central part of the catalyst. The pores on the outside surface of the catalyst are not plugged by the metal content of hetero compounds and hetero compounds can be efficiently diffused to inside the catalyst. As a result, long-term retention of a state of high activity is possible.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: May 7, 2002
    Assignee: Japan Energy Corporation
    Inventors: Katsuaki Ishida, Ryutaro Koide, Koichi Matsushita
  • Publication number: 20020032358
    Abstract: A reactive agent for decomposing fluorine compounds comprising alumina and an alkaline earth metal compound; a process for decomposing fluorine compounds, comprising contacting the reactive agent with a fluorine compound at a temperature of 200° C. or more; and a process for manufacturing a semiconductor device, comprising an etching or cleaning and a decomposing using the reactive agent.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 14, 2002
    Applicant: SHOWA DENKO K.K.
    Inventors: Hitoshi Atobe, Toraichi Kaneko, Yuji Hayasaka, Shinichi Yano
  • Publication number: 20020009407
    Abstract: Reticulated ceramic monolithic catalysts and non-poisoning catalyst supports comprising one or more metal oxides of chromium, cobalt, nickel, an alkaline earth, a rare earth, or another sinterable metal oxide that are active in any of various chemical oxidation reactions are disclosed. Methods of making the new reticulated ceramic structures comprising impregnating an organic foam or other pore-templating material are also disclosed. Processes for the catalytic conversion of light hydrocarbons to products comprising carbon monoxide and hydrogen employing reticulated ceramic catalysts are described.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 24, 2002
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Publication number: 20010046942
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: March 15, 2001
    Publication date: November 29, 2001
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 6303538
    Abstract: The present invention discloses metallic fiber boards having catalytic functionality and processes for producing the same. The boards are formed from a mesh of metallic fibers, each fiber having a first layer of an oxide and a second layer of a porous oxide. A catalyst, either disposed on the surface of the second layer, or dispersed within the second layer, provides catalytic functionality to the fiber board. The first layer is produced by thermal oxidation of the metallic fibers, while the second layer and catalyst are produced by thermal decomposition of precursor materials applied to the fiber board while in solution, typically as a spray of atomized droplets. The resulting boards are used to catalyze the combustion of hydrocarbons, especially methane, and particularly in household boilers.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: October 16, 2001
    Assignee: Saes Getters S.p.A.
    Inventors: Luca Toia, Claudio Boffito, Vittorio Ragaini, Stefania Vitali, Claudia L. Bianchi
  • Patent number: 6294500
    Abstract: A process for producing high density polyethylene, the process comprising polymerising ethylene, or copolymerising ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms, in the presence of a catalyst system comprising first and second chromium-based catalysts, the first chromium-based catalyst having been reduced and reoxidised and the second chromium-based catalysts having been activated, fluoridised before or during the activation step, and reduced, the first and second chromium-based catalysts having a pore volume difference of at least 0.8 cc/g.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: September 25, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Patent number: 6291394
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: September 18, 2001
    Assignee: Shell Oil Company
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6274532
    Abstract: A completely metallic catalyst for the oxidation of mixtures in the gaseous phase which contain carbon monoxide, hydrocarbons and/or soot, has a surface doped with a metallic element and is subjected to a second thermal treatment in an oxygen-containing atmosphere.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: August 14, 2001
    Assignee: Krupp VDM GmbH
    Inventors: Wilfried Herda, Ulrich Heubner, Jürgen Koppe, Hartmut Lausch
  • Patent number: 6274109
    Abstract: Carbonyl sulfide and/or hydrogen cyanide contained in a mixed gas are/is converted by contacting the mixed gas with an alkalized chromium oxide-aluminum oxide catalyst in the presence of steam, wherein the mixed gas and the steam at a volume ratio of 0.05≦steam/mixed gas≦0.3 are contacted with the alkalized chromium oxide-aluminum oxide catalyst at a gas hourly space velocity no less than 2000 h−1 at a temperature in the range of 150° C. through 250° C. In this case, the alkalized chromium oxide-aluminum oxide catalyst is set to have a grain size in the range of 1 mm through 4.5 mm. With this arrangement, since the surface area of a catalyst can be increased to a certain degree, the activity of the catalyst is increased to achieve the high processing speed, while since generation of a side reaction can be suppressed, lowering of the conversion rate of COS and/or HCN caused by the side reaction can be suppressed.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: August 14, 2001
    Assignees: JGC Corporation, Sued-Chemie Nissan Catalysts, Inc.
    Inventors: Hideyuki Matsumoto, Shinya Ishigaki, Eiichi Hosoya
  • Patent number: 6274780
    Abstract: A process is disclosed for changing the fluorine content of halogenated hydrocarbons containing from 1 to 6 carbon atoms, in the presence of a multiphase catalyst. The process involves producing the catalyst by heating a single phase solid catalyst precursor having the formula (NH3)6Cr2−xMxF6 (where x is in the range of 0.1 to 1 and M is at least one metal selected from the group consisting of Al, Sc, V, Fe, Ga and In) to about 400° or less to produce a multiphase composition wherein a phase containing crystalline M fluoride is homogeneously dispersed with a phase containing chromium fluoride. Also disclosed are multiphase catalyst compositions consisting essentially of chromium fluoride and a crystalline fluoride of at least one metal selected from the above group (provided the atom percent of Cr is at least equal to the atom percent of the crystalline fluoride metals). Phases of the crystalline fluorides are homogeneously dispersed with phases of the chromium fluoride.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: August 14, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: V. N. Mallikarjuna Rao, Munirpallam A. Subramanian
  • Patent number: 6245708
    Abstract: The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: June 12, 2001
    Assignee: Lehigh University
    Inventors: Israel E. Wachs, Yeping Cai
  • Patent number: 6239066
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals, which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25 Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: May 29, 2001
    Assignee: Shell Oil Company
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6238701
    Abstract: An alumina solid, obtainable by a process comprising the step of contacting in a liquid medium at least one alumina precursor with at least one template comprising a dendrimeric molecular nanosystem a mixture of two or more thereof.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: May 29, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Müller, Wolfgang Paulus, Lukas Häussling
  • Patent number: 6184172
    Abstract: Mixed fluorination catalyst comprising one or more nickel and chromium oxides, halides and/or oxyhalides deposited on a support composed of aluminium fluoride or of a mixture of aluminium fluoride and alumina, characterized in that the weight of nickel/weight of chromium ratio is between 0.08 and 0.25, preferably between 0.1 and 0.2.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: February 6, 2001
    Assignee: Elf Atochem S.A.
    Inventors: Philippe Bonnet, Eric Jorda, Eric Lacroix
  • Patent number: 6183719
    Abstract: An alumina solid is obtainable by a process comprising the step of contacting in a liquid medium at least one alumina precursor with at least one template comprising a membrane lipid or a mixture of two or more thereof.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: February 6, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Müller, Roger Ruetz
  • Patent number: 6153162
    Abstract: A process for the catalytic reduction of NO.sub.x, the reduction taking place in the presence of a catalyst which comprises(a) from 20 to 97 wt % of A.sub.2 O.sub.3,(b) from 1 to 40 wt % of CuO,(c) from 1 to 50 wt % of ZnO,(d) from 1 to 40 wt % of Ag,(e) from 0 to 2 wt % of Pt,(f) from 0 to 20 wt % of oxides of rare earth metals, elements of the 3rd subgroup of the Periodic Table of the Elements or mixtures thereof,based on the total weight of the components (a) to (e), which adds up to 100 wt %, wherein, in each case, up to half the weight of the component (a) may be replaced by Fe.sub.2 O.sub.3, Cr.sub.2 O.sub.3, Ga.sub.2 O.sub.3 or mixtures thereof, of the component (b) by CoO, of the component (c) by MgO, of the component (d) by Au and of the component (e) by Pd, Ru, Os, Ir, Rh, Re or mixtures thereof, is used for reducing NO.sub.x, especially in combustion off-gases, the components (a), (b) and (c) forming a spinel which is doped with the components (d), (e) and (f).
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: November 28, 2000
    Assignees: BASF Aktiengesellschaft, Daimler Benz Aktiengesellschaft
    Inventors: Thomas Fetzer, Bernd Morsbach, Otto Kumberger, Martin Hartweg, Rolf-Dirc Roitzheim, Andrea Seibold, Leonhard Walz
  • Patent number: 6096679
    Abstract: A process for producing a chromium-based catalyst for the production of polyethylene, the process comprising the steps of providing a catalyst support selected from silica, silica-titania and silica-zirconia; reacting the support with one of an aluminium alkyl compound or a chromium salt compound selected from at least one of chromium (III) acetylacetonate, chromium (III) acetate, chromium (III) oxalate and chromium (III) stearate; and thereafter reacting the support with the other of the aluminium alkyl compound or the chromium salt to produce a chromium-impregnated catalyst having a silica-alumina support, the catalyst composition comprising from 0.4 to 1.5 wt % chromium, based on the weight of the chromium-based catalyst and the alumina in the silica-containing support comprising from 0.5 to 4 wt % aluminium in the chromium-based catalyst.
    Type: Grant
    Filed: September 26, 1998
    Date of Patent: August 1, 2000
    Assignee: Fina Research, S.A.
    Inventors: Nicodeme Lonfils, Philippe Bodart, Guy Debras
  • Patent number: 6018088
    Abstract: A method is disclosed for producing branched aliphatic ketones in hydrocarbon mixtures from isoalkanes by a superacid catalyzed formylation-rearrangement reaction. The method can be used to simultaneously isomerize, if necessary, and formylate hydrocarbons in complex hydrocarbon mixtures such as refinery streams, alkylate mixtures, and natural gas liquids. Natural gas liquids of low octane number are upgraded and oxygenated by adding to the natural gas liquids or reactively producing in the liquids branched aliphatic ketones.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: January 25, 2000
    Inventor: George A. Olah
  • Patent number: 5965481
    Abstract: The invention involves the production of a catalyst that contains (1) at least one refractory inorganic oxide support, (2) at least one iron oxide, and (3) at least one cerium oxide, (4) at least one metal A, for example, from Groups VIB, VIIB, VIII, and IB of the Periodic System and, optionally (5) at least one compound of metal B, for example, from Groups IA, IIA, the rare-earths group, and Group IVB of the Periodic System, deposited in the form of a porous layer ("washcoat") on a ceramic or metal substrate:(a) atomizing an aqueous suspension of at least one powder of the refractory inorganic oxide, cerium salt, iron salt, and optionally salt of the metal B; and/or A(b) resuspending the resultant powder and adding any remainder or all of the compound of metal B, as well as, optionally at least one bonding agent and, optionally at least one mineral acid or organic acid;(c) coating a ceramic or metal substrate is coated with the suspension obtained in step (b);(d) calcining the resultant coated substrate;(e)
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: October 12, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Daniel Durand, Gil Mabilon, Isabelle Guibard
  • Patent number: 5962367
    Abstract: A support suitable for catalyst having a surface area in the range of from 80 to 200 m.sup.2 /g, a pore volume of from 0.3 to 0.5 ml/g, a side compression strength of from 70 to 240 N/cm and a pore diameter of from 60 to 200 Angstom units. The support contains from 60% to 100% by weight titania (TiO.sub.2) and from 0% to 40% by weight alumina (Al.sub.2 O.sub.3). The support is produced by raw material of titania. The invention also provides process for producing said support and catalyst employing the same.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: October 5, 1999
    Assignee: Dequing Chemical Industry and Technologies Co., Ltd.
    Inventors: Binglong Shen, Dingyi Li, Yanlai Shen
  • Patent number: 5911966
    Abstract: An alumina solid is obtainable by a process comprising the step of contacting in a liquid medium at least one alumina precursor with at least one template comprising a membrane lipid or a mixture of two or more thereof.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: June 15, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Muller, Roger Ruetz
  • Patent number: 5910608
    Abstract: A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 .mu.m, and having a specific catalytic surface area of from 20 to 30 m.sup.2 /g and an abrasion of <10, preferably <5, particularly preferably <0,5, % by weight in the turntable abrasion test. The catalyst is useful in the preparation of acrylic acid by the gas phase oxidation of acroleins.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: June 8, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 5856263
    Abstract: This invention is directed to an improved exhaust gas catalyst for the combustion of gaseous waste products from internal combustion engines, particularly automobiles, and industrial stationary source engines along with a method of making the same. The exhaust gas catalyst comprises a substantially pure alpha-alumina carrier and at least one noble metal selected from platinum, palladium and mixtures thereof, and has excellent stability over long-term use.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: January 5, 1999
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Madan Mohan Bhasin, Michael Scott Jarrell
  • Patent number: 5851948
    Abstract: A catalyst for effective oxidation of volatile organic compounds (VOCs) includes 0.010-2 wt. % of a noble metal such as platinum in combination with 0.5-15 wt. % of a transition metal oxide such as chromium oxide (Cr.sub.2 O.sub.3), with at least the noble metal being deposited as a thin outer layer or shell not exceeding 0.10 mm thickness on a porous inert support such as alumina or silica having surface area of 10-400 m.sup.2 /g. The catalyst is made by adding the transition metal oxide such as chromium oxide (Cr.sub.2 O.sub.3) to the support material particles, and then subsequently mixing a solution of ammonium platinum nitrate with a suitable carrier liquid so as to form a "cluster" structure on the support material and which limits penetration of the active noble metal into the porous support, then drying, reducing, and calcining the metals-loaded support material.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: December 22, 1998
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Karl T. Chuang, Mingqian Zhang, Bing Zhou
  • Patent number: 5846507
    Abstract: This invention relates to a catalyst for ammonia synthesis. The main phase of the catalyst is a non-stoichiometric ferrous oxide expressed as Fe.sub.1-x O, which is structurally in a Wustite crystal phase form having the rock salt face-centered cubic lattice with lattice paracueter of 0.427-0.433 nm. This catalyst, which has quick reduction rate and high activity, and remarkably lowers the reaction temperature, is especially applicable as an ideal low-temperature, low-pressure ammonia synthesis catalsyt and can be widely used in ammonia synthesis industry.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: December 8, 1998
    Assignee: Zhejiang University of Technology
    Inventors: Huazhang Liu, Ruyu Xu, Zurong Jiang, Zhangneng Hu, Yanying Li, Xiaonian Li
  • Patent number: 5834394
    Abstract: A catalyst for ammoxidation of propylene to acrylonitrile, comprisinga) a catalytic composition represented by the following general formula:A.sub.a B.sub.b C.sub.c D.sub.d Na.sub.e Fe.sub.f Bi.sub.g Mo.sub.h O.sub.xwhereinA represents K, Rb, Cs, Tl, or a mixture thereof,B represents Mn, Mg, Sr, Ca, Ba, or a mixture thereof,C represents P, As, B, Sb, Cr, W, V, or a mixture thereof, andD represents one of the following groups:1) Ni alone,2) Co alone,3) Ni and one selected from Li, Pr, Nd, or a mixture thereof,4) Co and one selected from Li, Pr, Nd, or a mixture thereof,5) Ni, Co and one selected from Li, Pr, Nd, or a mixture thereof, anda=0.001.about.2.0,b=0.about.4.5,c=0.01.about.8.0,d=0.01.about.22.0,e=0.01.about.0.7,f=0.01.about.8.0,g=0.01.about.6.0,h=8.about.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: November 10, 1998
    Assignees: China-Petro-Chemical Corporation, Shanghai Research Institute of Petrochemical Engineering Sinopec
    Inventors: Xin Chen, Lianghua Wu
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5759949
    Abstract: A catalyst for use in an oxidation reaction comprises a porous alumina support having captured thereon a complex comprising gold, a transition metal selected from cobalt and manganese, and the alumina, the concentration of gold on the support being less than 2 percent by mass of the catalyst, and the atomic ratio of gold to transition metal being in the range 1:30 to 1:200. The oxidation reaction may be the oxidation of carbon monoxide or a hydrocarbon.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: June 2, 1998
    Inventors: Bojidara Grigorova, Atanas Palazov, John Mellor, James Anthony Jude Tumilty, Anthony Harold Gafin
  • Patent number: 5739075
    Abstract: This invention relates to a process for the preparation of a catalyst suitable for the production of ethylene oxide which process comprises depositing a promoting amount of a salt of a rare earth metal and a promoting amount of a salt of an alkaline earth metal and/or a salt of a Group VIII transition metal on a porous, refractory support, calcining the support, and thereafter depositing a catalytically effective amount of silver, a promoting amount of alkali metal, and optionally, a promoting amount of rhenium and/or a promoting amount of a rhenium co-promoter selected from sulfur, molybdenum, tungsten, chromium, phosphorus, boron and mixtures thereof, on the support, and subsequently drying the support.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: April 14, 1998
    Assignee: Shell Oil Company
    Inventor: Marek Matusz
  • Patent number: 5728644
    Abstract: The present invention is directed toward a catalyst composition comprising a catalyst prepared by a process comprising: (a) impregnating an oxide precursor selected from the group consisting of rare earth oxide precursors, yttria precursors and mixtures thereof, onto an inorganic refractory oxide support; (b) drying said support at a temperature of about 100.degree. to about 120.degree. C. followed by calcining said support at a temperature of about 400.degree. to about 600.degree. C.; and (c) compositing or depositing on said support of step (b), a catalyst precursor salt represented by (ML)(Mo.sub.y W.sub.1-y O.sub.4).sub.a wherein M comprises Cr and/or one or more divalent promoter metals selected from the group consisting of Mn, Fe, Co, Ni, Cu, Zn and mixtures thereof, wherein y is any value ranging from 0 to 1, and wherein L is one or more neutral, nitrogen-containing ligands at least one of which is a chelating polydentate ligand; a=1 when chromium is not one of the promoter metals and 0.5.ltoreq.a.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: March 17, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Teh Chung Ho, Stuart Leon Soled, Sabato Miseo, Gary Brice Mc Vicker, Michel Daage, Viktor Buchholz
  • Patent number: 5728643
    Abstract: The present invention provides an NO.sub.x decomposition catalyst which can decompose NO.sub.x in exhaust gas to decrease the amount of NO.sub.x in exhaust gas and is improved in durability through suppression of thermal decomposition thereof, and an exhaust gas purifier wherein said catalyst is used. This NO.sub.x decomposition catalyst is a compound having a brownmillerite type structure represented by the general formula: A.sub.3-X B.sub.X C.sub.4-Y D.sub.Y O.sub.Z, the carbon content of which compound may be at most 1.25 wt. %. This NO.sub.x decomposition catalyst can be used in an exhaust gas purifier applicable to an internal combustion engine.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: March 17, 1998
    Assignee: Isuzu Ceramics Research Institute Co., Ltd.
    Inventors: Isao Naitoh, Kazuo Ohsumi
  • Patent number: 5668073
    Abstract: The present invention provides a detergent composition comprising a quaternary ammonium compound of formula: R.sub.1 R.sub.2 R.sub.3 R.sub.4 N.sup.+ X.sup.-,wherein R.sub.1 is C.sub.8 -C.sub.16 alkyl, each of R.sub.2, R.sub.3 and R.sub.4 is independently C.sub.1 -C.sub.4 alkyl or hydroxy alkyl, benzyl or --(C.sub.2 H.sub.40).sub.x H where x has a value from 2 to 5, not more of R.sub.2, R.sub.3 or R.sub.4 being benzyl, and X is an anion, and a cellulase characterized in that said cellulase provides at least 10% removal of immobilized radio-active labelled carboxymethylcellulose according to the CMC-method at 25.times.10.sup.-6 % by weight of cellulase protein in the laundry test solution. According to the present invention, a preferred cellulase consists of a homogeneous endoglucanase component which is immunoreactive with a monoclonal antibody raised against a partially purified=43 kD cellulase derived from Humicola insolens DM 1800.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: September 16, 1997
    Assignee: The Procter & Gamble Company
    Inventors: Andre Christian Convents, Alfred Busch, Andre Cesar Baeck
  • Patent number: 5656567
    Abstract: A catalyst unit (16), in which a quantity of a relatively expensive material such as platinum is replaced by a greater quantity of a relatively inexpensive material such as palladium. Thus, material cost saved by "tailoring" a pack is used to pay for a large quantity of a cheaper material. Although the cheaper material is generally less intrinsically efficient than the expensive material, a sufficient additional amount of the cheaper material can be used to more than compensate for this lack of efficiency. Thus, a catalytic pack of high catalytic efficiency, low material cost, low metal loss and long run duration can be produced.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: August 12, 1997
    Assignee: PGP Industries, Inc.
    Inventor: Alan Edward Heywood