Of Chromium Patents (Class 502/319)
-
Patent number: 11377541Abstract: Ethylene-based polymers having a density of 0.952 to 0.965 g/cm3, a high load melt index (HLMI) from 5 to 25 g/10 min, a weight-average molecular weight from 275,000 to 450,000 g/mol, a number-average molecular weight from 15,000 to 40,000 g/mol, a viscosity at HLMI from 1400 to 4000 Pa-sec, and a tangent delta at 0.1 sec?1 from 0.65 to 0.98 degrees. These polymers have the processability of chromium-based resins, but with improved stress crack resistance, and can be used in large-part blow molding applications.Type: GrantFiled: July 26, 2019Date of Patent: July 5, 2022Assignee: Chevron Phillips Chemical Company LPInventors: Carlos A. Cruz, Yongwoo Inn, Justin Lumbley, Brandy Rutledge-Ryal, John R. Rathman, Jennifer L. Hicks, Jay M. Chaffin
-
Patent number: 11072527Abstract: The method for producing chlorine by oxidation of hydrogen chloride with oxygen in the presence of a catalyst in a fixed-bed reactor, wherein [I] a material containing hydrogen chloride and oxygen is allowed to contact a catalyst in a temperature range of 280 to 370° C., and [II] the material containing hydrogen chloride and oxygen has an oxygen concentration of 45 to 75 vol %.Type: GrantFiled: November 29, 2017Date of Patent: July 27, 2021Assignee: MITSUI CHEMICALS, INC.Inventors: Masami Murakami, Hideharu Kuwamoto, Kenji Iwata
-
Patent number: 9550841Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.Type: GrantFiled: February 27, 2015Date of Patent: January 24, 2017Assignee: Chevron Phillips Chemical Company LPInventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
-
Publication number: 20150148220Abstract: Process for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems is disclosed. In one embodiment, disclosed ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing process may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver. Such conversion may prevent corrosion formation, such as red color corrosion within ZPGM catalyst system. An embodiment of the disclosed process may include a reducing agent, which may be present in exhaust conditions, which may convert hexavalent chromium compounds into trivalent chromium compounds as well as produce metallic catalyst, such as silver.Type: ApplicationFiled: January 28, 2015Publication date: May 28, 2015Applicant: CDTiInventor: Zahra Nazarpoor
-
Patent number: 8932977Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.Type: GrantFiled: June 24, 2011Date of Patent: January 13, 2015Assignee: Rutgers, The State University of New JerseyInventors: G. Charles Dismukes, Martha Greenblatt
-
Patent number: 8921251Abstract: The invention relates to the field of producing polymers and copolymers of olefin oligomers produced by a trimerization reaction of olefin monomers. There is disclosed a process which comprises producing olefin oligomers with the aid of a trimerization catalyst system prepared using UHF irradiation for activating individual components of the trimerization catalyst system. The use of the trimerization catalyst system thus improved and having increased activity provides for increased effectiveness in the production of olefin oligomers from ethylene or other olefin monomers, inter alia, at a low pressure of ethylene. The olefin oligomers thus produced are then polymerized or copolymerized using processes known in the art. The technical effect consists in increasing the effectiveness of the production of olefin oligomers which are then used in a polymerization or copolymerization reaction.Type: GrantFiled: January 28, 2011Date of Patent: December 30, 2014Assignee: Open Joint Stock Company “Sibur Holding”Inventors: Timur Mikhailovich Zilbershtein, Maxim Vladimirovich Lipskikh, Alexei Alexandrovich Nosikov, Georgy Viktorovich Nesyn
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Patent number: 8865614Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.Type: GrantFiled: February 28, 2013Date of Patent: October 21, 2014Assignee: BASF SEInventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
-
Patent number: 8852518Abstract: The present invention is to provide a catalyst for removing nitrogen oxides which is capable of keeping sufficient denitrification performance, i.e., a high removal rate of nitrogen oxides in exhaust gas having a high NO2 content especially under conditions where the ratio of NO2/NO in exhaust gas is 1 or higher, a catalyst molded product therefor, and an exhaust gas treating method. The catalyst is designed for removing nitrogen oxides, which is used to denitrify exhaust gas containing nitrogen oxides having a high NO2 content, which comprises: at least one kind of oxide selected from the group consisting of copper oxides, chromium oxides, and iron oxides as a component for reducing NO2 to NO; and which further comprises: at least one kind of titanium oxide; at least one kind of tungsten oxide; and at least one kind of vanadium oxide as components for reducing NO to N2.Type: GrantFiled: May 8, 2008Date of Patent: October 7, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Masashi Kiyosawa, Masanori Demoto
-
Patent number: 8846834Abstract: Mineral oil is added to a supported chromium catalyst in amounts which maintain a free flowing particulate material. Chromium catalysts so treated, provide polyethylene in a gas phase ethylene polymerization process with reduced reactor fouling or static.Type: GrantFiled: April 30, 2012Date of Patent: September 30, 2014Assignee: NOVA Chemicals (International) S.A.Inventors: Xiaoliang Gao, Patrick Drew Evans
-
Publication number: 20140284521Abstract: This invention provides a CO2 desorption catalyst that has an excellent CO2 desorption activity and that can be used to replace metal filler.Type: ApplicationFiled: November 22, 2012Publication date: September 25, 2014Applicant: THE KANSAI ELECTRIC POWER CO., INC.Inventors: Hiroshi Deguchi, Tsunenori Watanabe, Yasuyuki Yagi
-
Patent number: 8835347Abstract: Disclosed are dehydrogenation catalyst composites and methods of making the dehydrogenation catalyst composites. The dehydrogenation catalyst composites contain alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide. Also disclosed are methods of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, lithium oxide, alkaline earth metal oxide, chromium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.Type: GrantFiled: June 5, 2009Date of Patent: September 16, 2014Assignee: BASF CorporationInventors: Wolfgang Ruettinger, Michael Joseph Breen, Richard Jacubinas, Saeed Alerasool
-
Patent number: 8765634Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.Type: GrantFiled: October 11, 2011Date of Patent: July 1, 2014Assignee: BASF SEInventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
-
Patent number: 8753999Abstract: A catalyst for selective oxidation of hydrocarbons relative to carbon monoxide includes a mixed oxide based on the compound Ce0.1-0.5Ti0.2-0.8Cr0.1-0.5Ox, wherein x is (the total of the valences of the metals)/2. Preferably, the mixed oxide is fixed as a coating on a molded body or less than 0.5 wt. % precious metal is doped to the mixed oxide. Oxidizable exhaust-gas components are oxidized for exhaust-gas purification by a mixed oxide based on the compound Ce0.1-0.5Ti0.2-0.8Cr0.1-0.5Ox as the catalyst. Preferably, hydrocarbons are preferentially oxidized relative to carbon monoxides or nitrogen oxides. For producing an oxidation catalyst for internal combustion engines, a mixed oxide made of cerium oxide, titanium oxide, chromium oxide, and optionally other metal oxides is fixed to a metallic or oxide or carbide, high temperature-stable molded body or an oxide ceramic, wherein the oxide ceramic is fixed to a molded body.Type: GrantFiled: July 8, 2009Date of Patent: June 17, 2014Assignee: Heraeus Precious Metals GmbH & Co. KGInventors: Uwe Endruschat, Ansgar Wille, Prasanna Rajagopalan
-
Publication number: 20140140904Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.Type: ApplicationFiled: July 23, 2013Publication date: May 22, 2014Applicant: National Applied Research LaboratoriesInventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
-
Patent number: 8697599Abstract: A method comprising (a) contacting a support and a chromium-containing compound to form chromium-containing support, (b) heat treating the chromium-containing support in an oxidizing atmosphere to form a treated support, (c) contacting the treated support with carbon monoxide to form a CO-contacted support, and (d) contacting the CO-contacted support with hydrogen to form a catalyst. A method comprising oxidizing a chromium-treated support to form a polymerization catalyst, contacting the polymerization catalyst with carbon monoxide to form a reduced polymerization catalyst, contacting the reduced polymerization catalyst with hydrogen to form an activated polymerization catalyst, and contacting the activated polymerization catalyst with ethylene in a reaction zone under suitable reaction conditions to form a random copolymer.Type: GrantFiled: February 17, 2011Date of Patent: April 15, 2014Assignee: Chevron Phillips Chemical Company LPInventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins, Stephen M. Wharry
-
Publication number: 20140087937Abstract: A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.Type: ApplicationFiled: September 25, 2013Publication date: March 27, 2014Applicant: National Yunlin University of Science & TechnologyInventors: Bo-Tau Liu, Cheng-Hsien Hsieh, De-Hua Wang
-
Patent number: 8663567Abstract: The present invention is to provide a catalyst for removing nitrogen oxides which is capable of keeping sufficient denitrification performance, i.e., a high removal rate of nitrogen oxides in exhaust gas having a high NO2 content especially under conditions where the ratio of NO2/NO in exhaust gas is 1 or higher, a catalyst molded product therefor, and an exhaust gas treating method. The catalyst is designed for removing nitrogen oxides, which is used to denitrify exhaust gas containing nitrogen oxides having a high NO2 content, which comprises: at least one kind of oxide selected from the group consisting of copper oxides, chromium oxides, and iron oxides as a component for reducing NO2 to NO; and which further comprises: at least one kind of titanium oxide; at least one kind of tungsten oxide; and at least one kind of vanadium oxide as components for reducing NO to N2.Type: GrantFiled: October 24, 2011Date of Patent: March 4, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Masashi Kiyosawa, Masanori Demoto
-
Patent number: 8653208Abstract: A process for preparing a catalyst, and catalysts prepared thereby. The process includes selecting a catalyst support and mixing it with one or more chromium containing compounds oxidizable to a Cr+6 state or already in a Cr+6 state, and with one or more transition metal catalyst component, and calcining the catalyst support while oxidizing any chromium containing compound to a Cr+6 state, and spray drying the catalyst support to form catalyst particles. The catalyst supports are characterized by a surface area greater than 50 m2/gram and a pore volume greater than 0.5 cc/gram at the time of mixing the catalyst support with the chromium containing compound.Type: GrantFiled: May 18, 2012Date of Patent: February 18, 2014Assignee: Union Carbide Chemicals & Plastics Technology LLCInventor: Robert James Jorgensen
-
Patent number: 8648005Abstract: The present invention provides a method of preparing the copper-containing hydrogenation catalyst having high activity by liquid phase reduction without decreasing purity of the solvent and a method for efficiently producing an alcohol. The present invention provides the method of preparing the copper-containing hydrogenation catalyst, including reducing a molded precursor of the copper-containing hydrogenation catalyst by supplying hydrogen gas or a mixture of hydrogen gas with an inert gas at a temperature of 50 to 150° C. in the presence of a solvent to obtain the copper-containing hydrogenation catalyst, wherein the reduction is conducted at an average reduction velocity of the copper-containing hydrogenation catalyst of not more than 3.0% by weight/hour.Type: GrantFiled: September 10, 2009Date of Patent: February 11, 2014Assignee: Kao CorporationInventors: Toru Sakamoto, Shoji Hasegawa
-
Patent number: 8633131Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.Type: GrantFiled: October 29, 2010Date of Patent: January 21, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
-
Patent number: 8614161Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.Type: GrantFiled: May 16, 2011Date of Patent: December 24, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
-
Patent number: 8603938Abstract: The present invention provides the method for preparing a catalyst including the following steps 1 and 2, and the method for producing an alcohol including preparing a catalyst by the method and subjecting a carboxylic acid or a carboxylic acid ester to catalytic reduction with hydrogen in the presence of the prepared catalyst: step 1: immersing a molded precursor of a catalyst containing metal oxide in a solvent, step 2: supplying hydrogen gas or a mixture of hydrogen gas with an inert gas to a catalyst layer in the presence of a solvent to reduce the catalyst precursor prepared in the step 1.Type: GrantFiled: September 10, 2009Date of Patent: December 10, 2013Assignee: Kao CorporationInventors: Toru Sakamoto, Taku Mimura
-
Publication number: 20130324393Abstract: To provide a novel visible light-responsive photocatalyst or tungsten oxide visible light-responsive semiconductor improved in environmental resistance under an alkaline condition. The tungsten oxide visible light-responsive semiconductor unstable under an alkaline condition is improved in environmental resistance without losing photocatalytic function thereof by adding thereto at least one element selected from the group consisting of copper, tantalum, niobium, lanthanum, bismuth, calcium, chromium, manganese and zinc. The obtained environmental resistant visible light-responsive photocatalyst is subjected to an alkaline treatment to thereby be improved in photocatalytic activity.Type: ApplicationFiled: February 15, 2012Publication date: December 5, 2013Inventors: Kazuhiro Sayama, Yoshinari Konishi
-
Patent number: 8563460Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: GrantFiled: August 24, 2009Date of Patent: October 22, 2013Assignee: Johnson Matthey PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 8557728Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.Type: GrantFiled: August 24, 2009Date of Patent: October 15, 2013Assignee: Johnson Matthey PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 8557729Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.Type: GrantFiled: August 24, 2009Date of Patent: October 15, 2013Assignee: Johnson Matthey PLCInventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 8546634Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.Type: GrantFiled: September 29, 2010Date of Patent: October 1, 2013Assignee: Asahi Kasei Chemicals CorporationInventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
-
Publication number: 20130252809Abstract: The instant invention relates to an activation of a polymerization catalyst precursor by heat treatment comprising a support material and a catalyst precursor deposited thereon in a fluidized bed activator and to the use of the activated polymerization catalyst in the manufacture of polyolefins. The activation involves heat treatment in the presence of oxygen. After that activation the oxygen in the activator is replaced by inert gas via flushing until the fluidization gas ermerging from the activator comprises oxygen in a maximum amount of up to 5 ppm. The catalyst prepared by that method is improved with respect to prevent reactor fouling during gas-phase polymerization or slurry polymerization either in stirred vessel or loop.Type: ApplicationFiled: November 29, 2011Publication date: September 26, 2013Inventors: Manfred Hecker, Paulus De Lange, Rainer Karer
-
Publication number: 20130244870Abstract: The invention relates generally to a catalyst activator, and in particular to a catalyst activator for heat conditioning a catalyst, comprising: a) a vessel for containing a catalyst charge having an internal diameter of at least 1.2 metres and/or an internal volume of at least 5 m3; b) a fluidisation grid plate disposed in said vessel, said fluidisation grid plate and having an upper major surface and a lower major surface; c) an array of generally conical depressions in said upper major surface that overlap by less than 17%; and d) an array of holes perforating said fluidisation grid plate, said holes extending from at least some of said generally conical depressions through said lower surface.Type: ApplicationFiled: November 29, 2011Publication date: September 19, 2013Applicant: INEOS EUROPE AGInventors: Alex King, Stephen Kevin Lee, Brent R. Walworth
-
Patent number: 8524631Abstract: A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.Type: GrantFiled: May 9, 2008Date of Patent: September 3, 2013Assignee: SDCmaterials, Inc.Inventor: Maximilian A. Biberger
-
Patent number: 8507403Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.Type: GrantFiled: June 27, 2008Date of Patent: August 13, 2013Assignee: Cabot CorporationInventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
-
Patent number: 8506912Abstract: A nickel-based catalyst is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle exhausts. The catalyst is impregnated directly onto a carrier which is non-reactive with nickel. The nickel is contained on said carrier at a loading of between about 2 to about 20 wt %. When used in a vehicle exhaust gas treatment system, the catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts.Type: GrantFiled: February 7, 2012Date of Patent: August 13, 2013Assignee: Ford Global Technologies, LLCInventors: Jeffrey Scott Hepburn, Hungwen Jen, Eva Thanasiu
-
Publication number: 20130203947Abstract: The present invention relates to a process for the activation of a supported chromium oxide based catalyst.Type: ApplicationFiled: October 5, 2011Publication date: August 8, 2013Applicant: INEOS COMMERCIAL SERVICES UK LIMITEDInventors: Christophe Moineau, Stephan Detournay
-
Publication number: 20130178670Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises an extruded modified support, and a precious metal. The processes for making the catalysts comprises modifying the catalyst, extruding the catalyst, and impregnating the precious metal onto the catalyst.Type: ApplicationFiled: January 4, 2013Publication date: July 11, 2013Applicant: Celanese International CorporationInventor: Celanese International Corporation
-
Patent number: 8481451Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.Type: GrantFiled: June 4, 2010Date of Patent: July 9, 2013Assignee: LG Chem, Ltd.Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
-
Patent number: 8481450Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.Type: GrantFiled: March 9, 2011Date of Patent: July 9, 2013Assignee: Shell Oil CompanyInventor: Opinder Kishan Bhan
-
Patent number: 8481448Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.Type: GrantFiled: July 19, 2010Date of Patent: July 9, 2013Assignee: Saudi Basic Industries CorporationInventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
-
Patent number: 8475684Abstract: A composite oxide for a hydrocarbon reforming catalyst which maintains the catalytic activity at a high level over a long period of time, a process for producing the catalyst, and a process for producing syngas using the catalyst, are provided. The composite oxide for a hydrocarbon reforming catalyst is obtained by a process including preparing a mixed solution for impregnation which contains catalytic active components of Co, or Co and Ni, one or more oxidation resistance enhancing components selected from the elements of Group 3B and the elements of Group 6A of the Periodic Table, and one or more additive metal components selected from Ca and Mg; impregnating a carrier formed from a porous molded body selected from magnesia and a composite of magnesia and calcia, with the mixed solution for impregnation; drying the impregnated carrier; and calcining the dried carrier in an oxidizing atmosphere.Type: GrantFiled: July 17, 2009Date of Patent: July 2, 2013Assignee: Japan Petroleum Exploration Co., Ltd.Inventor: Toshiya Wakatsuki
-
Patent number: 8475921Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.Type: GrantFiled: July 20, 2006Date of Patent: July 2, 2013Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
-
Publication number: 20130156679Abstract: A first layer of a catalyst material is formed on a substrate and heat treated to form a first plurality of nanoparticles. A second layer of a catalyst material is then formed over the substrate and the first plurality of nanoparticles and heat treated to form a second plurality of nanoparticles. The first layer of nanoparticles is advantageously not affected by the deposition or heat treatment of the second layer of catalyst material, for example being pinned or immobilised, optionally by oxidation, before formation of the second layer.Type: ApplicationFiled: July 19, 2011Publication date: June 20, 2013Applicant: CAMBRIDGE ENTERPRISE LIMITEDInventors: John Robertson, C. Santiago Esconjauregui
-
Patent number: 8461074Abstract: Coated catalysts comprising a catalytically active multimetal oxide comprising molybdenum. The coated catalyst comprises a support body, a first layer and a second layer. The first layer comprises a molybdenum oxide or a precursor compound which forms molybdenum oxide. The second layer comprises a multimetal oxide comprising molybdenum and at least one further metal.Type: GrantFiled: April 8, 2009Date of Patent: June 11, 2013Assignee: BASF SEInventors: Alexander Czaja, Martin Kraus
-
Patent number: 8435918Abstract: Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.Type: GrantFiled: March 15, 2007Date of Patent: May 7, 2013Assignee: University of Utah Research FoundationInventors: Edward M. Eyring, Richard D. Ernst, Gregory C. Turpin, Brian C. Dunn
-
Patent number: 8435923Abstract: Compositions, materials incorporating the compositions, and methods of use thereof, for the protection and/or decontamination of contaminants are disclosed.Type: GrantFiled: March 29, 2007Date of Patent: May 7, 2013Assignee: Emory UniversityInventors: Nelya Okun, Craig Hill, Zhen Luo
-
Patent number: 8415268Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.Type: GrantFiled: June 30, 2009Date of Patent: April 9, 2013Assignee: BASF SEInventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
-
Patent number: 8404204Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.Type: GrantFiled: March 31, 2008Date of Patent: March 26, 2013Assignee: Rockwood Italia SpAInventors: Marino Sergi, Christian Egger
-
Patent number: 8372771Abstract: A system and method for activating chromium catalyst, including: increasing temperature of a chromium catalyst at a first rate for a first period of time to a first temperature; and increasing temperature of the chromium catalyst at a second rate for a second period of time from the first temperature to a second temperature, wherein the first rate is greater than the second rate, and wherein the first period precedes the second period.Type: GrantFiled: February 16, 2010Date of Patent: February 12, 2013Assignee: Chevrton Phillips Chemical Company LPInventors: Elizabeth A. Benham, Max P. McDaniel
-
Patent number: 8372777Abstract: Method of contacting a hydrocarbon feed with a catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 340 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ? or the catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta.Type: GrantFiled: March 22, 2012Date of Patent: February 12, 2013Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 8361924Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.Type: GrantFiled: August 2, 2011Date of Patent: January 29, 2013Assignee: Sony CorporationInventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
-
Patent number: 8357625Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.Type: GrantFiled: June 18, 2009Date of Patent: January 22, 2013Assignee: Mitsubishi Gas Chemical Company, Inc.Inventor: Atsushi Okamoto