And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/332)
  • Patent number: 7923409
    Abstract: A catalyst that can be used for the production of hydrogen from hydrocarbon fuels in steam reforming processes contains an active metal of, e.g., at least one of Ir, Pt and Pd, on a catalyst support of, e.g., at least one of monoclinic zirconia and an alkaline-earth metal hexaaluminate. The catalyst exhibits improved activity, stability in both air and reducing atmospheres, and sulfur tolerance.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: April 12, 2011
    Assignees: SUD-Chemie Inc., L'Air Liquide Societe Anonyme Pour l'Etude et l'Exploitations des Procedes Georges Claude
    Inventors: Franklin D. Lomax, Jr., John Lettow, Aaron L. Wagner, Jon P. Wagner, Duane Myers
  • Patent number: 7923407
    Abstract: It is an object of the present invention to provide a catalyst for the exhaust gas purification having excellent ignition performance and NOx purification performance. The present invention provides a catalyst for the exhaust gas purification which comprises a catalytically active component (I) having palladium and barium supported on a refractory inorganic oxide (A); and a catalytically active component (II) having at least either of rhodium and platinum on a refractory inorganic oxide (B), a method for the production thereof, and a method for purifying an exhaust gas using such a catalyst.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: April 12, 2011
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventor: Hideki Goto
  • Patent number: 7923408
    Abstract: Diesel particulate filter that can lower the particulate matter (PM) combustion start temperature and use material containing silicon (Si) for a carrier. The carrier, which has a filter function, is allowed to support a perovskite-type complex oxide expressed by formula (1) as follows, wherein 0<x<0.7 and 0?y?1: formula (1)=La1-xBaxMnyFe1-yO3.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: April 12, 2011
    Assignees: Mitsubishi Jidosha Kogyo Kabushiki Kaisha, Dowa Electronics Materials Co., Ltd.
    Inventors: Masashi Takahashi, Hiroshi Tanada, Takuya Yano
  • Patent number: 7923615
    Abstract: The present invention relates to a catalyst system for the selective conversion of hydrocarbons into multi-walled carbon nanotubes and hydrogen comprising a compound of the formula: (Ni,Co)FeyOz(Al2O3)w wherein ‘y’ represents the molar fraction of Fe relative to Co and Ni and wherein 0.11?y?9.0, 1.12?z?14.5, and 1.5?w?64.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: April 12, 2011
    Assignee: Nanocyl S.A.
    Inventors: Ricardo Prada Silvy, Christophe Pirlot, Benedicte Culot
  • Patent number: 7919431
    Abstract: A composition and method for preparation of a catalyst for the liquid phase selective hydrogenation of alkynes to alkenes with high selectivity to alkenes relative to alkanes, high alkyne conversion, and sustained catalytic activity comprising a Group VIII metal and a Group IB, Group IIB, Group IIIA, and/or Group VIIB promoter on a particulate support.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 5, 2011
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Patent number: 7919424
    Abstract: Disclosed herein are a platinum-based catalyst for oxidation/reduction reactions and the use thereof. The platinum-based catalyst is prepared by loading a catalyst composition comprising a water soluble salt of at least one metal selected from among cerium (Ce), zirconium (Zr) and rhenium (Re), on a support comprising at least one selected from among alumina, silica and titania. The disclosed catalyst can be prepared in a simple manner without any particular limitation as to the kind of usable water soluble platinum salt, and when it is applied to various oxidation reactions, including water gas shift reactions of carbon monoxide, three-way catalytic reactions, and selective oxidation reactions of carbon monoxide, and to reduction reactions, such as reactions of removing nitrogen oxide (NOx), it will show excellent catalytic activity.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 5, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Byong Sung Kwak, Young Seek Yoon, Jin Hong Kim, Mee Sook Lim
  • Patent number: 7915196
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: March 29, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Patent number: 7910517
    Abstract: A catalyst for gas-phase reactions which has high mechanical stability and comprises one or more active metals on a support comprising aluminum oxide as support material, wherein the aluminum oxide in the support consists essentially of alpha-aluminum oxide. Ruthenium, copper and/or gold are preferred as active metal. Particularly preferred catalysts according to invention comprise a) from 0.001 to 10% by weight of ruthenium, copper and/or gold, b) from 0 to 5% by weight of one or more alkaline earth metals, c) from 0 to 5% by weight of one or more alkali metals, d) from 0 to 10% by weight of one or more rare earth metals, e) from 0 to 10% by weight of one or more further metals selected from the group consisting of palladium, platinum, osmium, iridium, silver and rhenium, in each case based on the total weight of the catalyst, on the support comprising alpha-Al2O3. The catalysts are preferably used in the oxidation of hydrogen chloride (Deacon reaction).
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: March 22, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Olga Schubert, Martin Sesing, Lothar Seidemann, Martin Karches, Thomas Grassler, Martin Sohn
  • Patent number: 7906454
    Abstract: The present invention relates to an exhaust gas cleaning catalyst comprising on a honeycomb carrier a catalytic coating. Said honeycomb carrier has an upstream end and a downstream end and a plurality of flow channels are running from the upstream end to the downstream end. The catalytic coating comprises catalytically active precious metal components of which at least one component exhibits a concentration profile along the honeycomb carrier starting with a low concentration at the upstream end which increases along the flow channels up to a maximum value and then decreases again to the downstream end.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 15, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Anke Wolf, Dieter Lindner, Matthias Feger, Martin Roesch, Egbert Lox, Thomas Kreuzer
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20110052467
    Abstract: Ceramic nanofibers contain nanosize metal catalyst particles on the surface thereof. The catalyst-ceramic nanofibers when supported as by larger fibers form a medium that effectively catalyze various reactions as in fluid flow processes.
    Type: Application
    Filed: January 12, 2009
    Publication date: March 3, 2011
    Applicant: University of Akron
    Inventors: George G. Chase, G. R. Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Patent number: 7897037
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 7888283
    Abstract: A composition for catalyzing the auto-thermal reformation of ethanol, including a porous refractory substrate with a nickel-iron-aluminum oxide material at least partially filling the pores. The substrate is typically an alumina-based ceramic, such as gamma alumina or mullite. The catalyst composition is typically produced by identifying a refractory substrate having a relatively high surface area, such as through the existence of a pore network, infiltrating the refractory substrate with iron oxide and nickel oxide precursors, and combining the iron oxide and nickel oxide precursors with aluminum oxide to form a hybrid nickel-iron-aluminum oxide material at least partially coating the refractory substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 15, 2011
    Inventors: Lihong Huang, Jian Xie
  • Publication number: 20110028770
    Abstract: An alpha-alumina support for a hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 3, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: HAIYOU WANG, HSUEH SUNG TUNG, DANIEL C. MERKEL
  • Patent number: 7879755
    Abstract: Provided are catalyst composites comprising: a catalytic material on a carrier, the catalytic material comprising a precious metal selected from a palladium component and an oxygen storage component, the oxygen storage component being present in an amount of at least 10% by weight, wherein substantially all of the oxygen storage component is in intimate contact with the palladium component and the catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. A catalyst composite comprising: a catalytic material on a carrier, the catalytic material comprising a palladium component and a ceria-zirconia composite support, the ceria being present in an amount in the range of 10 to 70% by weight, wherein substantially all of the ceria is in intimate contact with at least a portion of the palladium component. Methods of making and using these catalysts are also provided.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: February 1, 2011
    Assignee: BASF Corporation
    Inventors: Knut Wassermann, Stephan Siemund, Michel Deeba, Harold Rabinowitz
  • Patent number: 7875573
    Abstract: The present invention is directed to a diesel oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx). More particularly, the present invention is directed to a novel washcoat composition comprising two distinct washcoat layers containing two distinctly different ratios of Pt:Pd.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: January 25, 2011
    Assignee: BASF Corporation
    Inventors: Tilman W. Beutel, Joseph C. Dettling, Dustin O. Hollobaugh, Torsten W. Mueler-Stach
  • Patent number: 7867943
    Abstract: An exhaust gas purifying catalyst which is made excellent in heat resistance and in S-resistance by keeping the catalytic activity of Pt particles in a satisfactory state. The exhaust gas purifying catalyst is made such that a coating layer containing a compound oxide of cerium and an oxide of a metal for stabilizing the oxide of said cerium and an oxide containing no cerium is formed on a substrate, and such that platinum particles are carried on the catalyst. Said compound oxide has a pore volume of 0.1 cc/g or more, and said platinum particles are selectively adsorbed at the electron accepting points on said compound oxide.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: January 11, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Publication number: 20110004029
    Abstract: A catalyst composition/system can include: a platinum catalyst metal (Pt) and/or rhenium catalyst metal (Re) on a first support; and a ruthenium catalyst metal (Ru) and/or rhenium catalyst metal (Re) on a second support or a platinum catalyst metal (Pt) and a ruthenium catalyst metal (Ru) and/or a rhenium catalyst metal (Re) on the same support. The Pt:Ru, Re:Pt and/or Re:Ru weight ratio can be between about 1:4 and about 4:1. The support can be alumina, carbon, silica, a zeolite, TiO2, ZrO2 or another suitable material. The first and second support can be on the same support structure or on different support structures. In one option, the first and second supports can be positioned such that the Pt and/or Re are capable of catalyzing a dehydrogenation and/or reforming reaction that produces hydrogen and the Ru and/or Re are capable of catalyzing a hydrogenolysis reaction.
    Type: Application
    Filed: June 8, 2010
    Publication date: January 6, 2011
    Inventors: Raghunath V. Chaudhari, Debdut S. Roy, Bala Subramaniam
  • Patent number: 7857981
    Abstract: A catalyst which, by means of a reduction reaction at ambient temperature, permits the elimination of nitrates and nitrites in waters. The catalyst comprises a combination of a noble metal and a non-noble metal supported on or incorporated into the structure of a support which, in elemental and anhydrous form, has the formula XYMgAl, in which X is at least one noble metal, Y is at least one non-noble metal, Mg is magnesium and Al is aluminum, the Mg and Al preferably forming the structure of a hydrotalcite or a mixed oxide deriving from a hydrotalcite.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 28, 2010
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Antonio Eduardo Palomares Gimeno, Jose Gregorio Prato Moreno
  • Publication number: 20100317901
    Abstract: A catalyst composition can include: a support; a ruthenium catalyst (Ru) nanoparticle; and a linker linking the Ru nanoparticle to the support, wherein the linker is stable under hydrogenolysis conditions. In one aspect, the linker can include 3-aminopropyl trimethoxysilane (APTS) or derivatives thereof, such as those with amine functionality. In another aspect, the linker can include phosphotungstic acid (PTA) or other similar solid acid agents. In another aspect, the support can be selected from alumina, carbon, silica, a zeolite, TiO2, ZrO2, or another suitable material. A specific example of a support includes zeolite, such as a NaY zeolite. The Ru nanoparticle can have a size range from about 1 nm to about 25 nm, and can be obtained by reduction of Ru salts.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 16, 2010
    Inventors: Raghunath V. Chaudhari, Debdut S. Roy, Bala Subramaniam
  • Patent number: 7851405
    Abstract: An exhaust gas purifying catalyst that includes noble metal particles, first compounds which support the noble metal particles and suppress movement of the noble metal particles, and second compounds which encapsulate the noble metal particles and the first compounds. The second compounds suppress the movement of the noble metal particles and suppress coagulation of the first compounds following mutual contact of the first compounds.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: December 14, 2010
    Assignees: Nissan Motor co., Ltd., Renault s.a.s.
    Inventors: Hironori Wakamatsu, Maki Shimada, Masanori Nakamura, Katsuo Suga, Hiroto Kikuchi, Tetsuro Naito, Toshiharu Miyamura, Jun Ikezawa
  • Patent number: 7851403
    Abstract: A honeycomb structure includes adhesive layers and plural honeycomb units bonded to each other by interposing the adhesive layers between the plural honeycomb units. Each of the honeycomb units has partition walls extending along a longitudinal direction of the honeycomb units to define plural through holes. The plural honeycomb units include a SOx absorbent, inorganic particles, and an inorganic binder. An expression Y??0.3X+1.55 (about 1.0?X?about 2.5) is satisfied, in which X represents a content (mol/L) of the SOx absorbent in the partition walls and Y represents a ratio B/A in which A represents a Young's modulus of the honeycomb units and B represents a Young's modulus of the adhesive layers.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: December 14, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Masafumi Kunieda, Mari Kitajima
  • Patent number: 7846865
    Abstract: In the present invention, it is an assignment to optimize a loading density of noble metal on catalyst. Pt is loaded in such an amount that a loading amount per 1 liter of a support substrate exceeds 0.75 g on an exhaust-gas upstream side of a coating layer, and a loading density of Rh in the coating layer is made so that it becomes higher on an exhaust-gas downstream side than on the exhaust-gas upstream side. The purifying performance after warming up improves by loading Rh with high density on the exhaust-gas downstream side that is likely to become rich atmosphere.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Yamato, Oji Kuno
  • Publication number: 20100304963
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Application
    Filed: May 26, 2008
    Publication date: December 2, 2010
    Inventors: Mohan Singh, Jorge Ancheyta Juarez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Patent number: 7842634
    Abstract: A useful partial oxidation catalyst element includes a catalyst component, a support component, and a substrate. The catalyst component is formed by combining a catalytically active metal with a first support material to form a mixture and calcining the mixture. The support component is formed by calcining a second support material, not containing the active metal. The first and second support materials include particles having an average particle diameter of less than 20 microns. A catalyst material is formed by combining the catalyst component and the support component, wherein the catalyst material contains less than 20% of the catalyst component by weight. The catalyst material is applied to a substrate configured for gas flow therethrough, thereby formulating the partial oxidation catalyst element. The partial oxidation catalyst element is especially useful for fuel reforming and fuel cell applications.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 30, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Jeffrey G. Weissman, Ming-Cheng Wu
  • Patent number: 7842636
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 30, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Patent number: 7842641
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: November 30, 2010
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 7838710
    Abstract: A supported catalyst for selective hydrogenation of acetylenes comprising 3-15 wt. % Ni promoted with 0.005-0.2 Pd on a support. The catalyst is prepared by depositing nickel promoted with palladium on a support, containing one or more optional elements from copper, silver, Group IA (Li, Na, K, Rb, Cs, Fr) and Group IIA (Be, Mg, Ca, Sr, Ba, Ra) and B (Zn, Cd,) of the periodic table of elements and characterized as: Component Range of component Preferably wt. % wt. % Ni 3-15 ?4-11 Cu 0-I?? 0.0-0.6 Pd 0.005-0.2?? 0.01-0.1? Ag 0-10 0-5 Group IA ?0-2.5 ??0-1.5 Group IIA & B 0-25 0.1-5.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: November 23, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 7838459
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process, comprising a catalytic step using a catalytic system, said catalytic system comprising a catalyst and a support, said support comprising hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: November 23, 2010
    Assignee: Facultes Universitaires Notre-Dame De La Paix
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Patent number: 7833934
    Abstract: A hydrocarbon reforming catalyst, a method of preparing the same, and a fuel processor including the same includes the hydrocarbon reforming catalyst having an active catalyst component impregnated in a oxide carrier and a thermally conductive material having higher thermal conductivity than that of the oxide carrier, the method of preparing the same, and a fuel processor including the same. The hydrocarbon reforming catalyst has excellent catalytic activity and thermal conductivity, and thus can easily transfer heat required in a hydrocarbon reforming reaction. Accordingly, by using the hydrocarbon reforming catalyst above, a high hydrogen production rate can be obtained.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: November 16, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yulia Potapova, Soon-ho Kim, Doo-hwan Lee, Hyun-chul Lee
  • Patent number: 7833929
    Abstract: The present invention refers to a continuous process for the manufacture of methyl mercaptan using Mo—O—K-based catalysts. It is further described that the total selectivity of methylmercaptan can be increased by at least 1% by lowering the total gas hourly space velocity. The invention further refers to a process for the preparation of a solid, preformed catalyst system.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 16, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Yiquan Yang, Qi Wang, Renchun Lin, Hongbin Zhang, Youzhu Yuan, Weiping Fang, Quanxing Zheng, Shenjun Dai, Xingguo Yan, Aiping Chen, Jan-Olaf Barth, Christoph Weckbecker, Klaus Huthmacher, Hubert Redlingshöfer, Sabine Ackermann
  • Patent number: 7833933
    Abstract: A process for preparation of a paraffin isomerization catalyst comprising a mixture of a Group IVB metal oxide, a Group VIB metal oxide, a Group IIIA metal oxide and a Group VIII metal. The process includes the steps of: a) contacting a hydroxide of the Group IVB metal with an aqueous solution of an oxyanion of the Group VIB metal to provide a mixture, (b) drying the mixture to provide a dry powder, (c) kneading the powder with a Group IIIA hydroxide gel and a polymeric cellulose ether compound to form a paste, (d) shaping the paste to form a shaped material, (e) calcining the shaped material to form a calcined material, (f) impregnating the calcined material with an aqueous solution of a Group VIII metal salt to provide the catalyst, and (g) calcining the catalyst.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: November 16, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Konrad Herbst, Peter Stern, Niels Jørgen Blom, Glen Starch-Hytoft, Kim Grøn Knudsen
  • Patent number: 7824639
    Abstract: A catalyst system comprises a gold catalyst capable of oxidizing CO; a hydrocarbon oxidation catalyst; and a hydrocarbon adsorbing material.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 2, 2010
    Assignee: Umicore AG & Co. KG
    Inventors: Boris L'vovich Moroz, Karl C. Kharas, Mikhail Yurievich Smirnov, Alexander Sergeevich Bobrin, Valerii Ivanovich Bukhtlyarov
  • Patent number: 7825063
    Abstract: An exhaust gas-purifying catalyst includes Nd and/or Pr as an active ingredient that suppresses generation of hydrogen sulfide.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: November 2, 2010
    Assignee: Cataler Corporation
    Inventors: Masashi Takeuchi, Hirotaka Ori
  • Patent number: 7825058
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 2, 2010
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Patent number: 7824656
    Abstract: The present invention relates to catalysts for the production of hydrogen using the water gas shift reaction and the carbon dioxide reforming of hydrocarbon-containing fuels. The catalysts nickel and/or copper on a ceria/zirconia support, where the support is prepared using a surfactant templating method. The invention also includes processes for producing hydrogen, reactors and hydrogen production systems utilizing these catalysts.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 2, 2010
    Assignee: University of Regina
    Inventors: Raphael Oyom Idem, Prashant Kumar, Yanping Sun
  • Publication number: 20100273646
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Application
    Filed: November 20, 2008
    Publication date: October 28, 2010
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Publication number: 20100266478
    Abstract: The present invention provides a metal nano catalyst, a method for preparing the same and a method for controlling the growth types of carbon nanotubes using the same. The metal nano catalyst can be prepared by burning an aqueous metal catalyst derivative comprising Co, Fe, Ni or a combination thereof in the presence of a supporting body precursor.
    Type: Application
    Filed: November 30, 2009
    Publication date: October 21, 2010
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Byeong Yeol KIM, Seung Yong BAE, Young Sil LEE
  • Patent number: 7815792
    Abstract: A process and catalyst for the selective hydrodesulfurization of a naphtha containing olefins. The process produces a naphtha stream having a reduced concentration of sulfur while maintaining the maximum concentration of olefins.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Lorenz J. Bauer, Suheil F. Abdo, Laura E. Leonard, Peter Kokayeff
  • Patent number: 7816571
    Abstract: The use of a layered catalyst composition to selectively hydrogenate C5-C11 diolefins in a hydrocarbon mixture to one or more respective C5-C11 monoolefins is disclosed. The layered catalyst comprises an inner core having a first inorganic oxide and an outer layer bonded to the inner core. The outer layer has a non-refractory second inorganic oxide with at least one Group 1-2 metal and at least one Group 8-10 metal dispersed thereon.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Gregory J. Gajda
  • Patent number: 7816299
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7811967
    Abstract: A method of preparing, preferably recycling, a catalyst support material is disclosed and is particularly applicable to recycling a titania support. The invention includes crushing the used catalyst support that is obtained by leaching catalytic components from a used supported catalyst and preferably combining it with new catalyst support in order to provide the required average particle size and ratio of crystal phases. The invention has a number of benefits including making use of used catalyst support materials which have been conventionally disposed of and also providing a method to more efficiently recycle the active component. Where the support is recycled for a similar application, less promoter may be required.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Marinus Johannes Reynhout, Guy Lode Magda Maria Verbist
  • Patent number: 7811964
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Patent number: 7811360
    Abstract: The present invention relates to a unit suitable for the through-flow of a fluid medium at least partially filled with an adsorbent/catalyst in pellet form consisting essentially of iron oxide and/or iron oxyhydroxides, solidified with oxides and/or (oxy)hydroxides of the elements Al, Mg and Ti, the pellets or granules based on iron oxides and/or iron oxyhydroxides and iron(III) hydroxide for the absorbent/catalyst, and processes for their production and their use.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 12, 2010
    Assignee: LANXESS Deutschland GmbH
    Inventors: Andreas Schlegel, Jürgen Kischkewitz
  • Patent number: 7811966
    Abstract: A catalyst, catalyst precursor, or catalyst carrier formed as an elongated shaped particle having a cross section comprising three protrusions each extending from and attached to a central position. The central position is aligned along the longitudinal axis of the particle. The cross-section of the particle occupies the space encompassed by the outer edges of six outer circles around a central circle, each of the six outer circles contacting two neighbouring outer circles, the particle occupying three alternating outer circles equidistant to the central circle and the six interstitial regions, the particle not occupying the three remaining outer circles which are between the alternating occupied outer circles. The ratio of the diameter of the central circle to the diameter of the outer occupied circle is more than 1, and the ratio of the diameter of the outer unoccupied circle to the diameter of the outer occupied circle is more than 1.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hans Peter Alexander Calis, Guy Lode Magda Maria Verbist
  • Patent number: 7811963
    Abstract: An elongated-shaped particle having two protrusions; each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, in which each of the six circles touches two neighboring circles and two alternating circles are equidistant to the central circle and may be attached to the central circle, and the two circles adjacent to the two alternating circles (but not the common circle) touching the central circle, minus the space occupied by the four remaining outer circles and including four remaining interstitial regions.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hilbrand Klaver, Carolus Matthias Anna Maria Mesters, Gerardus Petrus Lambertus Niesen, Guy Lode Magda Maria Verbist
  • Patent number: 7807604
    Abstract: Oxychlorination catalyst containing at least copper as an active element deposited on a support characterized in that the support consists essentially of an alumina obtained by calcination of an alumina hydrate obtained as by-product of the ALFOL® linear primary alcohol process and use of such catalyst in an oxychlorination process of a hydrocarbon containing 1 to 4 carbon atoms.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: October 5, 2010
    Assignee: Solvay (Societe Anonyme)
    Inventors: Michel Strebelle, André Petitjean
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7799729
    Abstract: In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mark Paul Lapinski, Jeffry Thurston Donner, Simon Russell Bare