Of Zinc Patents (Class 502/343)
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Publication number: 20100294728
    Abstract: The various embodiments herein provide a method of preparation nanosized amorphous compound ZnO/SnO2 photocatalysts. According to one embodiment herein, the nanosized amorphous compound ZnO/SnO2 photocatalysts are synthesized through coprecipitation method using NaOH as coprecipitant. According to one embodiment herein, nanosized amorphous compound ZnO/SnO2 photocatalysts are synthesized also by another method with molar ratio of 2:1 in ethanol solvent. Nanosized compound ZnO/SnO2 photocatalysts synthesized are for use in treatment of organic wastes by converting the carcinogenic compounds to harmless compounds. The obtained nanosized compound ZnO/SnO2 photocatalysts are of more equal unit. According to another embodiment, a method of preparation of nanosized compound ZnO/SnO2 photocatalysts wherein the degradation rate constant of the Acid Red 27 (AR27) having a fixed rate of the nominal speed of synthetic photocatalyst is improved by 8 times approximately.
    Type: Application
    Filed: June 28, 2010
    Publication date: November 25, 2010
    Inventor: Leila Asgharnejad
  • Publication number: 20100298592
    Abstract: The present invention relates to a novel catalyst for producing N-substituted carbamates, the preparation of the catalyst and an improved method for producing N-substituted carbamates from these novel catalysts. The active component of the catalyst is a heteropoly acid and the catalyst support comprises a metal oxide or a metalloid oxide. The catalyst can be used to promote the reaction of carbamate and amine, thereby generating N-substituted carbamates with high yield. In the presence of the catalyst, the reaction conditions are relatively mild, the catalytic activity and selectivity of the reaction are high, and the reaction time is relatively short. Furthermore, the catalyst can be conveniently separated from the reaction system and recycled. therefore, the catalyst can be used to facilitate the further scale-up test and commercial application.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 25, 2010
    Applicant: Bayer MaterialScience AG
    Inventors: Stefan Wershofen, Stephan Klein, Hongchao Li, Xinkui Wang, Qifeng Li, Maoqing Kang
  • Publication number: 20100240526
    Abstract: Photocatalytic roofing granules include a binder and inert mineral particles, with photocatalytic particles dispersed in the binder.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 23, 2010
    Inventors: Keith C. Hong, Gregory F. Jacobs
  • Patent number: 7799732
    Abstract: A method of producing composite particles of titanium dioxide and a compound inactive as a photocatalyst, comprising the steps of preparing a water based slurry of pH 3 to 5 comprising titanium dioxide, preparing a water based solution comprising a compound inactive as a photocatalyst, and reacting the slurry and the water based solution together at a pH within a range from 4 to 10 is provided, together with highly active photocatalyst particles produced using such a method, and potential uses of such photocatalyst particles.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: September 21, 2010
    Assignee: Showa Denko K.K.
    Inventors: Jun Tanaka, Masayuki Sanbayashi, Yoshinori Ueyoshi, Hiroyuki Hagihara
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7776785
    Abstract: The invention provides a catalyst for carbon monoxide conversion, comprising from 10 to 90% by mass of a copper oxide ingredient, from 5 to 50% by mass of a zinc oxide ingredient and from 10 to 50% by mass of an aluminum oxide ingredient, and having a specific surface area of from 100 to 300 m2/g, a carbon monoxide adsorption of from 20 to 80 ?mol/g, and a copper oxide crystallite diameter of at most 200 angstroms, as a catalyst suitable for carbon monoxide conversion for fully reducing carbon monoxide in the hydrogen gas obtained through reforming of a starting hydrocarbon material, for the purpose of enabling stable long-term operation of a fuel cell which uses hydrogen gas as a fuel and which is frequently and repeatedly started and stopped.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: August 17, 2010
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kozo Takatsu, Yoshimi Kawashima, Satoshi Nakai, Takashi Umeki
  • Publication number: 20100196237
    Abstract: A composition includes a templated metal oxide, at least 3 weight percent of silver, and at least one catalytic metal. A method of making and a method of using are included.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Dan Hancu, Oltea Puica Siclovan
  • Patent number: 7754651
    Abstract: Disclosed is an Cu/Zn/Al-catalyst containing copper oxide and zinc oxide as catalytically active components and aluminium oxide as thermostabilising component. The catalyst is characterized in that the Cu/Zn atomic ratio is <2.8 and the aluminium oxide component is obtained from an aluminium hydroxide sol.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: July 13, 2010
    Assignee: Süd -Chemie AG
    Inventors: Jurgen Ladebeck, Jurgen Koy, Tiberius Regula
  • Patent number: 7754648
    Abstract: A composite material includes a substrate and a self-cleanable hydrophilic surface layer. The surface layer includes a plurality of components: a first component having a photocatalyst which functions as a catalyst upon exposure to light; a second component having one or more of aluminum oxide, zinc oxide, strontium oxide, barium oxide, magnesium oxide, calcium oxide, rubidium oxide, sodium oxide, potassium oxide and phosphorus pentoxide; and a third component having one or more of silicon dioxide, zirconium dioxide, germanium dioxide and thorium dioxide. The first through third components are all situated within the surface layer, which is provided as a single surface layer, such that all of the components are in close proximity to one another within the single surface layer.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: July 13, 2010
    Assignee: Toto Ltd.
    Inventors: Kazuya Tsujmichi, Hiroto Hasuo, Hideaki Kobayashi
  • Patent number: 7736404
    Abstract: Methanol steam reforming catalysts, and steam reformers and fuel cell systems incorporating the same. In some embodiments, the methanol steam reforming catalyst includes zinc oxide as an active component. In some embodiments, the methanol steam reforming catalyst further includes at least one of chromium oxide and calcium aluminate. In some embodiments, the methanol steam reforming catalyst is not pyrophoric. Similarly, in some embodiments, steam reformers including a reforming catalyst according to the present disclosure may include an air-permeable or air-accessible reforming catalyst bed. In some embodiments, the methanol steam reforming catalyst is not reduced during use. In some embodiments, the methanol reforming catalysts are not active at temperatures below 275° C. In some embodiments, the methanol steam reforming catalyst includes a sulfur-absorbent material. Steam reformers, reforming systems, fuel cell systems and methods of using the reforming catalysts are also disclosed.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: June 15, 2010
    Assignee: IdaTech, LLC
    Inventor: Curtiss Renn
  • Patent number: 7737078
    Abstract: The formation of H2S in a stoichiometric or reducing atmosphere is restrained without using Ni or Cu as an environmental load substance. An additional oxide composed of an oxide of at least one kind of metal selected from the group consisting of Bi, Sn and Zn was added to a three-way catalyst for purifying an exhaust gas emitted from an internal combustion engine of which the combustion is controlled in near a stoichiometric atmosphere in the amount of from 0.02 mol to 0.2 mol per liter of the catalyst. The additional oxide forms SO3 or SO4 from SO2 in an oxidizing atmosphere, and stores sulfur components as a sulfide in a reducing atmosphere so that emission of H2S can be restrained. And since no environmental load substance is contained, the catalyst can be used safely.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 15, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromasa Suzuki
  • Publication number: 20100120610
    Abstract: A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Applicant: CARRIER CORPORATION
    Inventors: Wayde R. Schmidt, Treese Campbell-Hugener, Tania Bhatia
  • Patent number: 7713908
    Abstract: A method of producing a porous composite metal oxide comprising the steps of: dispersing first metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, in a dispersion medium by use of microbeads each with a diameter of not larger than 150 ?m, thus obtaining first metal oxide particles, which are 1 nm to 50 nm in average particle diameter, and not less than 80% by mass of which are not larger than 75 nm in diameter; dispersing and mixing up, in a dispersion medium, the first metal oxide particles and second metal oxide powder, which is an aggregate of primary particles each with a diameter of not larger than 50 nm, and which is not larger than 200 nm in average particle diameter, thus obtaining a homogeneously-dispersed solution in which the first metal oxide particles and second metal oxide particles are homogeneously dispersed; and drying the homogeneously-dispersed solution, thus obtaining a porous composite metal oxide.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Akira Morikawa, Kae Yamamura, Hirotaka Yonekura
  • Patent number: 7713912
    Abstract: The present invention relates to a nano-sized photocatalytic sol and application thereof. The invention utilizes spherical nano-photocatalyst and non-spherical photocatalytic sol for coating a photocatalyst layer on a substrate. Because of the stereo, interlaced and composite structure between spherical photocatalyst and non-spherical photocatalyst, a hard and well adhesion coated layer of photocatalyst with good photocatalytic activity can be obtained without using binder.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 11, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Chia-Hung Huang, Yao-Ling Huang, Yao-Hsuan Tseng, Yu-Ming Lin, Shu-Ling Liu
  • Publication number: 20100112095
    Abstract: The present invention relates to a bifunctional material which comprises copper and which is capable of storing nitric oxide (NO), as well as catalytically producing nitric oxide from a suitable precursor. The material typically includes a zeolite and the copper may be part of or separate from the zeolite. In this manner the material may include a single bifunctional material; that is, a material which is capable of both storing NO and catalytically producing NO, such as Cu-MFI or Cu—X. Alternatively the material may include at least two components, a first component to store NO, such as a zeolite Zn-LTA, and a further component including Cu(I), such as Cu2O, to catalytically produce NO from a suitable precursor. The bifunctional material may be used in a pharmaceutical, neutraceutical or cosmetic preparation, or comprised in a medical article, a cosmetic and/or personal hygiene product.
    Type: Application
    Filed: November 19, 2007
    Publication date: May 6, 2010
    Inventors: Russel Edward Morris, Ian L. Megson
  • Publication number: 20100096618
    Abstract: A catalyst particle for use in growth of elongated nanostructures, such as e.g. nanowires, is provided. The catalyst particle comprises a catalyst compound for catalyzing growth of an elongated nanostructure comprising a nanostructure material without substantially dissolving in the nanostructure material and at least one dopant element for doping the elongated nanostructure during growth by substantially completely dissolving in the nanostructure material. A method for forming an elongated nanostructure, e.g. nanowire, on a substrate using the catalyst particle is also provided. The method allows controlling dopant concentration in the elongated nanostructures, e.g. nanowires, and allows elongated nanostructures with a low dopant concentration of lower than 1017 atoms/cm3 to be obtained.
    Type: Application
    Filed: December 19, 2007
    Publication date: April 22, 2010
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Francesca Iacopi, Philippe M. Vereecken
  • Publication number: 20100088951
    Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.
    Type: Application
    Filed: July 17, 2009
    Publication date: April 15, 2010
    Applicant: PIONEER ASTRONAUTICS
    Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin
  • Publication number: 20100087312
    Abstract: Described is a method for the preparation of a chromium-free catalyst comprising Cu and at least one second metal in metallic or oxidic form, comprising the steps of a) preparing a final solution comprising ions of Cu and of at least one second metal, said final solution additionally comprising ions of a complexing agent and having a pH of above 5; b) contacting said final solution with inert carrier to form a final solution/carrier combination; c) optionally, drying the final solution/carrier combination; d) calcining the final solution/carrier combination obtained in step c) or d) to yield Cu and the at least one second metal in oxidic form; and e) reducing at least part of the thus obtained oxidic Cu on the carrier. Further, a catalyst obtainable by the said method as well as uses thereof are described.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 8, 2010
    Applicants: AVANTIUM INTERNATIONAL B.V., UNIVERSITI MALAYA
    Inventors: André Harmen SIJPKES, Nelleke van der PUIL, Peter John van den BRINK, Sharifah Bee ABDUL HAMID, Adrianus Hendricus Joseph Franciscus de KEIJZER
  • Publication number: 20100075836
    Abstract: A photocatalyst formed using a sol-gel process provides high photoactivity, increased photocatalyst lifetime, and improved resistance to performance degradation caused by siloxane-based contaminants. The photocatalyst is formed by a method including the steps of photocatalyst template creation, template conditioning, template refinement, and coating application.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik
  • Publication number: 20100063326
    Abstract: Catalyst comprising a combination of oxidized metals and processes for cleaving phenylalkyl hydroperoxides in the presence of the catalyst.
    Type: Application
    Filed: May 14, 2007
    Publication date: March 11, 2010
    Inventors: Narayana Mysore, John Charles Saukaitis, John Anthony Smegal
  • Patent number: 7662195
    Abstract: Methanol steam reforming catalysts, and steam reformers and fuel cell systems incorporating the same. In some embodiments, the methanol steam reforming catalyst includes zinc oxide as an active component. In some embodiments, the methanol steam reforming catalyst further includes at least one of chromium oxide and calcium aluminate. In some embodiments, the methanol steam reforming catalyst is not pyrophoric. Similarly, in some embodiments, steam reformers including a reforming catalyst according to the present disclosure may include an air-permeable or air-accessible reforming catalyst bed. In some embodiments, the methanol steam reforming catalyst is not reduced during use. In some embodiments, the methanol reforming catalysts are not active at temperatures below 275° C. In some embodiments, the methanol steam reforming catalyst includes a sulfur-absorbent material. Steam reformers, reforming systems, fuel cell systems and methods of using the reforming catalysts are also disclosed.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: February 16, 2010
    Assignee: Idatech, LLC
    Inventor: Curtiss Renn
  • Patent number: 7659227
    Abstract: Embodiments of the present invention provide catalysts for production of hydrogen from methanol. In an embodiment, a Cu/Zn catalyst may be promoted by Zr and/or Ce, in addition to, in embodiments, Pd or another noble metal. In an embodiment, a chemical composition may have a Cu/Zn base catalyst with a promoter element of Ce, Zr, and/or Pd or another noble metal. Methods of producing hydrogen using such catalysts are also provided.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: February 9, 2010
    Assignee: University of Notre Dame du Lac
    Inventor: Eduardo Wolf
  • Patent number: 7655749
    Abstract: Methods for synthesizing dimeric or higher polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst is in particulate form and comprises a first metal substrate having a second reduced metal coated on the substrate.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: February 2, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
  • Publication number: 20100022385
    Abstract: The disclosure relates to a process for making a surface treated suspension of finely divided titanium (IV) oxide particles, typically, finely divided titanium (IV) oxide nanoparticles, comprising: vigorously mixing (a) a volume of a first component comprising a major proportion of alcohol, a minor proportion of titanium alkoxide and a minor proportion of a titanium alkoxide activator selected from the group consisting of water and a first aqueous base, and b) a volume of a second component selected from the group consisting of water and a second aqueous base, at least one of the first component or the second component having a base therein, the second component being substantially free of alcohol, to form a mixture comprising a suspension of finely divided titanium (IV) oxide particle, the mixture having a water to titanium molar ratio ranging from about 40 to about 1 to about 5000 to about 1, wherein the proportion of the titanium alkoxide, the proportion of the activator, the mixing vigor, and the ratio
    Type: Application
    Filed: December 20, 2007
    Publication date: January 28, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: David M. Scott, Carmine Torardi, Vladimir Grushin
  • Publication number: 20100008840
    Abstract: The present invention relates to a novel method for preparing a new type of catalyst for the oxidation of CO in a reactant gas or air. The method provides the preparation of a catalyst having nano-sized metal particles and a capping agent deposited on a solid support. The size and distribution of the metal particles can be easily controlled by adjusting reaction condition and the capping agent used. The catalyst prepared has high activity at low temperature toward selective oxidation of CO and is stable over an extended period of time. The catalyst can be used in air filter devices, hydrogen purification processes, automotive emission control devices (decomposition of NOx, x is the integer 1 or 2), F-T synthesis, preparation of fuel-cell electrode, photocatalysis and sensors.
    Type: Application
    Filed: November 13, 2006
    Publication date: January 14, 2010
    Applicant: Agency For Science, Technology and Research
    Inventors: Ziyi Zhong, Jianyi Lin
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20090317308
    Abstract: Catalysts are formulated to resemble a direct ammonia/air fuel cell at short circuit at the nanoscale level to convert ammonia in aqueous solution directly and spontaneously to nitrogen at near or above ambient temperature. The catalyst particle contains a type-A catalyst subparticles for ammonia oxidation to nitrogen, and a type-C catalyst subparticles for oxygen reduction, with the type-A and type-C catalyst subparticles electrically shorted. Advantages realized at the nanoscale level are enhanced conductances for electrons and hydroxyl anions between the neighboring type-A and type-C catalyst subparticles. With the catalysts packed and confined in a catalyst bed in a chemical reactor, the direct conversion of ammonia in an aqueous phase to nitrogen can be carried out continuously for ammonia removal from a water stream in a compact package, and without the high cost arising from constructing and maintaining a bulk electrochemical device, and without the step of exacting the ammonia into gas phase.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventor: Xiaoming Ren
  • Publication number: 20090307966
    Abstract: A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La2CO5, LaOOH, and combinations or mixtures thereof.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 17, 2009
    Inventors: Shuli Yan, Steven O. Salley, K.Y. Simon Ng
  • Patent number: 7622421
    Abstract: CuO—ZnO—CeO2 catalyst and aged CuO—ZnO catalyst catalytically active for low temperature oxidation of carbon monoxide. The catalysts are co-precipitated, filtered, washed, dried, and calcined. The catalysts can be incorporated into a component of a cigarette or can be used to reduce the concentration of carbon monoxide from a vehicle exhaust emission, a gas used in a laser, a gas used in a fuel cell and/or ambient air undergoing air filtration.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: November 24, 2009
    Assignee: Philip Morris USA Inc.
    Inventors: Sarojini Deevi, Unnikrishnan Pillai
  • Patent number: 7598204
    Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 6, 2009
    Assignee: General Motors Corporation
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
  • Patent number: 7592291
    Abstract: A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: September 22, 2009
    Assignee: Batelle Energy Alliance, LLC
    Inventors: Harry W. Rollins, Lucia M. Petkovic, Daniel M. Ginosar
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Patent number: 7582202
    Abstract: A Composition comprising one or more metal hydroxy salts and a matrix, binder or carrier material, wherein the metal hydroxy salt is a compound comprising (a) as metal either (i) one or more divalent metals, at least one of them being selected from the group consisting of Ni, Co, Ca, Zn, Mg, Fe, and Mn, or (ii) one or more trivalent metal(s), (b) framework hydroxide, and (c) a replaceable anion. This composition has various catalytic applications.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 1, 2009
    Assignees: Akzo Nobel N.V., Albemarle Netherlands B.V.
    Inventors: William Jones, Paul O'Connor, Dennis Stamires
  • Patent number: 7566393
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 28, 2009
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Patent number: 7563747
    Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 21, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Cornelis Roeland Baijense, Tjalling Rekker
  • Patent number: 7563390
    Abstract: The present invention provides steam reforming catalyst compositions containing Pd and Zn, and methods of steam reforming alcohols over a catalyst. Surprisingly superior results and properties of the present invention, including low temperature activity and/or low carbon monoxide output, are also described. Methods of making a steam reforming catalyst are also provided.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 21, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Jianli Hu, Ya-Huei Chin, Robert A. Dagle, Guanguang Xia, Eddie G. Baker, Daniel R. Palo, Max R. Phelps, Heon Jung
  • Publication number: 20090180941
    Abstract: The present disclosure relates to a fluid purification device that has a deactivation resistant photocatalyst having nanocrystallites of less than 14 nanometers (nm) in diameter with at least 200 m2 surface area/cm3 of skeletal volume in cylindrical pores of 5 nm in diameter or larger, with the mode of the pore size distribution 10 nm or more.
    Type: Application
    Filed: May 31, 2007
    Publication date: July 16, 2009
    Applicant: CARRIER CORPORATION
    Inventors: Thomas Henry Vanderspurt, Treese Hugener-Campbell, Norberto O. Lemcoff, Stephen O. Hay, Wayde R. Schmidt, Joseph J. Sangiovanni, Zissis A. Dardas, Di Wei
  • Patent number: 7560410
    Abstract: A catalyst comprising gold nanodots on cerium oxide, catalytically active for oxidation of carbon monoxide at room temperature. The catalyst is prepared by deposition-precipitation followed by aging or ultrasound treatment.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: July 14, 2009
    Assignee: Philip Morris USA Inc.
    Inventors: Unnikrishnan R. Pillai, Sarojini Deevi
  • Patent number: 7553474
    Abstract: It is an object to provide a method for producing stable alkaline metal oxide sols having a uniform particle size distribution. The method comprises the steps of: heating a metal compound at a temperature of 60° C. to 110° C. in an aqueous medium that contains a carbonate of quaternary ammonium; and carrying out hydrothermal processing at a temperature of 110° C. to 250° C. The carbonate of quaternary ammonium is (NR4)2CO3 or NR4HCO3 in which R represents a hydrocarbon group, or a mixture thereof. The metal compound is one, or two or more metal compounds selected from a group of compounds based on a metal having a valence that is bivalent, trivalent, or tetravalent.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: June 30, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Yoshinari Koyama, Kenji Yamaguchi
  • Patent number: 7544285
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminium, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurisation and hydrodenitrification.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: June 9, 2009
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 7541311
    Abstract: A vermiculite supported catalyst for carbon monoxide (CO) preferential oxidation (PROX) is disclosed. The CO PROX catalyst comprises at least one catalytic agent, one optional modifier agent, one carrier material, and a vermiculite support. The process for preparing the vermiculite supported catalyst in this invention includes depositing first the carrier material on a vermiculite support followed by calcination to form the carrier-containing support, and wet impregnating the catalytic agent and the optional modifier agent on the carrier-containing support followed by drying and calcination to form the CO preferential oxidation catalyst.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 2, 2009
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chao-Yuh Chen, Ching-Tsuen Huang, Chi-Hung Liao, Ching-Tu Chang
  • Publication number: 20090088317
    Abstract: A reduction catalyst having a first metal component comprising one of Co, Os, Fe, Re, Rh and Ru. The first metal component is present in the catalyst at from 0.5 percent to 20 percent, by weight. A second metal component differing from the first metal component present in the catalyst with the second metal component being selected from the group consisting of Fe, Mn, Ru, Os, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Co, Re, Cu, Pb, Cr, W, Mo, Sn, Nb, Cd, Te, V, Bi, Ga and Na. A hydrogenation catalyst comprising one or both of Ni and Co and one or more elements selected from the group consisting of Mn, Fe, Ag, Au, Mo and Rh.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: John G. Frye, JR., Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20090082196
    Abstract: A method of producing composite particles of titanium dioxide and a compound inactive as a photocatalyst, comprising the steps of preparing a water based slurry of pH 3 to 5 comprising titanium dioxide, preparing a water based solution comprising a compound inactive as a photocatalyst, and reacting the slurry and the water based solution together at a pH within a range from 4 to 10 is provided, together with highly active photocatalyst particles produced using such a method, and potential uses of such photocatalyst particles.
    Type: Application
    Filed: June 19, 2008
    Publication date: March 26, 2009
    Applicant: Showa Denko K.K.
    Inventors: Jun TANAKA, Masayuki Sanbayashi, Yoshinori Ueyoshi, Hiroyuki Hagihara
  • Publication number: 20090082199
    Abstract: A catalyst for purifying exhaust gases includes a carrier substrate and a catalyst layer which is carried on the carrier substrate and contains a noble metal, a porous oxide and an addition oxide containing at least one selected from the group consisting of Ni, Bi, Sn, Fe, Co, Cu and Zn. Only a downstream section of the carrier substrate, which is located on a downstream side of an exhaust gas stream contains the addition oxide, whereas an upstream section of the carrier substrate does not contain the addition oxide. With this arrangement, in the upstream section of the carrier substrate, the noble metal and the addition oxide do not exist together so that the noble metal is not deteriorated with the addition oxide. As a result, in the upstream section, the purification performance as a three-way catalyst is favorably achieved, thereby restraining the emission of H2S while maintaining the three-way performance.
    Type: Application
    Filed: May 25, 2006
    Publication date: March 26, 2009
    Inventors: Hiromasa Suzuki, Takahiko Fujiwara, Mamoru Ishikiriyama
  • Publication number: 20090069529
    Abstract: An object of the present invention is to provide an environmentally friendly polymerization catalyst of polyalkylene terephthalate which does not use a heavy metal such as antimony. Another object of the present invention is to provide the method of producing polyalkylene terephthalate using the catalyst. The inventive titanium oxide sol for a catalyst for polymerizing a polyalkylene terephthalate is a titanium oxide sol containing an organic solvent as a dispersion medium, wherein the titanium oxide in the sol has a concentration of 0.7 g/L, the sol has a light transmittance of not less than 50%, the light transmittance being measured by setting an optical path length to 1 cm in a wavelength range of 400 to 800 nm, and the amount of hydroxyl groups per 1 g of titanium oxide is not less than 1.8 mmol.
    Type: Application
    Filed: May 11, 2006
    Publication date: March 12, 2009
    Inventors: Jinichiro Kato, Yoshiki Takeda, Takafumi Konishi
  • Publication number: 20090060808
    Abstract: Scrubber media for reactive gases, that can include but are not necessarily limited to hydrogen chloride (HCl), hydrogen sulfide (H2S), hydrogen fluoride (HF), and ammonia (NH3), can include reactive particles, potentially as small as nano-scale, that can optionally be suspended on macro-scale carrier particles. Reactive gases can be converted to non-volatile compounds by being passed through a bed of such scrubber media. Such scrubber media can be used to remove reactive gases from gas mixtures. Potential applications include differential absorption spectroscopy, air pollutant emission controls, and the like. Methods of preparing scrubber media are also described.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Inventors: Marc M. Baum, John Moss, Alfred Feitisch, Xin Zhou, Xiang Liu, Alex Kwan
  • Publication number: 20090054238
    Abstract: Preparation containing at least one photocatalytically active metal oxide powder with a specific surface area of at least 20 m2/g at least one wetting agent. Use of the preparation for weed control.
    Type: Application
    Filed: June 29, 2006
    Publication date: February 26, 2009
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Ingo Fleute-Schlachter, Ewald Sieverding, Wolfgang Lortz, Jochen Scheffler, Kai Schumacher, Reinhard Vormberg
  • Publication number: 20090048097
    Abstract: Process for the preparation of an oxidic catalyst composition consisting of one or more trivalent metals preferably aluminum, one or more divalent metals preferably magnesium and more than 18 wt % of one or more compounds selected from the group consisting of rare earth metal compounds, phosphorus compounds, and transition metal compounds, which process comprises the steps of preparing a precursor mixture consisting of (i) or more trivalent metal compounds, (ii) one or more divalent metal compounds, (iii) one or more compounds selected from the group consisting of rare earth metal compounds, and transition metal compounds, and (iv) optionally water, which precursor mixture is not a solution. The resulting oxidic catalyst composition is suitable as a metal trap and SOx sorbent FCC processes.
    Type: Application
    Filed: December 6, 2004
    Publication date: February 19, 2009
    Applicant: AKZO NOBEL N.V.
    Inventors: William Jones, Dennis Stamires, Paul O'Connor, Michael Brady
  • Publication number: 20090036296
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Application
    Filed: June 20, 2008
    Publication date: February 5, 2009
    Inventors: X.D. Hu, Patrick J. Loi, Robert J. O'Brien