Of Group I (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/344)
  • Publication number: 20080187477
    Abstract: To provide a catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds whose oxidation power has been enhanced without increasing the amount of precious metal supported thereon; a method for producing the same; and a method for treating exhaust gases. A catalyst for treating exhaust gases, including coat layers made up of a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein, can be obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying.
    Type: Application
    Filed: September 28, 2007
    Publication date: August 7, 2008
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsumi NOCHI, Masanao YONEMURA, Yoshiaki OBAYASHI, Hitoshi NAKAMURA
  • Publication number: 20080176742
    Abstract: An object of the present invention is to provide a method for producing a catalyst for treating exhaust gas, enabling a smaller amount of a noble metal to be supported and reducing the production cost thereof. There is provided a method for producing a catalyst for treating an exhaust gas containing carbon monoxide and volatile organic compounds, wherein the method comprises: preparing, as a pH buffer solution, an aqueous metal salt solution in which at least one metal salt is dissolved; reductively-treating the aqueous metal salt solution while keeping the pH constant to prepare a metal colloid solution; and immersing a carrier in the metal colloid solution to support the metal on the carrier. The supported amount of metal may be 0.7 g/L or less per one of the metals.
    Type: Application
    Filed: March 4, 2005
    Publication date: July 24, 2008
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsumi Nochi, Masanao Yonemura, Kozo Iida, Yoshiaki Obayashi, Shigeru Nojima, Toshiyuki Onishi
  • Patent number: 7402612
    Abstract: This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 22, 2008
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza, Nithya Srinivasan, Olga P. Ionkina
  • Publication number: 20080167181
    Abstract: An exhaust gas purifying catalyst includes: a catalyst particle unit having at least noble metal with a catalytic function, first oxides on which the catalyst noble metal is supported, and second oxides covering the first oxides on which the noble metal is supported. In catalyst powder formed of an aggregate of plural pieces of the catalyst particle units, at least one type of compounds selected from the group consisting of a transition element, an alkali earth metal element, an alkali metal element, and a rare earth element, which is a promoter component, are contained.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 10, 2008
    Inventors: Masanori Nakamura, Hironori Wakamatsu, Tetsuro Naito, Katsuo Suga, Hiroto Kikuchi, Kazuyuki Shiratori
  • Publication number: 20080161182
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Application
    Filed: August 31, 2007
    Publication date: July 3, 2008
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Publication number: 20080153692
    Abstract: The present invention relates to a method of producing a catalyst or pre-catalyst suitable for assisting in the production of alkenyl alkanoates. The method includes contacting a modifier precursor to a support material to form a modified support material. One or more catalytic component precursors (palladium or gold) may be contacted to the modified support material. The atomic ratio of gold to palladium is preferably in the range of about 0.3 to about 0.90. The support materials with the catalytic component may then be reduced using a reducing environment. A composition for catalyzing the production of an alkenyl alkanoates including a modified support material with palladium and gold is also included within the invention. Catalysts of the present invention may be used to produce alkenyl alkanoates in general and vinyl acetate in particular and are useful to produce low EA/VA ratios while maintaining or improving CO2 selectivity.
    Type: Application
    Filed: March 4, 2008
    Publication date: June 26, 2008
    Applicant: CELANESE INTERNATIONAL CORP.
    Inventors: Barbara Kimmich, Leslie E. Wade, Tao Wang, Andre Harmen Sijpkes, Roelandus Hendrikus Wilhelmus Moonen
  • Patent number: 7390768
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: June 24, 2008
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
  • Publication number: 20080139382
    Abstract: A catalyst for purifying exhaust gas that provides a superior catalytic performance even at a high temperature by increasing the durability of the promoter. The catalyst for purifying exhaust gas includes a promoter clathrate wherein a promoter component particle is covered with a high heat-resistant oxide. A promoter active species is contained in the promoter clathrate. The catalytic active species are located adjacent to the promoter clathrates. The catalytic active species has a precious metallic particle having a catalyst activity, a metallic oxide particle for bearing the precious metallic particle and a metallic oxide placed around the metallic oxide particle and the precious metallic particle.
    Type: Application
    Filed: September 26, 2007
    Publication date: June 12, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hideaki Morisaka, Hironori Wakamatsu, Masanori Nakamaura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga
  • Publication number: 20080132410
    Abstract: Chemical vapor deposition (CVD) is used to synthesize single-wall carbon nanotubes by a catalytic reaction, and a method of preparing the catalyst is also provided. A transition metal catalyzing growth of carbon nanotubes, an oxide of a precursor metal preventing agglomeration of catalyst particles, and a precious metal are essentially consisted in the catalyst. The catalyst particles can be further dispersed by quasi-explosive effect occurred when the oxidized precious metal is reduced.
    Type: Application
    Filed: May 16, 2007
    Publication date: June 5, 2008
    Applicant: RITEK CORPORATION
    Inventors: Wei-Hsiang WANG, Cheng-Tzu KUO, Tsai-Hau HONG
  • Patent number: 7381683
    Abstract: Supported catalysts are produced with nanometer sized particles comprised of different metals dispersed throughout the catalyst support material. The supported catalysts reduce substantially or completely the amount of platinum that is required without sacrificing catalytic performance. In place of platinum, the supported catalysts employ palladium, silver, or copper, all of which costs significantly less than platinum.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: June 3, 2008
    Assignee: NanoStellar, Inc.
    Inventors: Jian Wang, Xianghong Hao, Jifei Jia, Jonathan W. Woo
  • Publication number: 20080125312
    Abstract: The present teachings are directed toward methods of modifying the properties of a composition by providing particles of a first composition having dimensions of less than about 3 nanometers and a substrate of a second composition. The particles of the first composition are placed on the substrate, whereby the particles of the first composition and the substrate interact to modify at least one property of the particles of the first composition relative to the same property of particles of the first composition having dimensions greater than about 10 nanometers placed on a substrate of the second composition.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 29, 2008
    Applicant: Honda Motor Co., Ltd.
    Inventor: Avetik Harutyunyan
  • Publication number: 20080119355
    Abstract: A method for manufacturing a honeycomb structure includes mixing inorganic particles, at least one of inorganic fibers and inorganic whiskers, and an inorganic binder solution to prepare a raw material composition. The method further includes manufacturing a pillar-shaped honeycomb molded body by extrusion-molding the raw material composition, and firing the molded body to manufacture a honeycomb fired body. The molded body has a large number of cells disposed in substantially parallel with one another in a longitudinal direction with a cell wall therebetween. A blending amount of the inorganic binder solution is about 30 to about 60% by weight to the total amount of the inorganic particles, at least one of the inorganic fibers and the inorganic whiskers, and the inorganic binder solution. A concentration of the inorganic binder solution is about 35 to about 50% by weight.
    Type: Application
    Filed: November 13, 2007
    Publication date: May 22, 2008
    Applicant: IBIDEN CO., LTD.
    Inventors: Kazushige Ohno, Takahiko Ido, Chizuru Kasai
  • Publication number: 20080112870
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueline S. Curran
  • Publication number: 20080107956
    Abstract: A catalyst, a method of preparing the catalyst, and a fuel cell using the catalyst. The catalyst includes a catalyst metal particle, and a porous coating layer of a conductive ceramic material disposed on the surface of the catalyst metal particle. The catalyst has a methanol tolerance index of 80%, or more, a smaller particle size than a commercially available Pt-black catalyst manufactured through a polyol process. The catalyst can include a PT catalyst metal particle that is surface treated, or coated, with a conductive ceramic ATO. The catalyst has an excellent ORR activity in the presence of methanol, and an enhanced tolerance with respect to methanol. A fuel cell, including an electrode manufactured using the catalyst, has a high energy density and a high fuel efficiency.
    Type: Application
    Filed: March 23, 2007
    Publication date: May 8, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Dae-jong Yoo, Chan-ho Pak, Hyuk Chang, Sang-hoon Joo
  • Patent number: 7341977
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 11, 2008
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Publication number: 20080050617
    Abstract: A carbon monoxide oxidizing catalyst for a reformer of a fuel cell system comprises: a compound including selenium oxide, tellurium oxide, bismuth oxide, or a combination thereof; copper oxide; and cesium oxide.
    Type: Application
    Filed: May 22, 2007
    Publication date: February 28, 2008
    Applicant: Samsung SDI Co., Ltd
    Inventors: Leonid Gorobinskiy, Ju-Yong Kim, Jin-Kwang Kim, Dong-Myung Suh, Jin-Goo Ahn, Dong-Uk Lee, Sung-Chul Lee, Man-Seok Han, Chan-Ho Lee, Yong-Kul Lee
  • Patent number: 7335620
    Abstract: An object of the present invention is to provide a photocatalytic powder containing titanium dioxide fine particles containing an anionically active substance, where the electrokinetic potential of the fine particle is from about ?100 to 0 mV in an aqueous environment at pH 5. Another object of the present invention is to provide a photocatalytic slurry containing the powder, and a polymer composition, a coating agent, a photocatalytic functional molded article and a photocatalytic functional structure using the powder.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: February 26, 2008
    Assignee: Showa Denko K.K.
    Inventors: Katsura Ito, Hiroyuki Hagihara
  • Patent number: 7329629
    Abstract: A catalyst system to provide emission reductions under lean and stoichiometric conditions. The catalyst system comprises a forward catalyst having a first cerium-free zone including oxides of aluminum, alkali metals and alkaline earth metals and precious metals and a second zone with a lower loading of precious metals, oxides of aluminum, alkali metals or alkaline earth metals. This forward catalyst stores NOx emissions under lean conditions for subsequent reduction and converts HC, CO and NOx during stoichiometric operation. The second downstream catalyst includes precious metals, reduces emissions under stoichiometric conditions, and stores any residual NOx emitted from the first catalyst for subsequent reduction. In another embodiment, a forward catalyst has top and bottom layers designed to reduce emissions under lean conditions. In this embodiment, a second downstream catalyst is used to reduce emissions under stoichiometric conditions.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: February 12, 2008
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren S Gandhi, Jun (John) Li, Joseph Robert Theis, Ronald Gene Hurley, William Lewis Henderson Watkins
  • Publication number: 20080033218
    Abstract: This invention is directed to a process for making alcohol from syngas, and a process for making olefin, as well as polyolefin, from the alcohol. The syngas is converted to a mixed alcohol stream using a catalyst comprising at least one oxide component. Upon contacting the catalyst with a desired syngas composition, a preferred mixed alcohol product is formed. Preferably, the syngas composition has a stoichiometric molar ratio of less than 2.
    Type: Application
    Filed: June 20, 2007
    Publication date: February 7, 2008
    Inventors: James R. Lattner, Matthew James Vincent, Kun Wang, Michel Molinier, Michael J. Veraa, Anthony F. Volpe, Hailian Li, Jeffrey C. Yoder, Mark Muraoka
  • Patent number: 7323158
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 29, 2008
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7318915
    Abstract: This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 15, 2008
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Patent number: 7304014
    Abstract: Modified metal oxide catalysts are disclosed which have different chemical, physical and catalytic properties, when used for catalytic conversions of carbon based compounds, as compared to corresponding unmodified metal oxide catalysts. Methods for preparing the modified catalysts are described and their utility in catalytic process is described. Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared directly from corresponding alkanes, alkenes or alkanes and alkenes utilizing using one or more modified metal oxide catalysts.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: December 4, 2007
    Assignee: Rohm and Haas Company
    Inventors: Fernando Antonio Pessoa Cavalcanti, Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Ruozhi Song, Elsie Mae Vickery
  • Publication number: 20070265159
    Abstract: The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.
    Type: Application
    Filed: March 5, 2007
    Publication date: November 15, 2007
    Inventors: Jeffrey W. Elam, Michael J. Pellin, Peter C. Stair
  • Patent number: 7291321
    Abstract: A perovskite catalyst is prepared using a ceramic sol-sol methodology comprising preparing slurry in water of an alkaline earth metal salt, a powdered metal salt and a powdered transition metal oxide, adding a polymeric binder to form a paste, drying and comminuting the paste into a powder and heating the powder with a temperature profile to calcination temperatures. In one embodiment the slurry is formed of titanium oxide with barium carbonate and tin chloride in deionized water, and more specifically by a mixture according to Ba (1-0.05x)+TiO2+SnCl2(0.05x) where x is in moles. The perovskite catalyst is preferably used in a process for oxidative coupling of methane. Catalyst performance is enhanced through the addition of halides to the feed gas in the reaction.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: November 6, 2007
    Assignee: HRD Corp.
    Inventors: Ebrahim Bagherzadeh, Abbas Hassan, Aziz Hassan
  • Patent number: 7285258
    Abstract: Gold oxide is precipitated together with iron oxide from a solution containing a gold source and an iron source; the gel formed thereby is washed, dried, ground to a size range of 0.85 mm to 4.25 mm, calcined and activated by passing a hydrogen and oxygen containing gas through it; then used as a catalyst for oxidizing CO to CO2 in the presence of a large excess of hydrogen.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 23, 2007
    Assignee: Pressure Chemical Company
    Inventor: Joseph Pugach
  • Patent number: 7259128
    Abstract: The invention relates to Group 1 metal/porous metal oxide compositions comprising porous metal oxide selected from porous titanium oxide and porous alumina and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0 and I materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by porous metal oxide under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the porous metal oxide at about 150° C., an exothermic reaction produces Stage I material, loose black powders that are stable in dry air. Further heating forms higher stage materials of unknown composition.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: August 21, 2007
    Assignees: SiGNa Chemistry, LLC, Board of Trustees of Michigan State University
    Inventors: Michael Lefenfeld, James L. Dye
  • Patent number: 7247600
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: July 24, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7238638
    Abstract: The alkylhalosilanes are directly synthesized while diminishing the formation of coke by reacting an alkyl halide with silicon in the presence of a catalytically effective amount of (?) a copper metal or a copper-based compound catalyst and (?) a catalyst promoter intermixture therefor which comprises an effective minor amount of an additive ?1 selected from the group consisting of tin, a tin-based compound and mixture thereof, optionally, an effective minor amount of an additive ?2 selected from the group consisting of zinc metal, a zinc-based compound and mixture thereof, an effective minor amount of an additive ?3 selected from the group consisting of cesium, potassium and rubidium, and compound and mixture thereof, and, optionally, an effective minor amount of an additive ?4 selected from the group consisting of the element phosphorus, a phosphorus-based compound and mixture thereof.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: July 3, 2007
    Assignee: Rhodia Chimie
    Inventor: Pascale Colin
  • Patent number: 7232918
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 19, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7232786
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: June 19, 2007
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7229946
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Patent number: 7220699
    Abstract: A method and device for loading a catalyst into a chamber. The catalyst loading is well suited for production of hydrogen producing microreactors. The catalyst is coated onto a strip which is mountable within the chamber.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: May 22, 2007
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Patent number: 7211539
    Abstract: The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0, I, II, and III materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by silica gel (porous SiO2) under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the silica gel, a mild exothermic reaction produces Stage I material, loose black powders that are indefinitely stable in dry air. Subsequent heating to 400° C. produces Stage II materials, which are also loose black powders. Further heating above 400° C.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: May 1, 2007
    Assignees: SIGNa Chemistry, LLC, Board of Trustees of Michigan State University
    Inventors: Michael Lefenfeld, James L. Dye
  • Patent number: 7202192
    Abstract: The alkylhalosilanes are directly synthesized by reacting an alkyl halide with silicon in the presence of a catalytically effective amount of (?) a copper metal or a copper-based compound catalyst and (?) a catalyst promoter intermixture therefor which comprises an effective minor amount of an additive ?1 selected from the group consisting of tin, a tin-based compound and mixture thereof, an effective minor amount of an additive ?2 selected from the group consisting of cesium, potassium and rubidium, and compound and mixture thereof, and an effective minor amount of an additive ?3 selected from the group consisting of the element phosphorus, a phosphorus-based compound and mixture thereof.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: April 10, 2007
    Assignee: Rhodia Chimie
    Inventor: Pascale Colin
  • Patent number: 7179442
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas, such as a syngas, contacts a water gas shift (“WGS”) catalyst, in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) at least one of Rh, Ni, Pt, their oxides and mixtures thereof, b) at least one of Cu, Ag, Au, their oxides and mixtures thereof; and c) at least one of K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te, La, Ce, Pr, Nd, Sm, Eu, their oxides and mixtures thereof. Another disclosed catalyst formulation comprises Rh, its oxides or mixtures thereof, Pt, its oxides or mixtures thereof and Ag, its oxides or mixtures thereof.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 20, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Michael Herrmann, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7172990
    Abstract: The invention relates to highly active spherical metal support catalysts with a metal content of 10 to 70% by mass, and a process for their production with the use of a mixture of polysaccharides and at least one metal compound which is dropped into a metal salt solution.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: February 6, 2007
    Assignee: Shell Internationale Research Maatschappiji, B.V.
    Inventors: Reinhard Geyer, Rainer Schödel, Peter Birke, Jürgen Hunold
  • Patent number: 7169735
    Abstract: The object of the present invention is to provide a catalyst that is highly active and capable of maintaining its activity for a long period of time even in a high-temperature environment. The present invention is a catalyst including: a porous carrier which is comprised of one kind of or two or more kinds of metal oxides; and catalyst particles which are comprised of precious metals or precious metal oxides and supported on the above porous carrier, characterized in that the catalyst particles include: clustered particles formed by the aggregation of first precious metal atoms; and second precious metal ions bound to the above clustered particles. Preferably, the first precious metal and the second precious metal are different metal species which are selected from the group consisting of platinum, palladium, rhodium, ruthenium, silver, gold, iridium and osmium.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: January 30, 2007
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Takeyuki Sagae
  • Patent number: 7169196
    Abstract: A fuel or fuel additives is disclosed which includes particles of cerium oxide which have been doped with a divalent or trivalent metal or metalloid which is a rare earth metal, a transition metal or a metal of group IIA, IIIB, VB, or VIB of the Periodic Table.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: January 30, 2007
    Assignee: Oxonica Materials Limited
    Inventor: Gareth Wakefield
  • Patent number: 7166268
    Abstract: The present invention provides a catalyst suitably employed in a variety of hydrocarbon reforming processes and a hydrocarbon reforming process including employing the catalyst in production of hydrogen or synthesis gas. The hydrocarbon reforming catalyst of the present invention contains an alumina carrier containing cerium oxide and, carried on the carrier, component (a), component (b), and optional component (c), the component (a) being at least one platinum group element selected from among ruthenium, platinum, rhodium, palladium, and iridium; the component (b) being cobalt and/or nickel, the component (c) being an alkaline earth metal. When steam reforming, autothermal reforming, partial-oxidation reforming, or carbon dioxide reforming of hydrocarbons is performed through employment of the catalyst, hydrogen or synthesis gas can be produced.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: January 23, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Tetsuya Fukunaga
  • Patent number: 7163908
    Abstract: The present invention relates to supported catalysts based on Re2O7/(—Al2O3 for use in the preparation of cycloalkadienes in a metathesis reaction, a process for preparing cycloalkadienes in the presence of these supported catalysts and also the use of the resulting cycloalkadienes for preparing fragrances.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: January 16, 2007
    Assignee: Symrise GmbH & Co. KG
    Inventors: Ingo Wöhrle, Peter Esser, Aurélia Reckziegel, Matthias Brandt, Stephen Klein, Thomas Turek
  • Patent number: 7148177
    Abstract: The invention relates to a process for the preparation of an alkali metal catalyst by mixing an alkali metal with pulverulent, solid potassium carbonate as support, wherein the potassium carbonate has a specific surface area of at least 0.3 m2/g, and to the use thereof for the side-chain alkylation of alkylbenzenes.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: December 12, 2006
    Assignee: BASF Aktiengesellschaft
    Inventor: Ulrich Steinbrenner
  • Patent number: 7129193
    Abstract: This invention aims at providing a catalyst body exhibiting a lower degradation of a catalyst due to thermal durability and capable of keeping higher catalyst performance for a long time. A catalyst component such as Pt is directly supported by Zr, W, etc, replacing elements inside a support such as Al of cordierite to provide a catalyst body without forming a coating layer. A combination of the catalyst component and the element inside the support is selected so that support strength is greater than 5 eV by simulation using a density functional method. Coarsening of catalyst particles can be suppressed and a high-performance catalyst body excellent in thermal durability can be obtained.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: October 31, 2006
    Assignee: Denso Corporation
    Inventors: Miho Ito, Jun Hasegawa, Tosiharu Kondo, Tomohiko Nakanishi
  • Patent number: 7122491
    Abstract: A method of increasing the lifetime of a hydro-oxidation catalyst comprising, preferably, gold, silver, or mixtures thereof, and optionally one or more promoters, on a titanium-containing support, such as a titanosilicate or titanium dispersed on silica. The method of the invention involves contacting the catalyst support with a hydroxy-functionalized organosilicon compound, a carboxy-functionalized organosilicon compound, or a mixture of hydroxy- and carboxy-functionalized organosilicon compounds, such as, sodium methyl siliconate or (2-carboxypropyl)tetramethyldisiloxane. The contacting is preferably conducted during deposition of the catalytic metal(s) and optional promoters(s) onto the support. A catalyst composition and hydro-oxidation process utilizing the silicon-treated catalyst support are also claimed.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: October 17, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: David G. Barton, Robert G. Bowman, George E. Hartwell, Howard W. Clark, Alexander Kuperman
  • Patent number: 7119044
    Abstract: An integrated multi-functional catalyst system includes a diesel particulate filter having an inlet side for receiving flow and an opposite outlet side, a substrate in the diesel particulate filter having an interior wall surface and an exterior wall surface, a first washcoat layer applied to the interior wall surface and adjacent the inlet side, and a second washcoat layer applied to the exterior wall surface and adjacent the outlet side, wherein flow distribution through the substrate is dispersed for minimizing back pressure. The diesel particulate filter may be one of a plurality of honeycomb cells.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 10, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Ming Wei, Thomas R. Pauly, Jiyang Yan, Danan Dou
  • Patent number: 7109145
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 19, 2006
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl-Anton Starz
  • Patent number: 7094728
    Abstract: Disclosed herein is a method of distributing a washcoat along channels of a particulate filter substrate, the method including: forcing a washcoat slurry a predetermined distance into the channels, the predetermined distance being less than or equal to the full length of the channels; clearing an excess amount of washcoat slurry from the channels; and arranging a remainder of the washcoat slurry within the channels, the arranging including applying a first vacuum to a first end of the particulate filter substrate after the clearing. In one embodiment the clearing includes applying a second vacuum to a second end of the particulate filter substrate. In another embodiment, the clearing includes pulling the excess washcoat slurry from the channels. The predetermined distance may be less than or equal to the full length of the channels.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: August 22, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Jiyang Yan, Scott F. Reid, Ming Wei
  • Patent number: 7091377
    Abstract: A multimetal oxide material contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and promoters and has a specific X-ray diffraction pattern. Moreover, such a multimetal oxide material is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations of hydrocarbons.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 15, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Martin Dieterle, Hartmut Hibst
  • Patent number: 7081433
    Abstract: Gold-titania (Au—TiO2) composite aerogels and ambigles were synthesized, characterized, and tested as ambient temperature catalysts for carbon monoxide. Adding alkanethiolate-monolayers-protected gold clusters (with ˜2 nm Au cores) directly to titania sol before gelation yields uniformly dispersed guests in the composite aerogel. The Au guests aggregate to 5 to 10 nm upon calcination to remove alkanethiolate and crystallize amorphous titania to anatase. The resulting composite aerogel exhibits high catalytic activity toward CO oxidation at room temperature at Au particle sizes that are essentially inactive in prior Au—TiO2 catalysts. Transmission electron microscopy illustrates the three-dimensional nature of the catalytic nanoarchitecture in which gold guests contact multiple anatase nanocrystallites.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: July 25, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Debra Rolison, Jeremy Pietron, Rhonda Stroud
  • Patent number: 7078130
    Abstract: This invention provides novel stable metallic mesoporous transition metal oxide molecular sieves and methods for their production. The sieves have high electrical conductivity and may be used as solid electrolyte devices, e.g., in fuel cells, as sorbents, e.g. for hydrogen storage, and as catalysts. The invention also provides room temperature activation of dinitrogen, using the sieves as a catalyst, which permits ammonia production at room temperature.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: July 18, 2006
    Assignee: University of Windsor
    Inventor: David M. Antonelli
  • Patent number: 7071141
    Abstract: A catalyst system for use with an internal combustion engine to provide emissions reductions under lean and stoichiometric operating conditions. The catalyst system comprises a first catalyst comprised of a newly developed Perovskite-based formulation having an ABO3 crystal structure designed to bring the precious metal and NOx trapping elements close together. The first catalyst acts primarily to maximize the reduction of emissions under lean operating conditions. The catalyst system also comprises a second catalyst comprised of precious metals which acts primarily to maximize the reduction of emissions under stoichiometric conditions.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: July 4, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren S Gandhi, Jun (John) Li, Ronald Gene Hurley