Of Group I (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/344)
  • Publication number: 20090163355
    Abstract: Plasma modifications of catalyst supports before and after impregnation of metal precursors improve the activity, selectivity and stability of catalysts, e.g. Ni catalysts for benzene hydrogenation and Pd catalysts for selective hydrogenation of acetylene. Plasma modification of the support before impregnation is slightly more effective than the plasma modification after impregnation. However, plasma modifications after impregnation increase the stability and selectivity of catalysts more effectively. The economic benefit of much improved stability of Ni catalysts for hydrogenation of benzene and the enhanced activity and selectivity of Pd catalysts for acetylene hydrogenation, e.g., is significant. Similar benefits for various catalysts and other industrial processes via RF plasma techniques are expected.
    Type: Application
    Filed: August 31, 2007
    Publication date: June 25, 2009
    Inventors: Wen-Long Jang, Chalita Ratanatawanate
  • Publication number: 20090163358
    Abstract: In a three-way catalyst for purifying exhaust gases from internal combustion engines, scattering of bismuth components can be suppressed by employing a Bi—Ti composite oxide at a predetermined ratio. Accordingly, the effect of suppressing hydrogen sulfide emissions can be retained for a long time. This catalyst comprises a support substrate, and a catalyst layer formed on the support substrate and including a noble metal, a porous oxide, and a Bi—Ti composite oxide, and satisfies 0.3?R?1.5, where R is the molar ratio of the Bi content to the Ti content per unit volume of the support substrate.
    Type: Application
    Filed: January 27, 2006
    Publication date: June 25, 2009
    Inventor: Hiromasa Suzuki
  • Publication number: 20090156396
    Abstract: An exhaust gas purifying catalyst has a front end high concentration coating area coated with a precious metal of a high concentration, and a rear end complex coating area coated at different precious metal densities according to the flowing amount of the exhaust gas and a method for manufacturing an exhaust gas purifying catalyst, which is capable of simultaneously coating a rear end complex coating area at different precious metal densities according to the flowing amount of the exhaust gas. The exhaust gas purifying catalyst includes a front end high concentration coating area coated with a precious metal of a high concentration and a rear end complex coating area having at least two areas of different coating densities on the rear side of the front end high concentration coating area.
    Type: Application
    Filed: February 3, 2009
    Publication date: June 18, 2009
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Sung Mu CHOI
  • Patent number: 7541311
    Abstract: A vermiculite supported catalyst for carbon monoxide (CO) preferential oxidation (PROX) is disclosed. The CO PROX catalyst comprises at least one catalytic agent, one optional modifier agent, one carrier material, and a vermiculite support. The process for preparing the vermiculite supported catalyst in this invention includes depositing first the carrier material on a vermiculite support followed by calcination to form the carrier-containing support, and wet impregnating the catalytic agent and the optional modifier agent on the carrier-containing support followed by drying and calcination to form the CO preferential oxidation catalyst.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 2, 2009
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chao-Yuh Chen, Ching-Tsuen Huang, Chi-Hung Liao, Ching-Tu Chang
  • Patent number: 7541012
    Abstract: The present invention features a catalytic material which includes a metal catalyst anchored to a nano-sized crystal containing a metal oxide. Furthermore, the present invention features a method of producing the catalytic material described herein. Finally, the present invention features using the catalytic material for removing contaminants and for getting the desired products.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 2, 2009
    Assignee: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Nan Yao, Ka Yee Ho
  • Patent number: 7538068
    Abstract: A carbon dioxide gas absorbent includes a porous body containing a lithium complex oxide. The porous body includes pores having a pore diameter distribution such that main pores which consist of first pores with a diameter of 10 to 100 ?m and second pores with a diameter larger than 100 ?m and 500 ?m or smaller occupy 80 to 100%, third pores with a diameter smaller than 10 ?m occupy 0 to 10% and fourth pores with a diameter larger than 500 ?m occupy 0 to 10%, the main pores have a pore diameter distribution such that the first pores occupy 15 to 85% and second pores occupy 15 to 85%.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: May 26, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kato, Toshihiro Imada, Kenji Essaki
  • Publication number: 20090131253
    Abstract: A catalyst body including a catalytic material containing an alkali metal and/or an alkaline earth metal, a carrier carrying the catalytic material, and a method of manufacturing the catalyst body are provided. The carrier has a cordierite binder phase and aggregate phases dispersed in the cordierite binder phase.
    Type: Application
    Filed: October 20, 2008
    Publication date: May 21, 2009
    Applicant: NGK Insulators, Ltd.
    Inventors: Misako FUJII, Kenji Morimoto, Shinji Kawasaki
  • Publication number: 20090114061
    Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.
    Type: Application
    Filed: September 8, 2008
    Publication date: May 7, 2009
    Applicant: UNIVERSITY OF HOUSTON
    Inventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
  • Publication number: 20090118119
    Abstract: A water gas shift catalyst comprising a precious metal deposited on a support, wherein the support is prepared from a mixture comprising a low surface area material, such as an aluminate, particularly a hexaaluminate, and a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and an additional dopant selected from Ga, Nd, Pr, W, Ge, Au, Ag, Fe, oxides thereof and mixtures thereof.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Chandra Ratnasamy, Jon P. Wagner
  • Patent number: 7528268
    Abstract: The present invention relates to a process for the oxidation, in an inert solvent, of a non-aromatic or non-enonic ethylenic bond or of a non-conjugated cyclic ketones into the corresponding epoxides, respectively lactone, using H2O2 as oxidant, a content in water of the reaction medium below 15% w/w and, as sole catalyst, an alkaline or alkaline earth salt or complex.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: May 5, 2009
    Assignee: Firmenich SA
    Inventor: Hubert Mimoun
  • Publication number: 20090111687
    Abstract: The invention relates to a catalyst with large surface area structure, in particular for steam-reforming catalysts, which is characterised in that the large surface area structure is formed of a large number of round or parallel penetrating holes of polygonal cross-section, wherein the catalyst carrier is prepared in the injection moulding process, coated with a washcoat and then impregnated with the active component. The catalyst carrier includes at least one sinterable material and has a lateral pressure resistance of at least 700 N. The invention further relates to a process for the preparation of such catalysts and the use thereof in a reactor.
    Type: Application
    Filed: September 25, 2008
    Publication date: April 30, 2009
    Applicant: Sud-Chemie AG
    Inventors: Wolfgang GABRIEL, Ingo HANKE
  • Publication number: 20090099010
    Abstract: An exhaust gas-purifying catalyst whose activity is less prone to be decreased even in the case where used in a high-temperature atmosphere containing oxygen at a high concentration can be realized. The catalytic layer of the catalyst includes an oxide particle, a simple oxide of alkaline-earth element or rare-earth element, and alumina and/or aluminum hydroxide. The oxide particle contains an oxide of rare-earth element and/or zirconium, a composite oxide and a precious metal. The composite oxide contains an alkaline-earth element and at least one of the rare-earth element and zirconium. The composite oxide and a part of the precious metal form a solid solution.
    Type: Application
    Filed: May 31, 2007
    Publication date: April 16, 2009
    Inventors: Hiroki Nagashima, Akiya Chiba, Satoshi Matsueda
  • Patent number: 7517830
    Abstract: In the distribution of surface vacancies which open on the surface of the cellular walls of pores, more than 8% of total opening area of all surface vacancies that the pores are open on the surface of the cellular walls is occupied by total opening area of surface vacancies having maximum diameter of from 10 to 50 ?m, in the distribution of inner pores, more than 20% of total cross-sectional area of all pores is occupied by total cross-sectional area of pores having cross-sectional area equivalent to that of a circle having diameter more than 300 ?m.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: April 14, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kumiko Nomura, Satoko Inuduka
  • Publication number: 20090088319
    Abstract: The present invention provides processes for synthesizing gold metal oxide catalysts and gold metal oxide catalysts synthesized according to the processes described herein. Methods of using the gold metal catalysts are also provided.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Arvind Vyas Harinath, Chandra K. Banerjee, Jagannathan Sankar
  • Publication number: 20090088317
    Abstract: A reduction catalyst having a first metal component comprising one of Co, Os, Fe, Re, Rh and Ru. The first metal component is present in the catalyst at from 0.5 percent to 20 percent, by weight. A second metal component differing from the first metal component present in the catalyst with the second metal component being selected from the group consisting of Fe, Mn, Ru, Os, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Co, Re, Cu, Pb, Cr, W, Mo, Sn, Nb, Cd, Te, V, Bi, Ga and Na. A hydrogenation catalyst comprising one or both of Ni and Co and one or more elements selected from the group consisting of Mn, Fe, Ag, Au, Mo and Rh.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: John G. Frye, JR., Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20090087363
    Abstract: The present invention provides an encapsulation technology and methods of using the encapsulation technology in processes involving the conversion of carbon monoxide to carbon dioxide.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Inventors: Arvind Vyas Harinath, Ramya Vedaiyan, Jagannathan Sankar
  • Patent number: 7510993
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: March 31, 2009
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Publication number: 20090082196
    Abstract: A method of producing composite particles of titanium dioxide and a compound inactive as a photocatalyst, comprising the steps of preparing a water based slurry of pH 3 to 5 comprising titanium dioxide, preparing a water based solution comprising a compound inactive as a photocatalyst, and reacting the slurry and the water based solution together at a pH within a range from 4 to 10 is provided, together with highly active photocatalyst particles produced using such a method, and potential uses of such photocatalyst particles.
    Type: Application
    Filed: June 19, 2008
    Publication date: March 26, 2009
    Applicant: Showa Denko K.K.
    Inventors: Jun TANAKA, Masayuki Sanbayashi, Yoshinori Ueyoshi, Hiroyuki Hagihara
  • Publication number: 20090082199
    Abstract: A catalyst for purifying exhaust gases includes a carrier substrate and a catalyst layer which is carried on the carrier substrate and contains a noble metal, a porous oxide and an addition oxide containing at least one selected from the group consisting of Ni, Bi, Sn, Fe, Co, Cu and Zn. Only a downstream section of the carrier substrate, which is located on a downstream side of an exhaust gas stream contains the addition oxide, whereas an upstream section of the carrier substrate does not contain the addition oxide. With this arrangement, in the upstream section of the carrier substrate, the noble metal and the addition oxide do not exist together so that the noble metal is not deteriorated with the addition oxide. As a result, in the upstream section, the purification performance as a three-way catalyst is favorably achieved, thereby restraining the emission of H2S while maintaining the three-way performance.
    Type: Application
    Filed: May 25, 2006
    Publication date: March 26, 2009
    Inventors: Hiromasa Suzuki, Takahiko Fujiwara, Mamoru Ishikiriyama
  • Patent number: 7507689
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: March 24, 2009
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7504525
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: March 17, 2009
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 7504357
    Abstract: A catalyst composition having the formula: Mo1VaSbbNbcMdOx wherein M is gallium, bismuth, silver or gold, a is 0.01 to 1, b is 0.01 to 1, c is 0.01 to 1, d is 0.01 to 1 and x is determined by the valence requirements of the other components. Other metals, such as tantalum, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, platinum, boron, arsenic, lithium, sodium, potassium, rubidium, calcium, beryllium, magnesium, cerium, strontium, hafnium, phosphorus, europium, gadolinium, dysprosium, holmium, erbium, thulium, terbium, ytterbium, lutetium, lanthanum, scandium, palladium, praseodymium, neodymium, yttrium, thorium, tungsten, cesium, zinc, tin, germanium, silicon, lead, barium or thallium may also be components of the catalyst. This catalyst is prepared by co-precipitation of metal compounds which are calcined to form a mixed metal oxide catalyst that can be used for the selective conversion of an alkane to an unsaturated carboxylic acid in a one-step process.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 17, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: Paulette N. Hazin, Paul E. Ellis, Jr.
  • Publication number: 20090069594
    Abstract: Catalytic compositions for conversion of substituted aromatic feed materials to oxidized products comprising aromatic carboxylic acid derivatives of the substituted aromatic feed materials comprise at least two metal or metalloid elements, at least one of which is palladium, platinum, vanadium or titanium, and at least one of which is a Group 5, 6, 14 or 15 metal or metalloid. A process for oxidizing substituted aromatic feed materials comprises contacting the feed material with oxygen in the presence of such a catalytic composition in a liquid reaction mixture.
    Type: Application
    Filed: May 4, 2007
    Publication date: March 12, 2009
    Applicant: BP Corporation North America Inc.
    Inventors: William H. Gong, Victor Adamian, Stephen P. Brugge, Peter D. Metelski, Philip O. Nubel, Wayne P. Schammel, Chengxiang Zhou
  • Publication number: 20090054230
    Abstract: A process for producing gold-based, heterogeneous catalyst systems comprises depositing fine-nanoscale gold onto a nanoparticulate support medium by physical vapor deposition in an oxidizing atmosphere.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Inventors: Badri Veeraraghavan, Thomas E. Wood, Craig S. Chamberlain, Sheryl A. Vanasse
  • Publication number: 20090048476
    Abstract: The present invention relates to catalyst-loaded coal compositions having a moisture content of less than about 6 wt %, a process for the preparation of catalyst-loaded coal compositions, and an integrated process for the gasification of the catalyst-loaded coal compositions. The catalyst-loaded coal compositions can be prepared by a diffusive catalyst loading process that provides for a highly dispersed catalyst that is predominantly associated with the coal matrix, such as by ion-exchange.
    Type: Application
    Filed: July 23, 2008
    Publication date: February 19, 2009
    Applicant: GREATPOINT ENERGY, INC.
    Inventors: Alkis S. Rappas, George Frederick Salem, Edwin J. Hippo
  • Patent number: 7488462
    Abstract: Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO2 to nitrogen (N2).
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: February 10, 2009
    Assignee: The Ohio State University
    Inventors: Umit S. Ozkan, Erik M. Holmgreen, Matthew M. Yung
  • Publication number: 20090036296
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Application
    Filed: June 20, 2008
    Publication date: February 5, 2009
    Inventors: X.D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20090031712
    Abstract: Described is a method of slowly releasing a catalyst for, inter alia, the purpose of soot oxidation in a particulate filter. An example method includes incorporating an alkali metal oxide in a glass. Slow leaching of the alkali from the glass provides a means to gradually deliver the catalyst over extended periods. Additionally, the example method includes increasing the amount of alkaline metal ions that may be leached from the glass.
    Type: Application
    Filed: January 28, 2008
    Publication date: February 5, 2009
    Inventors: Paul J. McGinn, Hongmei An
  • Patent number: 7485597
    Abstract: A method for improving the selectivity of a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, which method comprises contacting the catalyst, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.; and a process for the epoxidation of an olefin, which process comprises contacting a supported highly selective epoxidation catalyst comprising silver in a quantity of at most 0.17 g per m2 surface area of the support, or a precursor of the catalyst comprising the silver in cationic form, with a feed comprising oxygen at a catalyst temperature above 250° C. for a duration of up to 150 hours, and subsequently decreasing the catalyst temperature to a value of at most 250° C.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: February 3, 2009
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates, Donald Reinalda
  • Patent number: 7485596
    Abstract: The present invention is for a process for making a heteropoly acid compound catalyst for oxidation of unsaturated aldehydes, such as methacrolein, to unsaturated carboxylic acids, such as methacrylic acid, said catalyst containing oxides of molybdenum, phosphorus, and M?, wherein M? is cesium, potassium, rubidium, or sodium, and bismuth. The process is a synthesis of the catalyst with specific process conditions for addition of the bismuth compound as an aqueous slurry without nitric acid. A catalyst precursor is formed by removing the water and drying the solid particles. The heteropoly acid compound catalyst is formed by calcination of the catalyst precursor.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 3, 2009
    Assignee: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Lixia Cai, Wugeng Liang
  • Publication number: 20090019770
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds
    Type: Application
    Filed: July 21, 2008
    Publication date: January 22, 2009
    Applicant: PALL CORPORATION
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Publication number: 20090011925
    Abstract: A catalytically active glass-ceramic and method for producing a catalytically active multi-phase glass-ceramic in which at least one catalyst precursor is mixed with a glass-ceramic precursor formulation to form a catalyst precursor/glass-ceramic precursor mixture. The catalyst precursor/glass-ceramic precursor mixture is then melted to form an amorphous glass material which, in turn, is devitrified to form a polycrystalline ceramic. The polycrystalline ceramic is then activated, forming a catalytically active multi-phase glass-ceramic.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Larry Gordon Felix, David Morrissey Rue, Thomas Philip Seward, III, Logan Edwin Weast
  • Publication number: 20090012335
    Abstract: Disclosed herein is a process for the preparation of fluorine-containing olefins comprising contacting a chlorofluoroalkene with hydrogen in the presence of a catalyst at a temperature sufficient to cause replacement of the chlorine substituents with hydrogen. Also disclosed is a catalyst composition for the hydrodechlorination of chlorofluoroalkenes comprising copper metal deposited on a support.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 8, 2009
    Applicant: E.I.du pont de Nemours and Company
    Inventors: Mario Joseph Nappa, Ekaterina N. Swearingen
  • Patent number: 7473668
    Abstract: Process for the catalytic dehydrogenation of alkylaromatic hydrocarbons optionally mixed with ethane which comprises: A) dehydrogenating the hydrocarbon stream, optionally mixed with an inert gas, in a fluid bed reactor in the presence of a catalytic composition based on gallium and manganese supported on alumina modified with silica, at a temperature ranging from 400 to 700° C., at a total pressure ranging from 0.1 to 3 ata and with a GHSV (Gas Hourly Space Velocity) ranging from 50 to 10,000 h?1; and B) regenerating and heating the catalyst, by means of the catalytic oxidation of a fuel, in a fluid bed regenerator at a temperature higher than 400° C.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 6, 2009
    Assignee: Snamprogetti S.p.A.
    Inventors: Andrea Bartolini, Domenico Sanfilippo, Rodolfo Iezzi
  • Publication number: 20090005239
    Abstract: This invention relates to an improved amorphous zirconium hydroxide and a method for its production. The hydroxide has a surface area of at least 300 m2/g, a total pore volume of at least 0.70 cm3/g and an average pore size of between 5 nm and 15 nm, and is prepared by a process which comprises the steps of: a) preparing an aqueous solution comprising sulphate anions and a zirconium salt such that the ZrO2:SO3 ratio is 1:0.40 to 1:0.52, (b) chilling the solution to below 25° C., (c) adding an alkali in order to precipitate the amorphous zirconium hydroxide, (d) filtering and washing the precipitated zirconium hydroxide with water or an alkali to remove residual sulphate and chloride, (e) hydrothermally treating the zirconium hydroxide at a pressure of less than 3 barg, and (f) drying the zirconium hydroxide. The zirconium hydroxide of the present invention, which can be doped, is particularly useful in catalytic applications.
    Type: Application
    Filed: January 24, 2007
    Publication date: January 1, 2009
    Applicant: MAGNESIUM ELEKTRON LIMITED
    Inventors: Heather Bradshaw, Clive Butler, Hazel Stephenson
  • Publication number: 20080317653
    Abstract: A catalyst system comprises a gold catalyst capable of oxidizing CO; a hydrocarbon oxidation catalyst; and a hydrocarbon adsorbing material.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 25, 2008
    Inventors: Boris L'vovich Moroz, Karl C. Kharas, Mikhail Yurievich Smirnov, Alexander Sergeevich Bobrin, Valerii Ivanovich Bukhtlyarov
  • Publication number: 20080318769
    Abstract: A catalyst (1) for use in exhaust emission control that improves catalytic activity and reduces the amount of noble metal used and method for making such a catalyst (1). The catalyst (1) includes a noble metal first constituent (2); a transition metal compound second constituent (3), part or all of which forms a complex with the noble metal; a third constituent element (4) that is in contact with the complex and has an electronegativity of 1.5 or less; and a porous carrier (5) that supports the noble metal, the transition metal compound and the third constituent element (4), and that is such that part or all of which forms a complex oxide with the third constituent element (4).
    Type: Application
    Filed: August 4, 2005
    Publication date: December 25, 2008
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Toru Sekiba, Katsuo Suga
  • Publication number: 20080312070
    Abstract: The invention relates to a method for forming a material of a metal oxide supported on a support particle by the steps of. a) providing a precursor mixture comprising a solution containing one or more metal cations and (i) a surfactant; or (ii) a hydrophilic polymer; with the precursor mixture further including support particles; and b) treating the precursor mixture from (a) above by heating to remove the surfactant or hydrophilic polymer and form metal oxide having nano-sized grains, wherein at least some of the metal oxide formed in step (b) is deposited on or supported by the support particles and the metal oxide has an oxide matrix that includes metal atoms derived solely from sources other than the support particles.
    Type: Application
    Filed: May 5, 2006
    Publication date: December 18, 2008
    Inventors: Peter Cade Talbot, Geoffrey Alan Edwards, Jose Antonio Alarco
  • Publication number: 20080305948
    Abstract: A method for producing a catalytically-active material having at least one base component and at least one catalytically-active component in which the at least one base component is heated to a softening or melting temperature to form a softened or molten base component. While the base component is in the softened or molten state, at least one catalytically-active component is incorporated into or onto the base component, forming the catalytically-active material. In accordance with one embodiment, a catalyst precursor is introduced into the base component and subsequently transformed to a catalytically-active component.
    Type: Application
    Filed: August 13, 2008
    Publication date: December 11, 2008
    Applicant: GAS TECHNOLOGY INSTITUTE
    Inventors: Larry Gordon Felix, David M. Rue, Rachid B. Slimane
  • Publication number: 20080305033
    Abstract: A catalyst effective for the direct reaction of hydrogen and oxygen to form hydrogen peroxide includes particles of gold, palladium or, preferably, gold and palladium deposited upon an acid-washed support. High selectivity to and production of hydrogen peroxide is observed, with low hydrogen peroxide decomposition. The catalysts have extended lifespan.
    Type: Application
    Filed: July 10, 2006
    Publication date: December 11, 2008
    Applicant: UNIVERSITY COLLEGE CARDIFF CONSULTANTS LIMITED
    Inventors: Albert Frederick Carley, Jennifer Kelly Edwards, Graham John Hutchings, Benjamin Eduardo Solsona Espriu
  • Publication number: 20080280750
    Abstract: Catalysts for treating acid gases and halogen gases and the production methods thereof. The acid and halogen gases include HCl, HF, HBr, HI, F2, Cl2, Br2, I2, ClF3, PH3, PCl3, PCl5, POCl3, P2O5, AsH3, SiH4, SiF4, SiCl4, SiHCl3, SiH2Cl2, BF3, BCl3, GeCl4, GeH4, NO, NO2, SO2, SO3 and SF6, etc. The catalysts comprise one or more carrier materials selected from activated carbon, argil, diatomite, cement, silica and ceramic materials; and one or more metal compounds selected from: alkali metal hydroxides, oxides, carbonates and bicarbonates, alkaline earth metal hydroxides, oxides, carbonates and bicarbonates, Group IIIA metal oxides, Group IVA metal oxides, and transition metal oxides, oxide hydrates, sulfates and carbonates.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 13, 2008
    Inventor: Pao-Chu Liu
  • Publication number: 20080261806
    Abstract: A catalyst supporting honeycomb includes a pillar-shaped honeycomb structure and catalyst particles supported on the honeycomb structure. The honeycomb structure includes cell walls extending in a longitudinal direction of the honeycomb structure to define a plurality of cells extending in the longitudinal direction. The plurality of cells include large-volume cells having first opening ends and second closing ends opposite to the first opening ends along the longitudinal direction, and small-volume cells having first closed ends and second opening ends opposite to the first closed ends along the longitudinal direction. Total cross sectional areas of the large-volume cells on a plane perpendicular to the longitudinal direction are larger than total cross sectional areas of the small-volume cells on the plane. The catalyst particles include an oxide catalyst having an average particle diameter of at least about 0.05 ?m and at most about 1.00 ?m.
    Type: Application
    Filed: April 16, 2008
    Publication date: October 23, 2008
    Applicants: IBIDEN CO., LTD., Athanasios G. KONSTANDOPOULOS
    Inventors: Athanasios G. Konstandopoulos, Kazushige Ohno, Tomokazu Oya, Kazutake Ogyu
  • Patent number: 7435274
    Abstract: There is disclosed a metal particle-dispersed composite oxide comprising a matrix material containing a composite oxide comprising a non-reducible metal oxide and an easily reducible metal oxide, the composite oxide containing 0.01 to 0.25 mol % of at least one additive metal selected from Al, Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si, surface metal particles precipitated on an outer surface of the matrix material containing the composite oxide, and inner metal particles precipitated on an inner surface of the matrix material containing the composite oxide.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: October 14, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Tomohiro Suetsuna, Takayuki Fukasawa, Yasuhiro Goto, Koichi Harada
  • Publication number: 20080247941
    Abstract: A catalyst for gas-phase reactions which has high mechanical stability and comprises one or more active metals on a support comprising aluminum oxide as support material, wherein the aluminum oxide in the support consists essentially of alpha-aluminum oxide. Ruthenium, copper and/or gold are preferred as active metal. Particularly preferred catalysts according to invention comprise a) from 0.001 to 10% by weight of ruthenium, copper and/or gold, b) from 0 to 5% by weight of one or more alkaline earth metals, c) from 0 to 5% by weight of one or more alkali metals, d) from 0 to 10% by weight of one or more rare earth metals, e) from 0 to 10% by weight of one or more further metals selected from the group consisting of palladium, platinum, osmium, iridium, silver and rhenium, in each case based on the total weight of the catalyst, on the support comprising alpha-Al2O3. The catalysts are preferably used in the oxidation of hydrogen chloride (Deacon reaction).
    Type: Application
    Filed: August 22, 2006
    Publication date: October 9, 2008
    Applicant: BASF SE
    Inventors: Olga Schubert, Martin Sesing, Lothar Seidemann, Martin Karches, Thomas Grassler, Martin Sohn
  • Publication number: 20080241642
    Abstract: A catalyst formulation for an organic fuel cell includes a noble metal and an admetal. The catalyst formulation can include a noble metal and an admetal in a heterogeneous mixture or a solid solution with up to about 90% degree of alloying. The admetal can encourage the oxidation of catalyst poisons at room temperature and therefore reduces the exhaustion of the fuel cell.
    Type: Application
    Filed: December 28, 2007
    Publication date: October 2, 2008
    Inventors: Coca Iordache, Sharon Blair, Derek Lycke, Sean Huff
  • Publication number: 20080234125
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: June 2, 2008
    Publication date: September 25, 2008
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Patent number: 7427581
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 23, 2008
    Assignee: China Petroleum & Chemical Corporation
    Inventor: Gyanesh P. Khare
  • Publication number: 20080219918
    Abstract: A catalyst for fuel reforming including a metal catalyst that includes at least one active component A selected from the group consisting of Pt, Pd, Ir, Rh and Ru; and an active component B that is at least one metal selected from the group consisting of Mo, V, W, Cr, Re, Co, Ce and Fe, oxides thereof, alloys thereof, or mixtures thereof, and a carrier impregnated with the metal catalyst, and a method of producing hydrogen by performing a fuel reforming reaction using the catalyst for fuel reforming. The catalyst for fuel reforming has excellent catalytic activity at a low temperature and improved hydrogen purity. Therefore, when the catalyst for fuel reforming is used, high-purity hydrogen, which can be used as a fuel of a fuel cell, can be produced with high purity.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 11, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Doo-hwan Lee, Yulia Potapova, Soon-ho Kim, Hyun-chul Lee, Kang-hee Lee
  • Publication number: 20080207924
    Abstract: The present invention relates to a catalyst, in particular for the preparation of phthalic anhydride by gas phase oxidation of o-xylene and/or naphthalene, having an inert support and at least one layer which has been applied thereto and has a catalytically active composition comprising TiO2, characterized in that at least a portion of the TiO2 used has the following properties: (a) the BET surface area is more than 15 m2/g, (b) at least 25% of the total pore volume is formed by pores having a radius between 60 and 400 nm, and (c) the primary crystal size is more than 22 ångstrøm. Also described is a preferred process for preparing such a catalyst, and the preferred use of the titanium dioxide used in accordance with the invention.
    Type: Application
    Filed: May 22, 2005
    Publication date: August 28, 2008
    Inventors: Marvin Meissner Estenfelder, Helmut Hartsberger, Christian Guckel
  • Publication number: 20080206562
    Abstract: The disclosure relates to metal nanoparticle compositions and methods of making such nanoparticle compositions that are useful for the production of electrically conductive features and catalysts.
    Type: Application
    Filed: January 12, 2008
    Publication date: August 28, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Galen D. Stucky, Nanfeng Zheng