Of Group Iv (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/349)
-
Patent number: 8034311Abstract: An oxidation catalyst that efficiently promotes oxidation of NO to NO2 even in a low temperature range, and an exhaust-gas purification system and method that efficiently removes exhaust-gas components even in a low temperature range are provided. This invention provides an oxidation catalyst comprising platinum and palladium as catalytically active components, which promotes oxidation of nitrogen monoxide to nitrogen dioxide, wherein the oxidation catalyst comprises 1 to 55 parts by weight of the palladium relative to 100 parts by weight of the platinum.Type: GrantFiled: February 17, 2010Date of Patent: October 11, 2011Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.Inventors: Masanori Ikeda, Naohiro Kato
-
Publication number: 20110237758Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.Type: ApplicationFiled: September 16, 2009Publication date: September 29, 2011Applicant: DIC CorporationInventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
-
Patent number: 8026398Abstract: Catalyst comprising a combination of oxidized metals and processes for cleaving phenylalkyl hydroperoxides in the presence of the catalyst.Type: GrantFiled: May 14, 2007Date of Patent: September 27, 2011Inventors: Narayana Mysore, John Charles Saukaitis, John Anthony Smegal
-
Patent number: 8026193Abstract: The present invention provides a metal oxide having a combination of multiple properties useful in the production of an exhaust gas purifying catalyst, a production process thereof, and an exhaust gas purifying catalyst for purifying the components in an exhaust gas. The metal oxide particle of the present invention comprises a core part 1 relatively rich in a ceria-zirconia solid solution and a surface layer 2 relatively rich in a second metal oxide such as ceria or zirconia.Type: GrantFiled: April 27, 2005Date of Patent: September 27, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventor: Masahide Miura
-
Publication number: 20110223096Abstract: Thermally stable catalyst for heterogeneously catalyzed oxidation in the presence of hydrogen chloride and/or chlorine, comprising nanoparticulate core of a ruthenium compound with surrounding gas- and liquid-pervious shell of zirconium oxide or titanium oxide.Type: ApplicationFiled: November 24, 2009Publication date: September 15, 2011Applicant: Bayer Technology Services GMBHInventors: Aurel Wolf, Leslaw Mleczko, Jens Abmann, Frank Rauscher
-
Patent number: 8017097Abstract: The present invention relates to application of catalysts for the Selective Catalytic Reduction of oxides of Nitrogen using N-containing reductant. The catalysts are characterized as phase pure lattice oxide materials into which catalytically active cations are incorporated at high levels of dispersion such that conventional analysis reveals a highly phase pure material. The materials are further characterized by high activity, hydrothermal durability and poison tolerance in the intended application.Type: GrantFiled: March 26, 2010Date of Patent: September 13, 2011Assignee: Umicore AG & Co. KGInventors: Barry W. L. Southward, John G. Nunan
-
Patent number: 8007750Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.Type: GrantFiled: July 19, 2007Date of Patent: August 30, 2011Assignee: BASF CorporationInventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
-
Patent number: 8003567Abstract: The present teachings are directed toward hexagonally patterned porous titania synthesized from a titanium isopropoxide precursor using a viscous template of surface-active agents separating nanoscopic bicontinuous channels of water and isooctane. Subsequent catalyst metal salt reduction in the aqueous nanochannels deposits well-separated catalyst metal nanoparticles on the pore surfaces. These nanocomposites exhibit significantly higher carbon monoxide oxidation efficiency than that obtained with known supports with higher specific surface area; efficiency is believed to be due to decreased mass transfer resistance provided the presently disclosed support material.Type: GrantFiled: August 17, 2009Date of Patent: August 23, 2011Assignees: Honda Motor Co., Ltd., The Administrators of the Tulane Educational Fund, Rhode Island Board of Governors for Higher Education, Rensselaer Polytechnic InstituteInventors: Christopher Brooks, Arijit Bose, Jayashri Sarkar, Ganapathiraman Ramanath, Vijay T. John
-
Patent number: 8003565Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.Type: GrantFiled: April 28, 2006Date of Patent: August 23, 2011Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
-
Patent number: 7998896Abstract: An exhaust gas purifying catalyst having a good ignition performance is provided. The exhaust gas purifying catalyst 1 includes a catalyst substrate 3 and a catalyst coating layer 5 which contains a noble metal and a refractory inorganic oxide and is formed on the catalyst substrate. The exhaust gas purifying catalyst is characterized in that the catalyst coating layer 5 includes an upstream portion 11 located upstream and a downstream portion 13 located downstream in a flow direction of an exhaust gas. The upstream portion 11 has a layered structure including an upstream portion inside layer 17 and an upstream portion outside layer 15. The upstream portion inside layer contains a cerium-zirconium composite oxide in which a relative proportion of CeO2 is 50 to 95 wt %, as the refractory inorganic oxide, and the upstream portion outside layer 15 and the downstream portion 13 contain a cerium-zirconium composite oxide in which a relative proportion of ZrO2 is 50 to 95 wt %, as the refractory inorganic oxide.Type: GrantFiled: July 24, 2006Date of Patent: August 16, 2011Assignee: Cataler CorporationInventors: Ichiro Kitamura, Kenichi Taki, Akimasa Hirai
-
Publication number: 20110183840Abstract: An improved method for the formation of composite hydroxides or oxides comprising, on an oxide basis, Al2O3 and ZrO2, and optionally CeO2, La2O3, Nd2O3, Pr6O11, Sm2O3, Y2O3, and other rare earth oxides, comprising the steps of preparing an aqueous metal salt solution and forming a hydroxide precipitate slurry by combining the aqueous metal salt solution with an aqueous solution of a caustic alkali at a pH greater than 8.5 to precipitate out all the metal species. The variation in pH during the precipitation reaction is ±1. The invention also relates to composites formed by this method comprising 20-70 wt % Al2O3, 10-77 wt % ZrO2, 0-34 wt % CeO2 and 0-22 wt % REOs other than CeO2, and to composites per se comprising, on an oxide basis, 42-70 wt % Al2O3, 10-48 wt % ZrO2, 2-34 wt % CeO2 and 0-9 wt % REOs other than CeO2 and having the following properties after heating to 850° C. over four hours and holding at 850° C.Type: ApplicationFiled: April 6, 2011Publication date: July 28, 2011Applicant: MAGNESIUM ELEKTRON LIMITEDInventor: John G. DARAB
-
Patent number: 7985709Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.Type: GrantFiled: September 28, 2004Date of Patent: July 26, 2011Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space AdministrationInventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony N. Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
-
Patent number: 7985830Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.Type: GrantFiled: December 30, 2009Date of Patent: July 26, 2011Assignee: GM Global Technology Operations LLCInventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
-
Patent number: 7985395Abstract: Catalyst for oxidation reactions which comprises at least one constituent active in the catalysis of hydrogen chloride oxidation and support therefor, which support is based on uranium oxide. The catalyst is notable for a high stability and activity.Type: GrantFiled: June 26, 2008Date of Patent: July 26, 2011Assignee: Bayer Technology Services GmbHInventors: Aurel Wolf, Leslaw Mleczko, Oliver Felix-Karl Schlüter, Stephan Schubert
-
Patent number: 7981275Abstract: The present invention relates to the novel catalytic composition having a high specific activity in reactions involving hydroprocessing of light and intermediate petroleum fractions, and preferably in hydrodesulphurization and hydrodenitrogenation reactions. The inventive catalyst contains at least one element of a non-noble metal from group VIII, at least one element from group VIB and, optionally, a group one element of the VA group, which are deposited on a novel catalytic support comprising of an inorganic metal oxide from group IVB, consisting of an (1D) one-dimensional nanostructured material having nanofibers and/or nanotube morphology with high specific surface area of between 10 and 500 m2/g.Type: GrantFiled: October 10, 2003Date of Patent: July 19, 2011Assignee: Instituto Mexicano del PetroleoInventors: José Antonio Toledo Antonio, José Escobar Aguilar, María Antonia Cortés Jacome, Maria de Lourdes Mosqueira Mondragon, Víctor Pérez Moreno, Carlos Angeles Chávez, Esteban López Salinas, Marcelo Lozada y Cassou
-
Patent number: 7981834Abstract: An object of the present invention is to improve hydrocarbon adsorbing property when zeolite is used as an adsorbent for hydrocarbons. The present invention provides an adsorbent for hydrocarbons characterized by comprising A Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range of 10 or more and less than 200 and B Type of ?-zeolite having a SiO2/Al2O3 ratio (molar ratio) in a range from 200 to 1,000, and a catalyst for exhaust gas purification containing said adsorbent for hydrocarbons.Type: GrantFiled: March 13, 2007Date of Patent: July 19, 2011Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.Inventors: Hideki Goto, Akihisa Okumura
-
Patent number: 7981274Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.Type: GrantFiled: July 21, 2008Date of Patent: July 19, 2011Assignee: Pall CorporationInventors: Manfred Nacken, Steffen Heidenreich
-
Patent number: 7981390Abstract: Catalyst articles comprising substantially only a palladium precious metal component and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; and a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 10-150 g/ft3 of palladium, wherein the palladium component is substantially the only platinum group metal component. One or more improved properties are exhibited by the catalyst article.Type: GrantFiled: December 22, 2009Date of Patent: July 19, 2011Assignee: BASF CorporationInventors: Michael P. Galligan, Xinsheng Liu, Pascaline H. Tran, Young Gin Kim, Ye Liu
-
Publication number: 20110172086Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: ApplicationFiled: August 24, 2009Publication date: July 14, 2011Applicant: JOHNSON MATTHEY PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Patent number: 7976989Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterised by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.Type: GrantFiled: October 29, 2004Date of Patent: July 12, 2011Assignee: Umicore AG & Co. KGInventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
-
Patent number: 7977274Abstract: The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 ?m to about 5 ?m and having a differential pore volume peak in the range of from about 0.01 ?m to about 5 ?m. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 ?m to about 20 ?m and have a differential pore volume peak in the range of from about 1 ?m to about 20 ?m.Type: GrantFiled: September 29, 2006Date of Patent: July 12, 2011Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KGInventor: Christian Gueckel
-
Patent number: 7976784Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. An oxidation catalyst is utilized, which comprises particulate platinum or platinum/palladium dispersed on zirconia particles, the particulate platinum or platinum/palladium having an average particle size less than about 10 nm. The catalyst is effective to convert less than 20% of NO to NO2 passing through the oxidation catalyst.Type: GrantFiled: December 18, 2007Date of Patent: July 12, 2011Assignee: BASF CorporationInventors: Xinsheng Liu, Xinyi Wei, Pascaline Tran, Gerard Lapadula
-
Patent number: 7976804Abstract: A catalyst for the decomposition of N2O under the conditions of the Ostwald process, comprising a carrier and a coating made of rhodium, rhodium/palladium or rhodium oxide applied thereto, ensures to yield NO with a particularly low content of laughing gas as the first process product.Type: GrantFiled: January 9, 2009Date of Patent: July 12, 2011Assignee: W.C. Heraeus GmbHInventors: Uwe Jantsch, Jonathan Lund, Marek Gorywoda, Marcus Kraus
-
Publication number: 20110163044Abstract: A ceramic structure for water treatment, a water treatment apparatus and method are provided. Immersion efficiency of a photo catalyst and a specific surface area of the immersed photo catalyst can be improved using a ceramic medium including a ceramic paper prepared of a ceramic fiber. Accordingly, it is possible to provide the water treatment apparatus and method capable of increasing decomposition efficiency of contaminated materials due to irradiation of ultraviolet light, and so on, enabling continuous purification treatment, and remarkably reducing preparation, management and water treatment expenses.Type: ApplicationFiled: December 23, 2010Publication date: July 7, 2011Applicant: LG HAUSYS, LTD.Inventors: Moonsuk HAN, Ju-Hyung Lee, Seongmoon Jung
-
Publication number: 20110166012Abstract: In one embodiment, the catalyst assembly includes a two-dimension (2-D) extensive catalyst having a catalyst crystal plane; and a substrate supporting the 2-D extensive catalyst and having a substrate crystal plane in substantial alignment with the catalyst crystal plane. In certain instances, the catalyst crystal plane includes first and second adjacent catalyst atoms defining a catalyst atomic distance, the substrate crystal plane includes first and second adjacent substrate atoms defining a substrate atomic distance, a percent difference between the catalyst and substrate atomic distances is less than 10 percent.Type: ApplicationFiled: October 26, 2010Publication date: July 7, 2011Applicant: FORD GLOBAL TECHNOLOGIES, LLCInventors: Jun Yang, Shinichi Hirano, Richard E. Soltis, Andrew Robert Drews, Andrea Pulskamp, James Waldecker
-
Publication number: 20110160478Abstract: The present invention pertains to a catalyst for the synthesis of organic alkyl carbamates, the method for preparing the same and the use thereof. The catalyst comprises a catalytically active component and a catalyst support, and the catalytically active component being carried by the catalyst support, wherein the catalytically active component comprises a transition metal oxide, and the general formula of the transition metal oxide is EOx, wherein E is selected from transition metal element and x is in the range of 0.5-4.Type: ApplicationFiled: February 13, 2009Publication date: June 30, 2011Inventors: Youquan Deng, Yubo Ma, Liguo Wang, Xiaoguang Guo, Shigo Zhang, Yude He, Stefan Wershofen, Stephan Klein, Zhiping Zhou
-
Patent number: 7968491Abstract: The present invention relates to a catalyst for preparing phthalic anhydride by gas phase oxidation of o-xylene and/or naphthalene, comprising at least three catalyst zones which have different compositions and, from the gas inlet side toward the gas outlet side, are referred to as first, second and third catalyst zone, the catalyst zones having in each case an active composition comprising TiO2 with a content of Na of less than 0.Type: GrantFiled: November 28, 2005Date of Patent: June 28, 2011Assignee: Sud-Chemie AGInventors: Christian Guckel, Markus Niedermeier, Marvin Estenfelder
-
Patent number: 7968492Abstract: Low temperature activity and high temperature ammonia selectivity of a vanadium-free selective catalytic reduction catalyst are controlled with a mixed oxide support containing oxides of titanium and zirconium, and a plurality of alternating layers respectively formed of a metal compound and titanium oxide present on the surface of the mixed oxide support. The metal compound is selected from the group consisting of manganese oxide, iron oxide, cerium oxide, tin oxide, and mixtures thereof.Type: GrantFiled: May 11, 2009Date of Patent: June 28, 2011Assignee: Millennium Inorganic Chemicals, Inc.Inventor: Steven M. Augustine
-
Patent number: 7964527Abstract: Catalytic compositions useful, e.g., for the treatment of internal combustion engine exhaust gases, are based on zirconium oxide in a weight proportion of at least 25%, from 15% to 60% of cerium oxide, from 10% to 25% of yttrium oxide, from 2% to 10% of lanthanum oxide and from 2% to 15% of another rare earth oxide, have a specific surface of at least 15 m2/g and a cubic phase, and are prepared from a mixture of zirconium, cerium, yttrium, lanthanum and the additional rare earth, by precipitating such mixture with a base, heating the precipitate in an aqueous medium, adding thereto a surfactant and calcining the precipitate.Type: GrantFiled: February 13, 2007Date of Patent: June 21, 2011Assignee: Rhodia OperationsInventors: Olivier Larcher, Stephan Verdier, Emmanuel Rohart, Aimin Huang
-
Publication number: 20110144400Abstract: The invention relates to a material which is suited as a carrier for catalysts in the dehydrogenation of alkanes and in the oxidative dehydrogenation of alkanes and which is made of an oxide ceramic foam and may contain combinations of the substances aluminium oxide, calcium oxide, silicon dioxide, tin oxide, zirconium dioxide, calcium aluminate, zinc aluminate, silicon carbide, and which is impregnated with one or several suitable catalytically active materials, by which the flow resistance of the catalyst decreases to a considerable degree and the accessibility of the catalytically active material improves significantly and the thermal and mechanical stability of the material increases. The invention also relates to a process for the manufacture of the material and a process for the dehydrogenation of alkanes by using the material according to the invention.Type: ApplicationFiled: July 28, 2009Publication date: June 16, 2011Applicant: UHDE GMBHInventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Oliver Noll, Domenico Pavone, Sascha Wenzel
-
Patent number: 7960307Abstract: A sulfur reduction catalyst useful to reduce the levels of sulfur in a cracked gasoline product comprises a metal vanadate compound. The metal vanadate compound can be supported on a molecular sieve such as a zeolite in which the metal vanadate compound is primarily located on the exterior surface of the pore structure of the zeolite and on the surface of any matrix material used to bind or support the zeolite.Type: GrantFiled: March 6, 2007Date of Patent: June 14, 2011Assignee: BASF CorporationInventors: Xingtao Gao, James Fu
-
Publication number: 20110129298Abstract: This invention provides a photocatalyst material, which can be produced at low cost without using platinum, particularly a visible light response-type photocatalyst material, a material having a photocatalyst mechanism not possessed by the conventional photocatalyst material, a process for producing the material, and a method for decomposing a contaminant using the material. The photocatalyst material comprises a) an oxide of a first metal and b) an aqua complex salt of a second metal. In this case, for the oxide of a first metal, the redox potential of a conduction band lower end in the oxide is on a rather negative side than 0.2 V (a value as measured at pH=0, vs. reference electrode potential). For the aqua complex salt of a second metal, the redox potential of a second metal ion in the aqua complex salt is on a rather negative side than 3.0 V (a value as measured at pH=0, vs. reference electrode potential).Type: ApplicationFiled: June 4, 2008Publication date: June 2, 2011Applicant: The University of TokyoInventors: Kazuhito Hashimoto, Hiroshi Irie, Ryuhei Nakamura, Shuhei Miura
-
Publication number: 20110119993Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst and hydrogen at process conditions of at least 400 psig pressure and temperatures of at least 200° C. These processes use interstitial metal hydrides that possess significant hydrogen capacities and high hydrogen kinetics rate properties. The catalysts and processes of the present invention may be used with or without radio frequency or microwave energy and are preferably run under conditions of high hydrogen partial pressure above about 350 psia. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams as compared to processes of the prior art operated under similar conditions.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Faiz Pourarian, Marc A. Portnoff, David A. Purta, Margaret A. Nasta, Jingfeng Zhang
-
Publication number: 20110119990Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.Type: ApplicationFiled: November 17, 2010Publication date: May 26, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANHYInventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan M. McConnachie, Faiz Pourarian
-
Patent number: 7947238Abstract: An oxidation catalyst for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO) and the reduction of nitrogen oxides (NOx) from a diesel engine and methods of exhaust gas treatment are disclosed. More particularly, a washcoat composition is disclosed comprising at least two washcoat layers, a first washcoat comprising palladium supported on ceria-zirconia and ceria-zirconia-alumina and a second washcoat containing one or more of platinum and palladium and one or more hydrocarbon storage components. An undercoat may also be included in the catalyst. Also disclosed are method of exhaust gas treatment and diesel exhaust gas treatment systems that include the oxidation catalyst and a downstream soot filter.Type: GrantFiled: December 21, 2009Date of Patent: May 24, 2011Assignee: BASF CorporationInventor: Michel Deeba
-
Patent number: 7943108Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.Type: GrantFiled: September 11, 2008Date of Patent: May 17, 2011Assignee: MEMC Electronic Materials, Inc.Inventors: Vithal Revankar, Jameel Ibrahim
-
Patent number: 7943104Abstract: In one embodiment, a solid solution material comprises, based upon 100 mole %: about 30 mol% about 95 mol % zirconium, about 0.5 mol % to about 50 mole % cerium, up to about 20 mole % of a stabilizer selected from the group consisting of yttrium, rare earths, and combinations comprising at least one of the stabilizers, and about 0.01 to about 25 mole % of a metal selected from the group consisting of indium, tin, and mixtures comprising at least one of the foregoing metals.Type: GrantFiled: April 13, 2006Date of Patent: May 17, 2011Assignee: Umicore AG & Co. KGInventors: Alexandr I. Kozlov, John G. Nunan, Karl C. Kharas
-
Patent number: 7939040Abstract: The inventive composition is based on cerium oxide and on zirconium oxide in an atomic proportion Ce/Zr of at least 1, and has a reducibility rate of at least 70% and a surface area of at least 15 m; 2; /g. This composition is obtained by a method in which: a mixture is made containing cerium and zirconium compounds; this mixture is provided with a basic compound whereby obtaining a precipitate that is heated in an aqueous medium; a surfactant-type additive or a polyethylene glycol or a carboxylic acid is added to this medium or to the separated precipitate; the mixture is ground; the precipitate obtained thereof is calcined under inert gas or vacuum, in a first period of time, at a temperature of at least 850° C. and then under an oxidizing atmosphere, in a second period of time, at a temperature of at least 400° C.Type: GrantFiled: September 2, 2004Date of Patent: May 10, 2011Assignee: Rhodia OperationsInventors: Olivier Larcher, Emmanuel Rohart
-
Patent number: 7939462Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide and at least one rare earth oxide other than cerium. After a first 4-hour period of calcination at 900 .C followed by a second 10-hour period of at 1000 .C, the specific surface variation thereof is 20% maximum in the first embodiment and 15% maximum in the second embodiment. The inventive composition can be used as a catalyst, i.e. in the treatment of waste gases from internal combustion engines.Type: GrantFiled: March 17, 2004Date of Patent: May 10, 2011Assignee: Rhodia OperationsInventors: Olivier Larcher, Emmanuel Rohart, David Monin
-
Publication number: 20110105316Abstract: A bulk metal oxide catalyst can be prepared by combining metal oxide powders or oxide-producing species and reacting selected ingredients prior to their inclusion in the formulation of the catalyst. Mixed metal oxide phases can be designed and prepared for use as an ingredient for a bulk metal oxide catalyst to alter properties for catalytic performance or physical properties that would not be obtained using mixtures of singular metal oxide ingredients.Type: ApplicationFiled: October 31, 2009Publication date: May 5, 2011Applicant: Fina Technology, Inc.Inventors: Joseph E. Pelati, Hollie Craig, James R. Butler
-
Publication number: 20110105304Abstract: Architecture comprising ceramic or metallic foam, characterized in that the foam has a constant axial and radial porosity between 10 to 90% with a pore size between 2 to 60 ppi, and at least one continuous and/or discontinuous, axial and/or radial concentration of catalytic active(s) phase(s) from 0.01 wt % to 100 wt %, preferentially from 0.1 to 20 wt. %, and in that the architecture has a microstructure comprising specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 15, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Ex ploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Daniel Gary, Fabrice Rossignol
-
Publication number: 20110105305Abstract: An architecture made of a ceramic or a metallic foam has at least one continuous and/or discontinuous, axial and/or radial porosity gradient ranging from 10 to 90% associated to a pore size range from 2 to 60 ppi, at least one continuous and/or discontinuous, axial and/or radial concentration gradient of catalytic active(s) phase(s) from 0.01 wt % to 100 wt % preferentially from 0.1 wt % to 20 wt %, and a microstructure with a specific area ranging between 0.1 to 30 m2/g, a grain size between 100 nm and 20 microns and a skeleton densification above 95%.Type: ApplicationFiled: June 16, 2009Publication date: May 5, 2011Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Daniel Gary, Thierry Chartier, Mathieu Cornillac, Raphael Faure, Fabrice Rossingnol
-
Patent number: 7935654Abstract: The present invention relates to an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and a method for preparing olefin by using the same. More precisely, the present invention relates to an oxide catalyst for hydrocarbon steam cracking represented by formula 1 and a phosphoric oxide catalyst for hydrocarbon steam cracking represented by formula 3 which would be used for the production of olefin such as ethylene and propylene by hydrocarbon steam cracking, and a method for preparing the same. The present invention provides an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking that has excellent thermo-stability at high temperature and improved olefin yield. CrZrjAkOx??[Formula 1] CrZrjAkPlOx??[Formula 3] Wherein, j, k, l and x are as indicated in the description.Type: GrantFiled: September 24, 2007Date of Patent: May 3, 2011Assignee: LG Chem, Ltd.Inventors: Jun-seon Choi, Jun-Han Kang, Jong-hun Song, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
-
Patent number: 7935653Abstract: A metal oxide nanoporous material comprises two or more kinds of first metal oxides selected from the group consisting of alumina, zirconia, titania, iron oxide, rare-earth oxides, alkali metal oxides and alkaline-earth metal oxides. The metal oxide nanoporous material has nanopores, each with a diameter of 10 nm or smaller, in which the metal oxides are dispersed homogeneously in the wall forming the nanopores.Type: GrantFiled: June 9, 2005Date of Patent: May 3, 2011Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Takashi Shimazu, Ryusuke Tsuji, Hideo Sobukawa, Yoshiki Seno, Yoriko Hasegawa
-
Patent number: 7932408Abstract: The invention is directed to a catalyst for the epoxidation of an olefin to an olefin oxide, the catalyst comprising a support having at least two pore size distributions, each pore size distribution possessing a different mean pore size and a different pore size of maximum concentration, the catalyst further comprising a catalytically effective amount of silver, a promoting amount of rhenium, and a promoting amount of one or more alkali metals, wherein the at least two pore size distributions are within a pore size range of about 0.01 ?m to about 50 ?m. The invention is also directed to a process for the oxidation of an olefin to an olefin oxide using the above-described catalyst.Type: GrantFiled: January 27, 2009Date of Patent: April 26, 2011Assignee: Scientific Design Company, Inc.Inventor: Christian Gückel
-
Patent number: 7931874Abstract: Herein is a three-layered catalyst system in which layers including predetermined precious metal components are sequentially layered on a substrate, and thus the conversion ratio of HC and CO is increased, thereby improving purification efficiency. The three-layered catalyst system includes a substrate, a lower layer containing a precious metal component of only platinum, an intermediate layer containing a precious metal component of only palladium, and an upper layer containing a precious metal component of only platinum, all of which are sequentially layered.Type: GrantFiled: August 24, 2007Date of Patent: April 26, 2011Assignee: Heesung Catalysts CorporationInventors: Hyun-Sik Han, Tae-Woo Lee, Eun-Seok Kim
-
Patent number: 7927551Abstract: There is disclosed a catalytic body with purifying efficiency and smaller pressure loss and its manufacturing method. Provided is a catalytic body wherein a porous honeycomb structure including partition walls defining a plurality of cells acting as fluid passages which extend through the honeycomb structure from one end surface to the other end surface thereof is formed of at least one type of (a) a catalytic substance and (b) a substance including an oxide and at least one type of noble metal carried on the oxide. The catalytic converter is characterized in that (c) 10% or more of a plurality of cells are plugged by plugging parts formed at one ends or in the middles of passages, that (d) the average pore diameter of the honeycomb structure is 10 ?m or more, or that (e) the porosity is 40% or more.Type: GrantFiled: March 27, 2007Date of Patent: April 19, 2011Assignee: NGK Insulators, Ltd.Inventors: Yukio Miyairi, Naomi Noda, Mikio Makino, Shinichi Miwa
-
Patent number: 7923408Abstract: Diesel particulate filter that can lower the particulate matter (PM) combustion start temperature and use material containing silicon (Si) for a carrier. The carrier, which has a filter function, is allowed to support a perovskite-type complex oxide expressed by formula (1) as follows, wherein 0<x<0.7 and 0?y?1: formula (1)=La1-xBaxMnyFe1-yO3.Type: GrantFiled: February 20, 2007Date of Patent: April 12, 2011Assignees: Mitsubishi Jidosha Kogyo Kabushiki Kaisha, Dowa Electronics Materials Co., Ltd.Inventors: Masashi Takahashi, Hiroshi Tanada, Takuya Yano
-
Patent number: 7923407Abstract: It is an object of the present invention to provide a catalyst for the exhaust gas purification having excellent ignition performance and NOx purification performance. The present invention provides a catalyst for the exhaust gas purification which comprises a catalytically active component (I) having palladium and barium supported on a refractory inorganic oxide (A); and a catalytically active component (II) having at least either of rhodium and platinum on a refractory inorganic oxide (B), a method for the production thereof, and a method for purifying an exhaust gas using such a catalyst.Type: GrantFiled: March 14, 2007Date of Patent: April 12, 2011Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.Inventor: Hideki Goto
-
Patent number: 7923406Abstract: A support for a fuel reforming catalyst includes aluminum (Al); and aluminum oxide (Al2O3) encapsulating the aluminum, wherein a total volume of micropores and mesopores is in the range of 0.1 to 1.0 ml/g per unit mass, and a volume of macropores is in the range of 0.4 to 1.2 ml/g per unit mass, and a method of preparing the same. The support has excellent heat transfer characteristics due to its high thermal conductivity and excellent mass transfer characteristics because the micropores, mesopores, and macropores exist in a proper ratio. Accordingly, if the support is used for a supported catalyst that is used in a reaction, in which the reaction rate is controlled by heat transfer and mass transfer, such as a fuel reforming reaction, the activity of the catalyst is enhanced. In addition, the support can be easily formed as desired due to its high mechanical strength.Type: GrantFiled: January 23, 2006Date of Patent: April 12, 2011Assignee: Samsung SDI Co., Ltd.Inventors: Yulia Potapova, Soon-ho Kim, Hyun-chul Lee