And Rare Earth Metal (sc, Y Or Lanthanide)containing Patents (Class 502/65)
  • Patent number: 6716783
    Abstract: The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200° C. to about 400° C.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 6, 2004
    Assignee: The Regents of the University of California
    Inventors: Kevin C. Ott, Noline C. Clark, Mark T. Paffett
  • Patent number: 6696378
    Abstract: An in situ process for making improved zeolitic fluid cracking catalysts by spray drying a mixture of (i) hydrous kaolin and/or metakaolin, and (ii) calcined aluminum source, said calcined aluminum source being derived from a pulverized, ultrafine kaolin, calcining the resulting microspheres to convert hydrous kaolin to metakaolin, and reacting microspheres composed of a mixture of metakaolin and calcined aluminum source with an alkaline sodium silicate solution. The weight percent of metakaolin in the calcined microspheres is greater than the calcined aluminum source content.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 24, 2004
    Assignee: Engelhard Corporation
    Inventors: Clark W. Gibson, Mitchell J. Willis, George E. Gantt, Robert E. Barnes, David M. Stockwell
  • Patent number: 6689709
    Abstract: The present invention is directed to a metal-promoted zeolite beta catalyst useful in the selective catalytic reduction of nitrogen oxides with ammonia in which the zeolite beta is pre-treated so as to provide the zeolite with improved hydrothermal stability. The stabilized beta zeolite is provided by incorporating into the zeolite structure non-framework aluminum oxide chains. The aluminum oxide chains can be incorporated into the zeolite structure by a unique steaming regimen or by treatment with rare earth metals, such as cerium. The treatment process is unlike well-known methods of dealuminizing zeolites for the purpose of increasing the silica to alumina ratio. In the present invention, the non-framework aluminum oxide is characterized by FT-IR by a peak at 3781±2 cm−1, which when present, stabilizes the zeolite against further dealumination such as under oxidizing and harsh hydrothermal conditions.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: February 10, 2004
    Assignee: Engelhard Corporation
    Inventors: Pascaline H. Tran, Xinsheng Liu, James M. Chen, Gerard D. Lapadula, Howard Furbeck
  • Patent number: 6673235
    Abstract: A fluid catalytic cracking catalyst made from microspheres that initially contain kaolin, a dispersible boehmite alumina and a sodium silicate or silica sol binder. The kaolin portion contains hydrous kaolin and a particular kaolin which has been calcined through its characteristic exotherm and which produces a catalyst having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. Calcination of the hydrous kaolin to metakaolin and formation of in-situ zeolite by treatment with sodium silicate yields a catalyst containing Y-faujasite and transforms the dispersible boehmite into a transitional alumina. The catalyst can be used to crack resid or resid-containing feeds as the alumina phase formed from the dispersible boehmite passivates nickel and vanadium contaminants.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 6, 2004
    Assignee: Engelhard Corporation
    Inventors: David H. Harris, Mingting Xu, David Stockwell, Rostam J. Madon
  • Publication number: 20030229257
    Abstract: A microporous crystalline material of a zeolitic nature, that corresponds to the empirical formula
    Type: Application
    Filed: April 11, 2003
    Publication date: December 11, 2003
    Inventors: Avelino Corma Canos, Maria Teresa Navarro Villalba, Fernando Rey Garcia, Susana Valencia Valencia
  • Patent number: 6660172
    Abstract: The invention is directed to a precoat or body feed composition comprising a microbiological interception enhanced filter aid. Preferably, the microbiological interception enhanced filter aid comprises fibrillated lyocell nanofibers having coated on at least a portion of a surface thereof, a microbiological interception enhancing agent. The microbiological interception enhanced agent comprises a cationic material in combination with a biologically active metal. At least about 4 log reduction in bacterial interception is achieved with the microbiological interception enhanced filter aid alone or in combination with a bulk, untreated filter aid. A precoat composition including the microbiological interception enhanced filter aid can be used for one-step cold sterilization of beverages.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: December 9, 2003
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6656347
    Abstract: Zeolite microsphere FCC catalysts having a novel morphology comprising a macroporous matrix and crystallized zeolite freely coating the walls of the pores of the matrix. The catalysts are formed from microspheres containing a metakaolin and kaolin calcined through its exotherm, the latter calcined kaolin being derived from a kaolin having a high pore volume. Kaolin having a high pore volume can be a pulverized ultrafine kaolin or a kaolin which has been pulverized to have an incipient slurry point less than 57% solids.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: December 2, 2003
    Assignee: Engelhard Corporation
    Inventors: David M. Stockwell, Randall P. Brown, Stephen H. Brown
  • Patent number: 6649556
    Abstract: Process for preparing zeolites of X type having an Si/Al atomic ratio of ≦1.5 and having exchangeable cations including lithium, trivalent and/or divalent ions, and optionally sodium, potassium, ammonium and/or hydronium ions, involves distributing starting zeolite in a series of receptacles, percolating a solution of at least one lithium compound through the series, drawing a lithium-containing bleed from first receptacle of the carrousel, and drawing off a final effluent stream from a final receptacle in the series. The effluent stream contains compounds of exchangeable cations from the starting zeolite and traces of the lithium compound(s). After a desired degree of lithium exchange has occurred in the first receptacle, the first receptacle is removed and a fresh solution of at least one lithium compound is introduced into the next receptable in the series and percolated through the series. This step can be performed for each receptacle in the series.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: November 18, 2003
    Assignee: CECA, S.A.
    Inventors: Jean-Jacques Masini, Dominique Plee, Jean-Claude Sacleux, Jean-Louis Vidal
  • Patent number: 6645898
    Abstract: A method and composition for the removal of contaminants in a gas stream used in the contamination sensitive processes of photolithography and metrology are described. The synergistic effect of a combination of an electropositive metal component, a high silica zeolite, and a late transition metal compound effects removal or reduction of the contaminates in the gas which interfere with light transmittance to the ppb or ppt levels necessary for the gas to be suitable for these uses. The removal of neutral polar molecules, neutral polar aprotic molecules, protic and aprotic alkaline molecules, acidic polar species, and neutral non-polar aprotic molecules is accomplished with the claimed composition. Depending on the type of contaminant, the composition components are each varied from 10 to 80 parts by volume, with the total composition limited to 100 parts by volume.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: November 11, 2003
    Assignee: Aeronex, Inc.
    Inventors: Daniel Alvarez, Jr., Jeffrey J. Spiegelman
  • Patent number: 6635168
    Abstract: The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: October 21, 2003
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Xinjin Zhao, Wu-Cheng Cheng, John Allen Rudesill, Richard Franklin Wormsbecher, Pilip Stephen Deitz
  • Patent number: 6632767
    Abstract: The low stability of some molecular sieves can be overcome during calcination by a solid state reaction between the molecular sieve and a salt. Molecular sieves including zeolites, metal substituted aluminosilicates, and metallosilicates can be stabilized by this method. The inventive process comprises mixing such molecular sieve with a salt, either directly or as a slurry; and then heating the resulting mixture to remove water, organics and adsorbed species.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: October 14, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Qisheng Huo, Neil Andrew Stephenson
  • Patent number: 6617276
    Abstract: An active metal, particularly cesium, impregnated hydrocarbon adsorbent, such as zeolite, comprises an improved hydrocarbon trap/oxidizing catalyst for use in effectively adsorbing hydrocarbons during automotive cold-start and subsequently desorbing, oxidizing and removing hydrocarbons during warmer operating conditions. The active metal modified hydrocarbon adsorbent may be combined in other forms of multi-layer automotive exhaust gas catalytic structures.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 9, 2003
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Todd Howard Ballinger, Paul Joseph Andersen
  • Patent number: 6613708
    Abstract: It has been discovered that catalysts may be modified by depositing an agent derivative from an agent such as an organometallic compound upon them. Such a modification gives a catalyst useful in increased selectivity to para-substituted alkyl benzenes, such as para-xylene (PX), through reacting an aromatic compound such as toluene and/or benzene with a methylating agent from hydrogen and carbon monoxide and/or carbon dioxide and/or methanol. Using these selectivated catalysts, para-substituted alkyl benzenes can be recovered in a selectivity of 80% or greater, significantly better than the equilibrium concentration of 24%.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: September 2, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Youchang Xie, Biying Zhao, Xiangyun Long, Xiawan Yang, Lili Guan
  • Patent number: 6605207
    Abstract: A catalyst suitable for use in fluid catalytic cracking of petroleum feedstock in the form of particulate of crystalline zeolite having a coating on it6s surface comprising bayerite phase alumina.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 12, 2003
    Assignee: W. R. Grace & Co. - Conn.
    Inventors: Wu-Cheng Cheng, Xinjin Zhao, Philip Stephen Deitz
  • Publication number: 20030148875
    Abstract: A catalyst for purifying exhaust gases exhibits not only effective purifying characteristics even in a low temperature range such as immediately after an engine starts but also high exhaust gas purifying ability. In the catalyst for purifying exhaust gases of a first aspect of the invention, HC adsorbed at low temperature are released at high temperature and the released HC are purified by a catalyst metal. This catalyst for purifying exhaust gases has an excellent advantage in purifying HC at low temperature as well as excellent exhaust gas purifying ability.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Applicant: CATALER CORPORATION
    Inventors: Koichi Kasahara, Yasunori Sato, Kenichi Taki
  • Patent number: 6589901
    Abstract: An exhaust gas purifying catalyst for exhaust gas discharged from an automotive internal combustion engine. The catalyst comprises a substrate over which a hydrocarbons adsorbing material layer is formed as a lower layer to absorb hydrocarbons contained in exhaust gas. The hydrocarbons adsorbing material layer contains zeolite and colloidal silica which has undergone firing. The colloidal silica is in a chain-like form and/or a spherical form before and after the firing. Additionally, a catalyst component layer is formed as an upper layer over the hydrocarbons adsorbing material layer. The catalyst component layer contains a catalyst metal.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: July 8, 2003
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shinji Yamamoto, Masahiro Takaya
  • Patent number: 6583081
    Abstract: Zeolites exchanged with lithium, rubidium, cesium cations and trivalent cations are prepared by first partially, fully or excessively ion-exchanging a sodium-containing zeolite, a potassium-containing zeolite or a sodium- and potassium-containing zeolite with trivalent cations, then calcining the partially, fully or excessively trivalent cation-exchanged zeolite, and then ion exchanging the calcined zeolite with lithium rubidium, cesium cations, thereby replacing hydrogen and any sodium and/or potassium cations remaining in the zeolite with lithium, rubidium, cesium cations, whereby trivalent cations present in the zeolite will not be substantially replaced by the lithium ions.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: June 24, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Karl Seff, Hyun Sook P. Cordes, Martin Bülow, Frank R. Fitch, Adeola F. Ojo, Sudhakar R. Jale, Dongmin Shen
  • Publication number: 20030092562
    Abstract: A purification catalyst for exhaust gas has high purification performance for the exhaust gas even under a high oxygen concentration atmosphere. The purification catalyst for exhaust gas contains cerium oxide, zeolite carrying Pt, and tin or a tin oxide.
    Type: Application
    Filed: November 6, 2002
    Publication date: May 15, 2003
    Inventors: Yoshiyuki Nakanishi, Yuichi Matsuo, Kazuhide Terada
  • Publication number: 20030089640
    Abstract: A fluid catalytic cracking catalyst made from microspheres that initially contain kaolin, a dispersible boehmite alumina and a sodium silicate or silica sol binder. The kaolin portion contains hydrous kaolin and optionally kaolin which has been calcined through its characteristic exotherm. Calcination of the hydrous clay to metakaolin and formation of in-situ zeolite by treatment with sodium silicate yields a catalyst containing Y-faujasite and transforms the dispersible boehmite into a transitional alumina which contains a gamma alumina phase. The transitional alumina may contain a delta alumina phase as well. The catalyst can be used to crack resid or resid-containing feeds as the alumina phase formed from the dispersible boehmite passivates nickel and vanadium contaminants.
    Type: Application
    Filed: October 17, 2001
    Publication date: May 15, 2003
    Inventors: Rostam Madon, David H. Harris, Mingting Xu, David Stockwell, Bruce Lerner, Glenn W. Dodwell
  • Patent number: 6555492
    Abstract: A catalyst for purifying an exhaust gas to remove nitrogen oxides, carbon monoxide and hydrocarbons from exhaust gas comprising a zeolite having a silica/alumina molar ratio of greater than 55, and at least 1.5%, by weight, each of nickel and cobalt incorporated therein. A second embodiment of the is an adsorber catalyst system for use in the removal of the oxides of nitrogen from waste gas, the adsorber/catalyst system comprising the following components: (1) a zeolite having a silica/alumina ratio of greater than 55; (2) at least 1.5%, by weight, each of nickel and cobalt incorporated therein; and, (3) an adsorber component comprising a mixture of gamma alumina support and a adsorber material selected from the group consisting of metal oxides, metal hydroxides, metal carbonates and mixed metal oxides.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: April 29, 2003
    Assignee: Corning Incorporated
    Inventors: Margaret K. Faber, Larry D. Gorges, Steven B. Ogunwumi
  • Patent number: 6548439
    Abstract: Zeolite based material and a method for making the zeolite, comprising a zeolite having a silica/alumina ratio of at least 300 and a surface area of 250 m2/g and no greater than about 20 parts, by weight, of a silica binder. The combination of properties this zeolite based material exhibits includes the following: (1) a modulus of rupture of at least 1500 psi; (2) a surface area of at least 100 m2/g; (3) a coefficient of thermal expansion of less than about +/−10 ppm/° C.; and, (4) a thermal shock resistance of at least 850° C. The zeolite-based material can include a third component, specifically a gamma alumina having a specific surface area of greater than 100 m2/g.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: April 15, 2003
    Assignee: Corning Incorporated
    Inventors: Shy-Hsien Wu, Kenneth E. Zaun
  • Publication number: 20030064881
    Abstract: The present invention discloses a high stability rare earth zeolite Y with high rare earth and the preparation process thereof, which zeolite has a content of rare earth of 4-15 wt %, a unit cell constant of 2.450-2.458 nm, a differential thermal collapsed temperature of 1000-1056° C., a silica to alumina ratio of 8.3-8.8, and a content of sodium oxide less than 1.0 wt %. Said zeolite is prepared by drying a rare earth-containing zeolite Y, introducing gaseous silicon tetrachloride carried by dry air and reacting at a temperature of 150-600° C. for 10 min to 6 h. then purging with dry air and washing with de-cationized water to remove the soluble by-products. The rare earth zeolite Y possesses high activity and selectivity for cracking the heavy oils, high activity for hydrogen transfer, has good coke selectivity, can effectively increase the yield of light oils, and improve the quality of gasoline and thus can directly serve as an active component for preparing various hydrocarbon cracking catalysts.
    Type: Application
    Filed: April 26, 2002
    Publication date: April 3, 2003
    Inventors: Jun Du, Zheng Li, Zhijian Da, Mingyuan He
  • Patent number: 6528031
    Abstract: The present invention provides a method for preparing a catalyst for the reduction of nitrogen oxides by the use of natural gas as a reducing agent in an excess oxygen atmosphere, which comprises of filling zeolite with an organic compound having molecular weight of 100˜250 prior to loading catalytically active noble metal components on a zeolite. Since the method according to the present invention supports catalytic active noble metal components on a zeolite under the condition that the pores of zeolite are filled with organic compounds, the noble metal component, which is essential for forming highly active NOx reduction catalyst, can be supported precisely on the desired positions of zeolite pores. Therefore, the NOx reduction catalysts prepared by the present invention are very useful for the purification of exhaust gas in an excessive oxygen atmosphere such as gas turbines, boilers or lean-burn automobiles.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: March 4, 2003
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Sang Eon Park, Yong Ki Park, Jin Woo Lee, Chul Wee Lee, Jong San Chang, Jung Kuk Cho
  • Patent number: 6528447
    Abstract: A process for preparing a hydrocarbon conversion catalyst for use in a Fluid Catalyst Cracking (FCC) unit includes the steps of preparing a modified alumina-silica composite by reacting alumina with an acid to obtain an acidified alumina, aging the acidified alumina for from 0.25 to 60 hours, adding a silica source to the acidified alumina to obtain the composite; preparing a dispersed precursor slurry of the modified alumina-silica composite, and a rare earth exchanged USY zeolite (REUSY) containing at least one rare earth oxide present in an amount ranging from 3.8 to 4.0 wt %, and optionally kaolin clay; spray-drying the slurry to obtain spherical particles; and subjecting the spherical particles to calcination.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: March 4, 2003
    Assignee: Indian Oil Corporation Limited
    Inventors: Sobhan Ghosh, Satish Makhija, Venkatachalam Krishnan, Sanjay Kumar Ray, Mohan Prabhu Kuvettu
  • Patent number: 6521562
    Abstract: A method of making a molecular sieve catalyst by preparing a catalyst slurry containing molecular sieve, binder and a matrix material and directing the slurry to a forming unit. The catalyst slurry is prepared by using a microfiltration process whereby the molecular sieve is washed and concentrated from a preparation medium without having to isolate the molecular sieve in a dry or semi-dry form. The catalyst is used to make ethylene and propylene from an oxygenate.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 18, 2003
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Kenneth R. Clem, Luc R. M. Martens, Stephen N. Vaughn, Paul R. Stafford, John W. Kress, Machteld M. Mertens
  • Patent number: 6518213
    Abstract: An exhaust gas purifying catalyst comprises a hydrocarbon adsorbent layer and a metal-based catalyst layer on a monolithic support. The catalyst contains zeolite in the underlying hydrocarbon adsorbent layer and contains noble metals such as palladium, platinum, rhodium, etc. in the overlying metal-based catalyst layer. Also, both layers contain an alkaline metal, etc., and a weight ratio of the alkaline metal, etc. contained in the metal-based catalyst layer to the alkaline metal, etc. contained in the hydrocarbon adsorbent layer is set to 60:40 to 99:1. A process for preparing the above catalyst comprises forming the metal-based catalyst by coating slurry. The slurry contains water insoluble or water hardly-soluble alkaline metal and/or alkaline earth metal compound.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: February 11, 2003
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shinji Yamamoto, Masahiro Takaya
  • Patent number: 6503862
    Abstract: An exhaust gas purifying catalyst is constructed by laminating sequentially a first layer containing alumina, a second layer containing hydrocarbon adsorbent, and a third layer containing catalytic components on a monolithic support in which a cell sectional shape is a polygon. The second layer has a ratio Lmax/Lmin of a thickest portion (Lmax) at cell corner portions to a thinnest portion (Lmin) at cell flat portions in a range of 1 to 10, and has a thickness of 10 to 500 &mgr;m. The catalyst can achieve the purification of HC, CO, and NOx with good balance, and improve the purification performance of cold HC by controlling a diffusion speed of the exhaust gases that pass through cells in a support and diffuse into a coating layer.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: January 7, 2003
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shinji Yamamoto
  • Patent number: 6500997
    Abstract: The present invention relates a catalyst for the conversion of aromatic hydrocarbons, comprising by weight 20 to 90 parts of a crystalline aluminosilicate zeolite with a SiO2/Al2O3 molar ratio of 10 to 100, 0.05 to 10 parts of metal bismuth or oxides thereof supported on the zeolite, 0 to 5 parts of one or more types of metal(s) M or oxides thereof, M being selected from the group consisting of molybdenum, copper, zirconium, strontium, lanthanum, rhenium, iron, cobalt, nickel and silver, and 10 to 60 parts of alumina as an adhesive. The present invention also relates to a process for the conversion of aromatic hydrocarbons using the catalyst of the present invention and uses thereof in the production of aromatic hydrocarbons.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: December 31, 2002
    Assignees: China Petro-Chemical Corporation, Shanghai Research Institute of Petrochemical Engineering
    Inventors: Wencai Cheng, Dejin Kong, Deqin Yang, Huaying Li, Zhirong Zhu
  • Patent number: 6498279
    Abstract: A hydrogenation catalyst including a carrier of ultrastable zeolite Y modified with at least one heavy rare earth element selected from ytterbium, gadolinium, terbium and dysprosium. At least one catalytic metal selected from palladium and platinum is supported on the carrier. A process for hydrogenating a feed containing an aromatic and/or a heterocyclic aromatic compound includes a step of contacting the feed with hydrogen in the presence of the above hydrogenation catalyst.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: December 24, 2002
    Assignees: Agency of Industrial Science and Technology
    Inventors: Yuji Yoshimura, Hiroyuki Yasuda, Toshio Sato, Norihito Kijima
  • Patent number: 6423879
    Abstract: There is provided a process for the selective production of para-xylene which comprises reacting toluene with methanol in the presence of a catalyst comprising a porous crystalline material having a Diffusion Parameter for 2,2 dimethylbutane of about 0.1-15 sec−1 when measured at a temperature of 120° C. and a 2,2 dimethylbutane pressure of 60 torr (8 kPa). The porous crystalline material is preferably a medium-pore zeolite, particularly ZSM-5, which has been severely steamed at a temperature of at least 950° C. The porous crystalline material is preferably combined with at least one oxide modifier, preferably including phosphorus, to control reduction of the micropore volume of the material during the steaming step.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: July 23, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Mark F. Mathias, Robert A. Ware, David H. Olson
  • Patent number: 6413898
    Abstract: Zeolite/alumina composite, and a method for making, the composite for use as a catalyst substrate or catalyst carrier and comprising zeolite having a silica/alumina ratio of greater than 300 and gamma alumina having a specific surface area of greater than 100 m2/g. The zeolite/alumina composite exhibits a modulus of rupture of at least 750 psi. Additionally, the invention is also directed at a three catalyst (TWC) system for use in the removal of hydrocarbons, carbon monoxide and oxides of nitrogen from waste gas, the TWC system comprising the following components: (1) a zeolite/alumina composite catalyst support exhibiting a modulus of rupture of at least 750 psi and having a zeolite with a silica/zeolite ratio of at least 300 and the alumina comprising a gamma alumina having a specific surface area of greater than 100 m2/g; and, (2) a noble metal catalyst impregnated on the catalyst support, the noble metal selected from the group consisting of platinum, rhodium, iridium and palladium.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: July 2, 2002
    Assignee: Corning Incorporated
    Inventors: Margaret K. Faber, Shy-Hsien Wu, Yuming Xie, Kenneth E. Zaun
  • Patent number: 6407025
    Abstract: Zeolites exchanged with lithium cations and polyvalent cations are prepared by first partially ion-exchanging a sodium-containing zeolite, a potassium-containing zeolite or a sodium- and potassium-containing zeolite with polyvalent cations, then heat-treating the partially polyvalent cation-exchanged zeolite, then ion exchanging the heat-treated zeolite with ammonium cations, and then reacting the ammonium cation-exchanged zeolite with a water-soluble lithium compound under conditions which result in the removal of ammonia from the reaction zone.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: June 18, 2002
    Assignees: The BOC Group, Inc., Chemiewerk Bad Köstritz GmbH
    Inventors: Alfons Brandt, Baldur Unger, Hartmut Tschritter, Martin Bülow, Frank R. Fitch, Adeola F. Ojo
  • Publication number: 20020072467
    Abstract: A molded catalyst for production of triethylenediamine, wherein (1) the main components are silica and crystalline aluminosilicate, (2) the silica is amorphous, and the content of the silica is from 5 to 70 wt %, (3) the molar ratio of silica to alumina in the crystalline aluminosilicate is at least 12, and the content of the crystalline aluminosilicate is from 30 to 95 wt %, and (4) the hardness is at least 1 kg.
    Type: Application
    Filed: September 25, 2001
    Publication date: June 13, 2002
    Applicant: TOSOH CORPORATION
    Inventor: Tsukasa Ogawa
  • Patent number: 6402936
    Abstract: The invention relates to a catalyst that contains at least one partially amorphous Y zeolite, at least one metal of group VB, preferably niobium, at least one amorphous or poorly crystallized matrix, optionally at least one metal that is selected from group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, and Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking and hydrorefining of hydrocarbon feedstocks.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: June 11, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Eric Benazzi, Jean-Marie Deves, Slavik Kasztelan
  • Publication number: 20020052289
    Abstract: This invention provides a process for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons, and uses a catalyst including (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium) and (b) a non-layered mesoporous support which exhibits an X-ray diffraction after calcination that has at least one peak at a d-spacing of greater than 18 Ångstrom units.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 2, 2002
    Inventors: Leo E. Manzer, Stephan Schwarz
  • Patent number: 6350383
    Abstract: A material and method for removal of environmental oxyanions (and especially phosphates), the material comprising a substrate such as a clay modified with complexing elements selected from Group IIIB, Group IVB, and lanthanide elements (or a mixture of such elements). The resultant modified substrate can bind oxyanions and make them unavailable for utilisation in the environment; in the case of phosphates, by algae and the like. The method includes forming a capping of material at the sediment/water interface, applying the material in the form of pellets at the sediment/water interface, or injecting the pellets into the sediment.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: February 26, 2002
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventor: Grant Brian Douglas
  • Patent number: 6326326
    Abstract: According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surface(s) of the pore(s).
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: December 4, 2001
    Assignee: Battelle Memorial Institute
    Inventors: Xiangdong Feng, Jun Liu, Glen E. Fryxell
  • Patent number: 6319872
    Abstract: This invention provides a process for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons, and uses a catalyst including (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium) and (b) a non-layered mesoporous support which exhibits an X-ray diffraction after calcination that has at least one peak at a d-spacing of greater than 18 Ångstrom units.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: November 20, 2001
    Assignee: Conoco INC
    Inventors: Leo E. Manzer, Stephan Schwarz
  • Patent number: 6303368
    Abstract: A device for use in processing of a liquid and/or gas stream. The device is made up of a monolithic structure having active powder for treating streams. The structure has an inlet end and an outlet end and a multiplicity of cells extending from inlet end to outlet end. The cells are separated from one another by porous walls, a portion of the total number of cells being plugged in a pattern such that a stream enters the device through the unplugged cells at the inlet end and passes through at least two porous walls and the active powder in-between, and thereafter passes out of the device through unplugged cells at the outlet end. The device finds use in a number of applications including ion exchange, adsorption, biological and chemical reactions, and catalytic applications.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: October 16, 2001
    Assignee: Corning Incorporated
    Inventors: Willard A. Cutler, Tinghong Tao
  • Publication number: 20010029110
    Abstract: Fluorinated chemical precursors, methods of manufacture, polymer thin films with low dielectric constants, and integrated circuits comprising primarily of sp2C—F and some hyperconjugated sp3C—F bonds are disclosed in this invention. Precursors are disclosed for creating fluorinated silanes and siloxanes, and fluorinated hydrocarbon polymers. Thermal transport polymerization (TP), chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), high density PECVD (HDPCVD), photon assisted CVD (PACVD), and plasma-photon assisted (PPE) CVD and PPETP of these chemicals provides thin films with low dielectric constants and high thermal stabilities for use in the manufacture of integrated circuits.
    Type: Application
    Filed: April 17, 2001
    Publication date: October 11, 2001
    Applicant: Quester Technology, Inc.
    Inventors: Chung J. Lee, Hui Wang, Giovanni Antonio Foggiato
  • Patent number: 6299855
    Abstract: A composition of matter is provided including an inorganic porous material having wall portions defining mesopore-sized channels having a mean diameter of between about 15 Å and about 100 Å and a narrow diameter distribution of less than or equal to about 30 Å, the material having a void volume from the mesopore-sized channels of at least about 0.1 cc/g and a surface area of at least about 500 m2/g and having a number of hydroxyl groups of at least about 1.5 mmol of hydroxyl groups per gram of material, and exhibiting thermal and hydrothermal stability at temperatures up to about 500° C. Catalytic materials incorporating aluminum and other active metals, as well as a process for preparing the composition, are also disclosed.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: October 9, 2001
    Assignee: Intevep, S.A.
    Inventors: Juan Lujano, Jose Carrazza, Norma Valencia de Zapata
  • Publication number: 20010021368
    Abstract: The present invention relates to zeolites X, most of the exchangeable sites of which are occupied by lithium and di- and/or trivalent cations, having an improved thermal stability and an improved crystallinity with respect to zeolites of the prior art with the same degree of exchange of lithium and of di- and/or trivalent cations.
    Type: Application
    Filed: January 3, 2001
    Publication date: September 13, 2001
    Inventors: Jean-Jacques Masini, Dominique Plee
  • Patent number: 6248684
    Abstract: Oxidation catalyst compositions for treating diesel exhaust include ceria and, optionally, alumina, each having a surface area of at least about 10 m2/g, and a zeolite, e.g., Beta zeolite. Optionally, platinum may be included in the catalytic material, preferably in amounts which are sufficient to promote some gas-phase oxidation of carbon monoxide (“CO”) and hydrocarbons (“HC”) but which are limited to preclude excessive oxidation of SO2 to SO3. Alternatively, palladium in any desired amount may be included in the catalytic material. The zeolite is optionally doped, e.g., ion-exchanged, with one or more of hydrogen, a platinum group metal or other catalytic metals. The catalyst compositions may be used in a method to treat diesel engine exhaust by contacting the hot exhaust with the catalyst composition to promote the oxidation of gas-phase CO and HC and of the volatile organic fraction component of particulates in the exhaust.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: June 19, 2001
    Assignee: Englehard Corporation
    Inventors: Bulent O. Yavuz, Kenneth E. Voss, Michel Deeba, John R. Adomaitis, Robert J. Farrauto
  • Patent number: 6221324
    Abstract: Zeolites partially exchanged with copper, in particular faujasites, in which the copper does not largely occupy the small cages (for example the sodalite cages of the faujasites), are used as non-nitrogen-protoxide-generating SCR catalysts. Particular attention is drawn to certain mixed rare-earth/copper zeolites. The selectivity of the reduction of NOx to N2 is correlated with the TPR diagram of the catalysts.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: April 24, 2001
    Assignee: Grand-Paroiesse S.A.
    Inventors: Bernard Coq, Gerard Delahay, Francois Fajulas, Bernard Neveu, Jean-Bernard Peudpiece, Stéphane Kieger
  • Patent number: 6214211
    Abstract: A catalytic cracking catalyst composition comprising (a) a spherical boehmite gel alumina, (b) a zeolite, (c) a clay mineral and (d) a binder; a catalytic cracking catalyst produced by spray-drying a slurry containing the catalytic cracking catalyst composition to obtain a spherical catalyst, and then calcining the spherical catalyst; a method of catalytically cracking a heavy oil comprising catalytically cracking a heavy oil in the presence of the catalytic cracking catalyst.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: April 10, 2001
    Assignee: Idemitsu Kosan Co., LTD
    Inventor: Toshio Itoh
  • Patent number: 6159896
    Abstract: A catalyst comprising an effective amount of iridium and at least one second metal selected from the Lanthanide Series of the Periodic Table is useful for vapor phase carbonylation to produce carboxylic acids and esters from lower alkyl alcohols, ethers and ester-alcohol mixtures. The iridium and secondary metal are deposited on a support material, preferably carbon. In a preferred aspect of the invention, the catalyst is useful for vapor phase carbonylation to produce acetic acid, methyl acetate and mixtures thereof.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: December 12, 2000
    Assignee: Eastman Chemical Company
    Inventors: Joseph Robert Zoeller, Andy Hugh Singleton, Gerald Charles Tustin, Donald Lee Carver
  • Patent number: 6126912
    Abstract: The present invention provides a process for reducing oxides of nitrogen to molecular nitrogen in a medium which is superstoichiometric in oxidizing agent using reducing agents in the presence of a catalyst comprising:at least one refractory inorganic oxide at least in part constituted by a zeolite from the group formed by NU-86, NU-87 and EU-1;optionally, at least one element (A) from groups VIB, VIIB, VIII and IB, the transition metals;optionally, at least one element (B) from group VIII, the noble metals comprising platinum, rhodium, ruthenium, iridium and palladium;and optionally at least one element (C) from group IIA, the alkaline-earths and/or group IIIB, the rare earths.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: October 3, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Bourges, Gil Mabilon, Matthias Bouchez, Sylvie Lacombe
  • Patent number: 6114267
    Abstract: A process for preparation of fluidized catalytic cracking (FCC) catalyst, comprising silicon stabilized large crystallite sized synthetic faujasite zeolite, aluminum depleted and normal kaolin clay, alumina and silica. The cracking catalyst is highly active and selective for bottom upgradation, it produces less coke and higher gasoline and total cycle oil (TCO) and possesses improved metal tolerance properties when evaluated and compared with a commercial catalyst under conditions of a typical FCC unit in a petroleum refinery.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: September 5, 2000
    Inventors: Sobhan Ghosh, Satish Makhija, Mohan Prabhu Kuvettu, Ventachalam Krishnan, Sanjay Kumar Ray, Manoranjan Santra, Ram Mohan Thakur, Jagdev Kumar Dixit
  • Patent number: 6106802
    Abstract: A composition of matter is provided including an inorganic porous material having wall portions defining mesopore-sized channels having a mean diameter of between about 15 .ANG. and about 100 .ANG. and a narrow diameter distribution of less than or equal to about 30 .ANG., the material having a void volume from the mesopore-sized channels of at least about 0.1 cc/g and a surface area of at least about 500 m.sup.2 /g and having a number of hydroxyl groups of at least about 1.5 mmol of hydroxyl groups per gram of material, and exhibiting thermal and hydrothermal stability at temperatures up to about 500.degree. C. Catalytic materials incorporating aluminum and other active metals, as well as a process for preparing the composition, are also disclosed.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: August 22, 2000
    Assignee: Intevep, S.A.
    Inventors: Juan Lujano, Jose Carrazza, Norma Valencia de Zapata
  • Patent number: 6096675
    Abstract: A catalytic material is provided which effectuates the aromatization, reformation, and dehydrogenation of aliphatic, cycloaliphatic, and mixtures of aliphatic and cycloaliphatic hydrocarbons. The catalyst comprises an L-zeolite associated with a Group VIII metal such as platinum and having a rare earth metal ion incorporated therein. A method of using the catalytic material is also provided.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: August 1, 2000
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Daniel E. Resasco, Cristina L. Padro, Gary Jacobs, Haiyang Liu