Mixing Of Solid Graft Or Graft-type Copolymer Derived From Ethylenic Reactants Only With Other Solid Polymer Derived From Ethylenic Reactants Only; Or Treating Said Mixture With Chemical Treating Agent; Or Processes Of Forming Or Reacting; Or The Resultant Product Of Any Of The Above Operations Patents (Class 525/70)
  • Patent number: 8703293
    Abstract: Provided herein re a composition and a coating or a device (e.g., absorbable stent) that includes a PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid biocompatible polymer and the methods of use thereof.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 22, 2014
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Lothar W. Kleiner, Connie S. Kwok
  • Patent number: 8697794
    Abstract: A method of improving the stress crack resistance of an impact modified styrenic polymer comprising (a) combining about 95 to about 99.5 wt. % of an impact modified styrenic polymer with about 0.5 to about 5 wt. % of a polymer solution comprising about 25 to about 75 wt. % polyisobutylene and about 25 to about 75 wt. % of a polyolefin comprising one or more C2 to C12 alpha olefins.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 15, 2014
    Assignee: Styrolution America LLC
    Inventors: Thomas Cochran, Jeffrey P. Viola
  • Patent number: 8685539
    Abstract: A tie layer adhesive composition for multilayer structures made up of graft composition compounded with a base resin, such as linear low density polyethylene (LLDPE), and a polyethylene having long chain branching, such as low density polyethylene (LDPE), and optionally one or more additives. The graft composition can be made up of a blend of a grafted polyolefin and an olefin elastomer and/or the reaction product of a live, grafted polyolefin and an olefin elastomer.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: April 1, 2014
    Assignee: Equistar Chemicals, LP
    Inventor: Maged G. Botros
  • Patent number: 8686066
    Abstract: A process or method for preparing a composition that includes a core of polytetrafluoroethylene and a styrene/acrylonitrile shell (or a core-shell polytetrafluoroethylene including styrene/acrylonitrile (SAN) powder) is provided. The process includes a polymerisation process or reaction and a flocculation process or reaction. The temperatures utilized, and/or the relative quantities and/or concentrations of the reagents, for the polymerisation process and flocculation process are specifically selected. The core-shell polytetrafluoroethylene-based powder produced is used as an additive for plastic/polymers, for instance styrene-based polymers. The core-shell polytetrafluoroethylene-based powder produced is associated with improved workability and enhanced mechanical characteristics.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: April 1, 2014
    Inventors: Suthep Kwampian, Ronnapa Phonthong, Worawan Lamtaptimthong
  • Publication number: 20140051771
    Abstract: A molded polyethylene component that comprises polyethylene having a melt flow index of about 3.5 g/10 min or greater as measured by ASTM D1238 at 190° C./21.5 kg weight and having an ash content of about 500 ppm or less may be useful biomedical devices, including kits and methods relating thereto.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 20, 2014
    Applicant: Ticona LLC
    Inventors: Julia Hufen, Anthony Verrocchi, Rainer Walkenhorst
  • Patent number: 8653199
    Abstract: This invention relates to a composition comprising a functionalized C3 to C40 olefin polymer comprising at least 50 mol % of one or more C3 to C40 olefins, and where the olefin polymer, prior to functionalization, has: a Dot T-Peel of 1 Newton or more on Kraft paper; an Mw of 10,000 to 100,000; and a branching index (g?) of 0.98 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 60,000, or a branching index of 0.95 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 100,000; and where the C3 to C40 olefin polymer comprises at least 0.001 wt % of a functional group. This invention further relates to blends of such functionalized polymers with other polymers including non-functionalized C3 to C40 olefin polymers as described above.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 18, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Mun Fu Tse, Patrick Brant, Peijun Jiang, David Raymond Johnsrud
  • Publication number: 20140045990
    Abstract: The present application relates to an olefin-based ionomer resin composition, to an encapsulant, and to an optoelectronic device. The resin composition according to the present application may be used as an encapsulant for a variety of optoelectronic devices, and may exhibit superior adhesion to the substrates of the optoelectronic devices. In addition, according to the present application, an olefin-based ionomer resin composition, which can provide good workability and economic advantages in the manufacture of devices without negatively affecting components such as encapsulated optoelectronic elements or the wired electrodes of optoelectronic devices, may be provided.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Hoon CHAE, Beom Doo SEO, Choong Hoon LEE, Sung Ho CHOI
  • Patent number: 8642701
    Abstract: Injection stretch blow molded (ISBM) articles containing a bio-based polymers and methods of forming the same are described herein. The method generally includes providing a propylene-based polymer; contacting the propylene-based polymer with polylactic acid to form a polymeric blend; injection molding the blend into a preform; and stretch-blowing the preform into an article.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: February 4, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Fengkui Li, Luyi Sun, John Ashbaugh, David Rauscher, Leland Daniels, Robert Dotter
  • Publication number: 20140031459
    Abstract: It is an object of the present invention to provide a modified propylene resin containing very small amounts of low-crystalline and low-molecular-weight components. The present invention relates to a modified propylene resin characterized by satisfying the following requirements (1) to (4). (1) The melting point (Tm) measured with a differential scanning calorimeter (DSC) is 140° C. or higher. (2) The amount of grafts of ethylenic unsaturated bond-containing monomer after hot xylene washing is 0.1 to 5 percent by weight. (3) The amount of components soluble in o-dichlorobenzene at 70° C. is 1.5 percent by weight or less. (4) The intrinsic viscosity [?] is 0.1 to 4 dl/g.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicants: Prime Polymer Co., Ltd., Mitsui Chemicals, Inc.
    Inventors: Keita ITAKURA, Toru IWASHITA, Satoshi HASHIZUME, Rikuo OHNISHI, Hirofumi GODA
  • Patent number: 8637159
    Abstract: Graft compositions, useful for tie-layer adhesives, are disclosed. The graft compositions comprise the reaction product of a live, grafted polyolefin and an olefin elastomer. The grafted polyolefin is first made by heating a polyolefin and an unsaturated monomer. Further reaction of the live, grafted polyolefin with an olefin elastomer provides the graft composition. Grafting efficiency is boosted dramatically by the presence of the olefin elastomer and use of the additional reaction step. The graft composition, when formulated into a tie-layer adhesive at low concentration, affords multilayer structures with good adhesion and high clarity.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 28, 2014
    Assignee: Equistar Chemicals, LP
    Inventor: Maged G. Botros
  • Publication number: 20140024778
    Abstract: Methods for obtaining toughened products from unsorted post-consumer plastics is disclosed. A toughened plastic composition is further disclosed, which includes a first thermoplastic polymer, a different second thermoplastic polymer, and a maleic anhydride-grafted ethylene/propylene rubber compatibilizer.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Fares D. Alsewailem, Abdulmajeed M. Algaflah, Yazeed A. Binkheder
  • Patent number: 8618214
    Abstract: Provided is a fiber-reinforced composite. The composite has a propylene polymer including 90 wt % or more of propylene monomeric units based on the weight of the propylene polymer; a plurality of fibers of a solid, flexible material grafted to the propylene polymer; and an elastomer. The fibers are present in the composite at 10 wt % to 80 wt % based on the total weight of the composite. The propylene polymer is present in the composite at from 30 wt % to 95 wt % based on the total weight of the composite. The elastomer is present in the composite at from 5 wt % to 50 wt % based on the total weight of the composite. Greater than 50 wt % of the fibers are dispersed within the propylene polymer based on the total weight of the fibers in the composite. There is also provided a process for making a fiber-reinforced composite.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: December 31, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, John Henry Dunsmuir, Donald Andrew Winesett
  • Patent number: 8618215
    Abstract: A modified polypropylene-based polymer obtained by graft modification of a propylene/?-olefin copolymer with a xylene-soluble portion of at least 40 mass % and no greater than 85 mass %, a xylene-soluble portion (XS) intrinsic viscosity (XSIV) of at least 2.5 dl/g, and an MFR value of no greater than 3.0 g/10 min at 230° C. under a load of 2.16 kg, using an unsaturated carboxylic acid or its derivative, and a flame retardant polyolefin-based resin composition having prescribed contents of a polyolefin-based resin component comprising 60-95 mass % of a polyolefin-based resin and 40-5 mass % of a modified polypropylene-based polymer, and an inorganic flame retardant component comprising an inorganic filler.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: December 31, 2013
    Assignee: Sunallomer Ltd.
    Inventors: Kazuhisa Yasumoto, Tomohiro Mochida
  • Patent number: 8604132
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: December 10, 2013
    Assignee: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Patent number: 8598270
    Abstract: Provided is a multi-arm (greater than 3 arms) star ethylene polymer (sEP). The multi-arm star ethylene polymer is a polymer of an ethylene/maleic anhydride copolymer (EMAC) grafted with vinyl-terminated polyethylene. There are also provided a process for making the sEP and blend of a matrix ethylene polymer and the sEP.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy H. Tsou, Shuji Luo, Johannes M. Soulages
  • Patent number: 8580890
    Abstract: The present invention concerns a heterophasic propylene copolymer of high melt flow for injection molding, which comprise a propylene polymer matrix and a rubber. The heterophasic propylene copolymers of the present invention are characterized by a high viscosity of the rubber phase and a well-defined ratio of the intrinsic viscosities of the rubber phase and the propylene polymer matrix, thus resulting in improved mechanical properties. The present invention further relates to a process for the production of such heterophasic propylene copolymers, their use and articles produced with them.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: November 12, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Rita De Luca, Philippe Hoslet
  • Patent number: 8580874
    Abstract: A modified-asphalt composition prepared by introducing a diene end-capped block copolymer with a molten asphalt composition.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: November 12, 2013
    Assignees: Firestone Polymers, LLC, Heritage Research Group
    Inventors: Herb Wissel, Peter Boerner, Daniel Graves, Christine Rademacher, Timothy Reece
  • Patent number: 8569421
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: October 29, 2013
    Assignee: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20130273386
    Abstract: It is an object of the present invention to provide a modified polypropylene composition for forming laminates, which enables prevention of lowering of interlaminar bond strength even in the case where it is subjected to high-speed molding or subjected to stretch molding, and a laminate using the composition and having excellent interlaminar bond properties. The present invention relates to a modified polypropylene composition comprising a propylene-based polymer (A-1), 0 to 45% by weight of a propylene-based polymer (A-2), an ethylene/?-olefin copolymer (B) having a melt flow rate (MFR; ASTM D1238, 230° C., load of 2.16 kg) of 0.01 to 40 g/10 min and a density (ASTM 91505) of not more than 0.900 g/cm3, and a specific amount of modified polypropylene (C) a part or all of which has been graft-modified with an unsaturated carboxylic acid or a derivative thereof.
    Type: Application
    Filed: December 7, 2011
    Publication date: October 17, 2013
    Inventors: Hironori Matsumoto, Hirotaka Uosaki, Koji Kitahara, Yuji Sawada
  • Patent number: 8541502
    Abstract: A polyolefin compound including: A) at least one thermoplastic olefin copolymer including the reaction product of olefin 1 and olefin 2, wherein: olefin 1 is a C2 based olefin and olefin 2 is a C3 to C8 ?-olefin or olefin 1 is a C3 based olefin and olefin 2 is a C4 to C8 ?-olefin; B) at least one functional polymer, the functional polymer content in the polyolefin compound being between 1 and 75 weight percent of the combined components A and B; wherein the thermoplastic olefin copolymer and the functional polymer form a co-continuous phase; wherein: a) an 12 melt index of the polyolefin compound is from about 1 to about 15 as measured using ASTM D 1238; b) a Shore A hardness of the polyolefin compound is from about 55 to about 100 as measured using ASTM D2240; c) a flexural modulus of the polyolefin compound is from about 0.8 to about 30 kpsi as measured using ASTM D790.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Felipe Martinez, Pankaj Gupta, Ashish Batra
  • Patent number: 8524832
    Abstract: The invention relates to a impact-modified bio-degradable polymer composition having large particle size impact modifiers dispersed in a continuous biodegradable polymer phase. The impact modifiers have a core-shell morphology and have average sizes of greater than 250 nm. The impact-modified composition has good impact properties and low haze. The biodegradable polymer is preferably a polylactide or polyhydroxy butyrate. The composition comprises 30-99.9 weight percent of degradable polymer and 0.1 to 15 weight percent of one or more impact modifiers.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 3, 2013
    Assignee: Arkema Inc.
    Inventor: Zuzanna Cygan
  • Patent number: 8513355
    Abstract: Disclosed is a graft copolymer highly improving the adhesion resistance and impact strength, a method of preparing the same, and PVC composition containing the same, wherein the graft copolymer comprises i) 55 to 85 wt % of a conjugated diene-based rubber core; and ii) 15 to 45 wt % of a graft shell surrounding the rubber core, and formed by comprising a (meth)acrylate-based monomer, and at least one selected from the group consisting of a vinyl-based monomer having a polyalkylene oxide group represented by the following Formula 1; in which the graft copolymer includes 0.1 to 5 wt % of the vinyl-based monomer having the polyalkylene oxide group represented by the following Formula 1: wherein R is independently hydrogen, or C1 to C4 alkyl group, and n is independently 3 to 14.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 20, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Yoon Ho Kim, Geon Soo Kim, Yeon Hwa Wi, Ki Hyun Yoo, Chan Hong Lee
  • Patent number: 8485385
    Abstract: A welding material, comprising a modified polyethylene resin composition (Z) comprising from 0.5 to 95 wt % of a modified polyethylene resin (X) having at least one monomer selected from the group consisting of an unsaturated carboxylic acid and its derivative, grafted to a polyethylene resin (A) having a density of from 0.910 to 0.965 g/cm3 and a MFR (temperature: 190° C., load: 2.16 kg) of from 0.1 to 5.0 g/10 min, and from 5 to 99.5 wt % of an unmodified polyethylene resin (Y) having a density of from 0.930 to 0.965 g/cm3, a MFR of from 0.01 to 5.0 g/10 min and a melt flow rate ratio (HL-MFR (temperature: 190° C., load: 21.6 kg)/MFR of from 40 to 270, and having a density of from 0.938 to 0.965 g/cm3 and a MFR of from 0.05 to 1.0 g/10 min.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: July 16, 2013
    Assignee: Japan Polyethylene Corporation
    Inventors: Kei Takahashi, Fumio Asada, Haruo Ikeda, Osamu Miyachi
  • Patent number: 8466214
    Abstract: Processes for making a core and core-shell copolymers are provided herein. Processes for making crosslinked elastomeric core particles includes emulsion polymerizing, in the presence of a radical polymerization initiator, a polymerization mixture containing at least one ethylenic elastomeric monomer, at least one crosslinking agent, and at least one sulfur-containing additive of the formula I below, where R and Z are defined herein. The core-shell copolymers formed are useful for example as additives in polymer matrices such as for modifying impact strength and improving optical properties.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: June 18, 2013
    Assignee: Arkema France
    Inventors: Rosangela Pirri, Philippe Hajji
  • Patent number: 8461261
    Abstract: Provided is a resin composition containing a resin component prepared by blending a graft copolymer with an engineering plastic, wherein the above graft copolymer is a graft copolymer satisfying (a) to (e) shown below: (a) a graft rate is 1 to 150% by mass, (b) a weight average molecular weight measured by GPC is 500 to 400000, (c) a molecular weight distribution (Mw/Mn) is 1.5 to 4, (d) a main chain is a polymerization chain containing 1 to 100% by mass of a monomer unit having a functional group interacting with the engineering plastic and (e) a side chain is a homopolymerization chain of a single kind selected from ?-olefins having 3 to 28 carbon atoms or a copolymerization chain of two or more kinds selected therefrom or a copolymerization chain comprising an ?-olefin unit having 3 to 28 carbon atoms and an ethylene unit which accounts for 50% by mass or less, and a mesopentad ratio [mmmm] of the polymerization chain is 30 to 80 mole %.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: June 11, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Manabu Nomura, Susumu Kanno, Ryo Aburatani, Shuji Machida
  • Patent number: 8449328
    Abstract: An object of the present invention is to provide a thermoplastic elastomer resin composition and a connector, which can be processed by mold forming and are excellent in the recycling property. The present invention provides a thermoplastic elastomer resin composition including 100 parts by weight of a base resin containing from 60 to 80 wt % of an acid-modified styrene-based elastomer and from 40 to 20 wt % of a modified polyphenylene ether, and from 0 to 20 parts by weight of a hydrogenated dicyclopentadiene; and a connector using the composition.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: May 28, 2013
    Assignee: Yazaki Corporation
    Inventor: Yuusaku Ooki
  • Patent number: 8426030
    Abstract: Compositions suitable for use as adhesives in multi-layer structures. The compositions comprise a blend of an ethylene copolymer of butene and a propylene-based polymer; a polyolefin grafted with an ethylenically unsaturated carboxylic acid or acid derivative; and an olefin polymer resin different than the ethylene copolymer of butene, the propylene-based polymer and the grafted polyolefin.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: April 23, 2013
    Assignee: Equistar Chemicals, LP
    Inventors: Maged G. Botros, Charles S. Holland
  • Publication number: 20130066007
    Abstract: A terminally unsaturated polyolefin satisfying the following (1) to (4): (1) the mesopentad fraction [mmmm] of propylene chain unit or butene-1 chain unit is 20 to 80 mol %; (2) the number of terminal vinylidene groups per molecule is 1.3 to 2.5; (3) the weight-average molecular weight Mw is 500 to 100,000; and (4) the molecular weight distribution Mw/Mn is 1.1 to 2.6.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 14, 2013
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Shuji Machida, Tomio Tatsumi, Takenori Fujimura
  • Patent number: 8389452
    Abstract: Disclosed are rheology modifiers comprising compositionally disperse polymeric compositions and/or crystallinity disperse polymeric compositions that may be useful in modifying the rheological properties of lubrication fluids, and methods for making such compositions. The compositionally disperse polymeric composition are formed from at least two discrete compositions of ethylene copolymers. The crystallinity disperse polymeric composition are formed from ethylene copolymers having at least two discrete values of residual crystallinity.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: March 5, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Jo Ann Marie Canich, Liehpao Oscar Farng, Rainer Kolb, Vera Minak-Bernero, Eric B. Sirota, Thomas Tungshi Sun, Mun Fu Tse, Manika Varma-Nair
  • Publication number: 20130052471
    Abstract: A tie layer adhesive composition for multilayer structures made up of graft composition compounded with a base resin, such as linear low density polyethylene (LLDPE), and a polyethylene having long chain branching, such as low density polyethylene (LDPE), and optionally one or more additives. The graft composition can be made up of a blend of a grafted polyolefin and an olefin elastomer and/or the reaction product of a live, grafted polyolefin and an olefin elastomer.
    Type: Application
    Filed: August 26, 2011
    Publication date: February 28, 2013
    Applicant: Equistar Chemicals, LP
    Inventor: Maged G. Botros
  • Patent number: 8383727
    Abstract: Provided is a carbodiimide-modified, high-density polyolefin-based adhesive with minimal lowering of adhesion power even in a high temperature environment, and a laminate having excellent interlayer adhesion power at high temperatures prepared by using the adhesive. Provided is an adhesive obtained by reaction of a polyolefin (A) having a group reactive with a carbodiimide group and a compound (B) containing a carbodiimide group in the presence of an unmodified polyolefin (C), having a ratio of a peak intensity at 2130 to 2140 cm?1 to a peak intensity at 1470 cm?1 of 50% or less (but not including 0%).
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: February 26, 2013
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Shuichi Murakami
  • Patent number: 8362145
    Abstract: A composition comprising a blend of a polyolefin, polylactic acid, and a reactive modifier. A method of producing an oriented film comprising reactive extrusion compounding a mixture comprising polypropylene, polylactic acid, a reactive modifier to form a compatibilized polymeric blend, casting the compatibilized polymeric blend into a film, and orienting the film. A method of preparing a reactive modifier comprising contacting a polyolefin, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of an epoxy-functionalized polyolefin wherein the epoxy-functionalized polyolefin has a grafting yield of from 0.2 wt. % to 15 wt. %.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 29, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Fengkui Li, Tim J. Coffy, Michel Daumerie
  • Patent number: 8362143
    Abstract: Disclosed herein is a non-glossy rubber modified aromatic vinyl-vinyl cyanide copolymer and a method for continuously preparing the same. The copolymer comprises about 80 to about 93% by weight of an aromatic vinyl-vinyl cyanide copolymer grafted onto about 7 to about 20% by weight of a diene-based rubber, and a dispersed phase of the copolymer has an average rubber particle diameter of about 6 to about 20 ?m and a span of about 1.2 to about 2.8.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: January 29, 2013
    Assignee: Cheil Industries Inc.
    Inventors: Hwan Seok Park, Young Sub Jin, Jae Keun Hong, Sung Kwan Kim, Byeong Do Lee, Ho Ryong Sun, Seung Dae Lee
  • Patent number: 8349949
    Abstract: Non cross-linked modifiers for thermoplastic alloys comprising from 20 to 80% by weight based on the modifier of an interpolymer of ethylene and an alpha-olefin having from 4 to 12 carbon atoms grafted with an acid functionality, preferably maleic anhydride, having a Melt Index of from 0.3 to 100 and a density of 0.85 to 0.91 prior to being grafted and from 80 to 20% by weight of an ungrafted diene containing interpolymer derived from ethylene and an alpha-olefin having from 3 to 12 carbon atoms and an amount of a cross-linking component effective to provide cross-linking during subsequent melt blending with a condensation polymer having a melting point of at least 150° C.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: January 8, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jean-Roch Schauder, Guy Joseph Wouters
  • Publication number: 20120322945
    Abstract: A thermoplastic resin composition for vehicle lamp housings, includes: 5 to 80 parts by weight of a graft copolymer (A) obtained by graft polymerizing at least one monomer (a-2) selected from the group consisting of aromatic vinyl-based monomers, vinyl cyanide-based monomers, and (meth)acrylic ester-based monomers and maleimide-based monomers, under the presence of an acrylic ester-based rubbery polymer (a-1) having a weight average particle size of 100 to 400 nm; and 20 to 95 parts by weight of a (co)polymer (B) in which at least one monomer (a-2) selected from the group consisting of aromatic vinyl-based monomers, vinyl cyanide-based monomers, (meth)acrylic ester-based monomers and maleimide-based monomers is polymerized, in which a content of total volatiles at 260° C. is no more than 0.7% by weight of the composition overall, and a content of oligomer component having a weight average molecular weight of 200 to 1000 is no more than 0.3% by weight of the composition overall.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 20, 2012
    Applicant: NIPPON A&L INC.
    Inventors: Hajime Tomita, Takayoshi Fujiwara, Shunsaku Kubota, Suguru Koba
  • Publication number: 20120309858
    Abstract: The invention comprises a composition comprising the extrusion product of synthetic turf and a processing agent, whereby the extrusion product has a moisture content of less than 0.5% by weight. A process for making the composition is also disclosed.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Applicant: TEXTILE RUBBER & CHEMICAL CO., INC.
    Inventor: Leslie Jay Taylor
  • Patent number: 8318864
    Abstract: The invention relates to functionalized interpolymers derived from base olefin interpolymers, which are prepared by polymerizing one or more monomers or mixtures of monomers, such as ethylene and one or more comonomers, to form an interpolymer products having unique physical properties. The functionalized olefin interpolymers contain two or more differing regions or segments (blocks), resulting in unique processing and physical properties.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: William J. Harris, John D. Weaver, Brian W. Walther, Stephen F. Hahn, Yunwa W. Cheung, Pankaj Gupta, Thoi H. Ho, Kenneth N. Reichek, Selim Yalvac, Teresa P. Karjala, Benjamin R. Rozenblat, Cynthia L. Rickey
  • Patent number: 8304483
    Abstract: A feedstock concentrate material, including a first phase including fibers having a length greater than 5 mm; and a polymeric phase including a first polyolefin having a first melt flow rate; and a second polyolefin having a second melt flow rate. Kits, methods of using and resulting articles including the concentrate are also disclosed.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: November 6, 2012
    Assignee: Styron Europe GmbH
    Inventors: Jeroen Van Poucke, Herbert Engelen
  • Publication number: 20120277375
    Abstract: A process for producing rubber modified polymers having an increased rubber phase volume, including feeding a vinyl aromatic monomer and an elastomer to a polymerization reactor to form a reaction mixture, polymerizing the reaction mixture, combining a copolymer to the polymerized reaction mixture to form a combined mixture, subjecting the combined mixture to further polymerization, and obtaining a rubber modified polymer product from the further polymerization.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: Fina Technology, Inc.
    Inventors: Carlos DeAnda, Graciela Morales, Jose M. Sosa, David Knoeppel
  • Patent number: 8299175
    Abstract: Disclosed is a method for preparing a thermoplastic resin with superior impact resistance, chemical resistance and processability as well as excellent gloss and whiteness. The method includes emulsion-polymerizing a conjugated diene compound monomer to prepare a rubber latex having an average particle diameter of 1,800 ? to 5,000 ?, a polymerization conversion ratio of at least 90% and a swelling index of 12 to 40, an average gel content of 70 to 95%, emulsion-polymerizing 45 to 75 parts by weight of the rubber latex with 17 to 40 parts by weight of an aromatic vinyl compound and 4 to 20 parts by weight of a vinyl cyanide compound to prepare a graft copolymer latex, and coagulating the graft copolymer latex with a coagulant at 60 to 80° C., and aging the graft copolymer latex at 80 to 99° C. to obtain a graft copolymer powder.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: October 30, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Keun-hoon Yoo, Chan-hong Lee, Jin-hyoung Lee, Joo-byung Chai, Yu-sung Jung, Bong-keun Ahn, Won-deok Han
  • Patent number: 8236902
    Abstract: The present invention discloses a method for making blended polymers by utilizing fluorophilic inter-polymer associative interactions between perfluorocarbon functional groups attached on the constituent polymers. The method of the present invention is capable of forming blended polymers from otherwise incompatible polymers. Also disclosed are blended polymers obtained by the method thereof. Methods and devices utilizing novel blended polymer of the present invention including chromatography, catalysis, photonic and sensor applications are also provided.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 7, 2012
    Assignee: University of Southern California
    Inventors: Thieo Hogen-Esch, Jingguo Shen
  • Patent number: 8227543
    Abstract: The invention relates to a flexible thermoplastic composition resistant to the ageing effects of oil, said composition comprising a grafted copolymer containing polyamide blocks and consisting of a polyolefin backbone and at least one polyamide graft. According to the invention, the grafts are attached to the core by the residues of an unsaturated monomer (X) having a function that can react with a polyamide comprising an amine end or a carboxylic acid end; the residues of the unsaturated monomer (X) are attached to the backbone by grafting or copolymerization from the double bond thereof; and the composition comprises between 40 to 90 wt % of the polyolefin core comprising the unsaturated monomer (X); between 5 to 40 wt % of polyamide grafts; and between 5 to 40% of at least one polymer selected from a saponified ethylene/vinyl acetate copolymer and a polyamide.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: July 24, 2012
    Assignee: Arkema France
    Inventors: Stephane Bizet, Jean-Jacques Flat
  • Patent number: 8222345
    Abstract: This invention relates to a composition comprising a functionalized C3 to C40 olefin polymer comprising at least 50 mol % of one or more C3 to C40 olefins, and where the olefin polymer, prior to functionalization, has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) an Mw of 10,000 to 100,000; and c) a branching index (g?) of 0.98 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 60,000, or a branching index (g?) of 0.95 or less measured at the Mz of the polymer when the polymer has an Mw of 10,000 to 100,000; and where the C3 to C40 olefin polymer comprises at least 0.001 weight % of an functional group, preferably maleic anhydride. This invention further relates to blends of such functionalized polymers with other polymers including non-functionalized C3 to C40 olefin polymers as described above.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 17, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Mun Fu Tse, Patrick Brant, Peijun Jiang, David Raymond Johnsrud
  • Patent number: 8211985
    Abstract: The present invention relates to polymer blends comprising: (a) from 5 wt % to 95 wt % of a HDPE having a density from 0.941 g/cm3 to 0.980 g/cm3 and an I22 of 10 dg/min or more; and (b) from 95 wt % to 5 wt % of a grafted mPE, which is a reaction product of (i) a mPE having a density from 0.860 g/cm3 to 0.935 g/cm3 and an I2 from 0.7 dg/min to 5.0 dg/min, and (ii) a silicon-containing grafting component, wherein the blend exhibits a high-temperature creep after extrusion that is at least 20% lower than a blend of the HDPE and the mPE that has not been grafted with a silicon-containing grafting component. These blends can advantageously comprise at least one layer of a film, e.g., made via extrusion.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Simone Viganò, Gerd Artur Allermann, Stefan B. Ohlsson
  • Patent number: 8197947
    Abstract: Adhesive compositions comprising a first copolymer of butene-1 and propylene; a second copolymer of ethylene and a comonomer selected from butene-1, hexene-1, and octene-1; a polyolefin grafted with an ethylenically unsaturated carboxylic acid or acid derivative; and an olefin polymer resin, and multilayer structures comprising the adhesive composition.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: June 12, 2012
    Assignee: Equistar Chemicals, LP
    Inventors: Maged G. Botros, Charles S. Holland
  • Patent number: 8198367
    Abstract: A thermoplastic acrylonitrile-butadiene-styrene (ABS) resin composition of the present invention comprises (a) a bimodal graft copolymer of a conjugated diene rubbery polymer whose average particle diameter of 800 to 1,500 ? and a conjugated diene rubbery polymer whose average particle diameter of 2,500 to 3,500 ?, the conjugated diene rubbery polymers being grafted with an aromatic vinyl compound and a vinyl cyanide compound, (b) an acrylic resin of a methacrylic or acrylic acid alkyl ester compound, an aromatic vinyl compound and a vinyl cyanide compound, (c) a copolymer of an aromatic vinyl compound and a vinyl cyanide compound, and (d) polysiloxane masterbatches. The ABS resin composition has excellent colorability and releasability while maintaining the inherent physical properties (e.g., impact strength and tensile strength) of the base resin.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: June 12, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Han Jong You, Seong Lyong Kim
  • Publication number: 20120142862
    Abstract: A rubber-modified polystyrene resin composition is for making an electroplatable article which has a sectioned layer defining a unit area. The rubber-modified polystyrene resin composition includes a resin matrix, occlusion rubber particles dispersed in the resin matrix, and non-occlusion rubber particles dispersed in the resin matrix. A total sectional area ratio of the occlusion rubber particles to the non-occlusion rubber particles in the unit area ranges from 1.1 to 14.
    Type: Application
    Filed: November 17, 2011
    Publication date: June 7, 2012
    Inventors: Chien-Chung WU, Chun-Ting KUO, Wen-Yi SU, Chen-Hsiang FANG
  • Patent number: 8183328
    Abstract: The present invention relates to polymer compositions comprising a grafted and at least partially crosslinked mLLDPE that is the reaction product of: (i) a mLLDPE having a density from 0.910 g/cm3 to less than 0.940 g/cm3 and an I2 from 0.7 dg/min to 5.0 dg/min; (ii) a silicon-containing grafting component; and (iii) a crosslinking agent, wherein the composition exhibits a die shrinkage upon extrusion that is at least 10% lower than the composition, prior to grafting and crosslinking of the mLLDPE. These compositions can optionally be blended with HDPE. The compositions can also comprise at least one layer of a film, e.g., made via extrusion.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 22, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Simone Viganò, Gerd Artur Allermann, Achiel J. Van Loon
  • Patent number: 8173750
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: May 8, 2012
    Assignee: ATRP Solutions, Inc.
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Patent number: 8168718
    Abstract: The invention described is a thermoplastic vulcanizate comprising dynamically-cured rubber, a functionalized thermoplastic polymer, and a functionalized hydrocarbon resin, which thermoplastic vulcanizate can be advantageously adhered to a polar substrate, for example by overmolding. In one or more embodiments of the present invention an article of commerce comprising: a) a polar substrate, and the b) a thermoplastic vulcanizate comprised of dynamically-cured rubber, a functionalized thermoplastic polymer, and a functionalized hydrocarbon resin; wherein said thermoplastic vulcanizate is adhered to the polar substrate is provided.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Justin Crafton, Weiguo Hu, Jim Johnson