Contains Nontransition Elemental Metal, Hydride Thereof, Or Carbon To Non-transition Metal Atom Bond Patents (Class 526/124.1)
  • Patent number: 6787618
    Abstract: A metallocene compound having the formula (I): where M1 is a metal of group IVb, Vb or VIb of the Periodic Table of Elements, two or more adjacent radicals R4 to R12 together with the atoms connecting them form one or more aromatic or aliphatic rings and if R5, R6, and R7 are hydrogen, R9 and R11 are identical or different and are a C1-C4 alkyl group, a C1-C6 alkeryl group, or a C6-C10 aryl group.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: September 7, 2004
    Assignee: Basell Polypropylen GmbH
    Inventors: Andreas Winter, Frank Küber, Bernd Bachmann
  • Patent number: 6770718
    Abstract: A process is provided for the preparation of a solid catalyst component for the polymerization of olefins, comprising continuously feeding a liquid containing a titanium compound having at least one titanium-halogen bond into a vessel containing a solid comprising a magnesium halide and continuously discharging liquid from the vessel, whereby the concentration of the solid is maintained within the range of between 80 and 300 g/l, and the product between the average residence time of the liquid in the vessel and the concentration of the solid is maintained below 10,000 min*g/l. An advantage of the process is the reduced time and reactor volume necessary to prepare the catalysts, which show good activity and stereospecificity.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: August 3, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Massimo Covezzi, Anna Fait, Almerinda Di Benedetto
  • Patent number: 6723808
    Abstract: Disclosed are polymerization catalyst activator compositions which include a carbonium cation and an aluminum containing anion. These activator compositions are prepared by combining a carbonium or trityl source and with an aluminum containing complex, preferably a perfluorophenylaluminum compound. Also disclosed are polymerization catalyst systems including the activator composition of the invention, and processes for polymerizing olefins utilizing same.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 20, 2004
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6723677
    Abstract: By controlling the hold up times, concentrations and temperatures for mixing the components of aluminum, titanium and magnesium based catalyst for solution polymerization it is possible to prepare a catalyst having a high activity, which prepares high molecular weight polyolefins. Generally, a catalyst loses activity and produces lower molecular weight polymer at higher temperatures. The catalyst of the present invention permits comparable polymers to be produced with higher catalyst activity and at higher reaction temperatures by increasing the concentration of the components used during the preparation of the catalyst.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: April 20, 2004
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Jesus Vela Estrada, Vaclav George Zboril
  • Patent number: 6716939
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from substituted succinates of a particular formula. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: April 6, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Peter A. A. Klusener
  • Patent number: 6693161
    Abstract: The present invention relates to a process for the preparation of random copolymers of propylene with c2-c10 &agr;-olefins, carried out in the presence of a catalyst comprising: A) A solid component comprising a titanium compound supported on mgcl2 in active form and an electron-donor compound; b) An alkyl-al compound, and c) An electron-donor compound selected from the group of 1,3-diethers. The copolymers obtained using the said process show, for an equivalent content of &agr;-olefin, a lower content of xylene-soluble fractions when compared with the copolymers obtained with the catalysts of the prior art.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: February 17, 2004
    Assignee: Bsell North America Inc.
    Inventors: Gianni Collina, Giampiero Morini
  • Patent number: 6677410
    Abstract: There are described solid procatalysts, catalyst systems incorporating the solid procatalysts, and the use of the catalyst systems in olefin polymerization and interpolymerization.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: January 13, 2004
    Assignee: Eastman Chemical Company
    Inventor: Darryl Stephen Williams
  • Patent number: 6667380
    Abstract: Processes for the formulation of Ziegler-type catalysts from a plurality of catalyst components including transition metal, organosilicon electron donor, and organoaluminum co-catalyst components. The components are mixed together in the course of formulating the Ziegler-type catalyst to be charged to an olefin polymerization reactor. Several orders of addition of the catalyst components can be used in formulating the Ziegler catalyst. One involves mixing of the transition metal component with the organoaluminum co-catalyst to formulate a mixture having an aluminum/transition metal mole ratio of at least 200. This mixture is combined with the organosilicon electron donor component to produce a Ziegler-type catalyst formulation having an aluminum/silicon mole ratio of no more than 50. There may be an initial pre-polymerization of the catalyst prior to introducing the catalyst into an olefin polymerization reactor.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 23, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, David J. Rauscher, Shabbir A. Malbari
  • Publication number: 20030232936
    Abstract: Polymerization of olefin monomers is conducted using at least one d- or f-block metal-containing olefin polymerization catalyst compound or complex and a novel methylaluminoxane composition (MAOC) which is a solid at 25° C. that has a total aluminum content of about 39 to 47 wt %. The MAOC is either free of aluminum as trimethylaluminum (TMA) or if TMA is present, not more than about 30 mole % of the total aluminum in the MAOC is TMA. In the solid state the MAOC contains no more than about 7500 ppm (wt/wt) of aromatic hydrocarbon. The cryoscopic number average molecular weight of MAOC as determined in benzene is at least about 1000 amu, and the MAOC has sufficient solubility in n-heptane at 25° C. to provide a solution containing 4 to as high as 7.5 wt % or more of dissolved aluminum. By vacuum distilling a solution of ordinary MAO in aromatic hydrocarbon long enough under proper conditions, MOAC is formed.
    Type: Application
    Filed: August 9, 2001
    Publication date: December 18, 2003
    Inventors: William R. Beard, Noel H. Brantley, Andrew Timothy Stoll
  • Patent number: 6642340
    Abstract: A process for preparing an ethylene/&agr;-olefin copolymer, which includes the steps of (A) copolymerizing ethylene and an &agr;-olefin of 3 to 20 carbon atoms by continuous vapor phase polymerization; (B) copolymerization is conducted in the presence of a prepolymerized catalyst obtained by prepolymerizing an olefin in the presence of (a) a transition metal compound, (b) an organoaluminum oxy-compound, (c) a fine particle carrier, and optionally (d) an organoaluminum compound; and (C) copolymerization is conducted under such condition that the partial pressure of sum total of ethylene and &agr;-olefin is 10 to 28 kg/cm2. The resulting ethylene/&agr;-olefin copolymer has the following properties: (i) the density is in the range of 0.880 to 0.960 g/cm3, (ii) the melt flow rate of 190° C. under a load of 2.16 kg is in the range of 0.1 to 100 g/10 min, (iii) the melt tension (MT (g)) at 190° C. and the melt flow rate (MFR (g/10 min)) satisfy the relation MT≦2.2×MFR−084.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 4, 2003
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Takasi Nakagawa, Masaaki Ohgizawa
  • Patent number: 6630544
    Abstract: A process for polymerizing propylene is disclosed. The process involves charging propylene and about 90 to 99% of an organoaluminum cocatalyst to a reactor and heating this mixture to at least about 50° C. This is followed by addition of a premix of 1 to 10% of the organoaluminum cocatalyst with a magnesium halide-supported Ziegler-Natta catalyst. The temperature of the reaction mixture is maintained to produce a propylene polymer. The process gives improved catalyst activity.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 7, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Douglas D. Klendworth, Mark K. Reinking, Edward D. Kist, Karen E. Meyer
  • Patent number: 6573345
    Abstract: The present invention is directed to processes of polymerizing olefin monomers and copolymerizing olefin monomer(s) with functionalized alpha-olefin monomers in the presence of certain late transition metal pyrrolaldimine chelates, especially bidenate or in the presence of a combination of a transition metal in its zero valence and a pyrrolaldimine represented by the formula: wherein each R1, R2, R3, R4, R5, R6, M and L are defined in the specification herein below.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: June 3, 2003
    Assignee: Cryovac, Inc.
    Inventors: Donald Albert Bansleben, Stefan K. Friedrich, Todd Ross Younkin, Robert Howard Grubbs, Chunming Wang, Robert Tan Li
  • Patent number: 6562914
    Abstract: A process for homo or copolymerizing propylene, wherein propylene is polymerized in the presence of a catalyst at an elevated temperature in a reaction medium in which a major part of the reaction medium is propylene and the polymerization is carried in at least one CSTR or loop reactor, where the polymerization is carried out at a temperature and a pressure which are above the corresponding critical temperature and the pressure of the reaction medium and were the residence time is at least 15 minutes. The process can also have a subcritical loop polymerization before the supercritical stage polymerization or gas phase polymerization after the supercritical stage polymerization.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: May 13, 2003
    Assignee: Borealis A/S
    Inventors: Henrik Andtsjö, Ismo Pentti, Ali Harlin
  • Publication number: 20030087755
    Abstract: A method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising:
    Type: Application
    Filed: February 20, 2002
    Publication date: May 8, 2003
    Inventors: Linfeng Chen, Thomas L. Nemzek, Richard A. Kemp
  • Patent number: 6541582
    Abstract: A solid catalyst component for the polymerization of olefins CH2═CHR, in which R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, the solid catalyst component including Mg, Ti, halogen and an electron donor selected from &bgr;-substituted glutarates other than diisopropyl &bgr;-methyl glutarate and which are not alpha-substituted. The catalyst component, when used in the polymerization of olefins, and in particular polypropylene, is capable of providing polymers in high yield and with a high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: April 1, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 6489427
    Abstract: Polyethylenes are prepared having a density in the range 900-980 kg/m3 and a weight average molecular weight ≧375,000 characterized by a fracture toughness at −40° C. >20 kJ/m2 and a dynamic viscosity of <3000 Pa.s at 100 rad/sec. The polymers also having a die swell of 10-80% and show a desirable combination of physical and processing properties. The polymers are prepared by the use of catalysts comprising a metallocene component and a Ziegler component.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: December 3, 2002
    Assignee: BP Chemicals Limited
    Inventors: Edward Quentin Clutton, Philip Stephen Hope
  • Publication number: 20020137860
    Abstract: The present invention relates to a process for the preparation of random copolymers of propylene with c2-c10 &agr;-olefins, carried out in the presence of a catalyst comprising:
    Type: Application
    Filed: January 4, 2002
    Publication date: September 26, 2002
    Applicant: BASELL NORTH AMERICA INC.
    Inventors: Gianni Collina, Giampiero Morini
  • Patent number: 6455648
    Abstract: A process is provided which comprises preparing an olefin oligomerization or trimerization catalyst system and producing olefins in the presence of the olefin oligomerization or trimerization catalyst system and a solvent, wherein said catalyst system preparation comprises the steps of first contacting a chromium source and a pyrrole-containing compound to form a chromium/pyrrole mixture; second, contacting said chromium/pyrrole mixture with a metal alkyl to form a catalyst system; and then contacting said catalyst system with an alpha-olefin, preferably ethylene.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: September 24, 2002
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey W. Freeman, Warren M. Ewert, Bruce E. Kreischer, Ronald D. Knudsen, Glyndal D. Cowan
  • Patent number: 6417298
    Abstract: There is described a process utilizing metallocene catalyst for producing ethylene/olefin interpolymers which, for a given melt index and density, have a reduced melting peak temperature (Tm). The process involves contacting ethylene and at least one other olefin under polymerization conditions with a metallocene catalyst and at least one modifier comprising at least one element from Group 15 and/or Group 16 in amounts sufficient to reduce the melting peak temperature of the ethylene/olefin interpolymer. Also described herein are novel ethylene/olefin interpolymers resulting from the process.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 9, 2002
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Jeffrey James Vanderbilt, Darryl Stephen Williams
  • Patent number: 6369173
    Abstract: The present invention relates to a process of preparing syndiotactic styrenic polymers with a high conversion rate in the form of fine powder, which comprises (a) preparing styrenic polymers in a solid state by reacting a mixture consisting of styrenic monomers, a metallocene catalyst, a cocatalyst and inert organic solvent in a polymerization reactor, (b) separating a portion of the styrenic polymers from the reactor, (c) recycling the portion of the styrenic polymers in the reactor, and (d) reacting the recycled styrenic polymers with styrenic monomers. The styrenic monomers may include olefinic monomers. The monomers can be introduced to a single inlet or multiple inlets of the reactor. A single reactor or a plural number of reactors can be operated in the present invention. The plural numbers of reactors are arranged in series or in parallel. In the present invention, a self-cleaning mono- or twin-axis reactor can be employed to prevent the polymers from agglomerating on the inner wall or the axis.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: April 9, 2002
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Hyun-Joon Kim, Jae-Gon Lim, Sung-Cheol Yoon
  • Patent number: 6365685
    Abstract: The present invention relates to a process for the preparation of random copolymers of propylene with c2-c10&agr;-olefins, carried out in the presence of a catalyst comprising: A) A solid component comprising a titanium compound supported on mgcl2 in active form and an electron-donor compound; b) An alkyl-al compound, and c) An electron-donor compound selected from the group of 1,3-diethers. The copolymers obtained using the said process show, for an equivalent content of &agr;-olefin, a lower content of xylene-soluble fractions when compared with the copolymers obtained with the catalysts of the prior art.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: April 2, 2002
    Assignee: Remall North America
    Inventors: Gianni Collina, Giampiero Morini
  • Patent number: 6362124
    Abstract: There are provided (i) a catalyst component (C), (ii) an olefin polymerization catalyst, and (iii) a process for producing an olefin polymer. The catalyst being obtained by contacting a solid catalyst component (A), an organoaluminum compound (B) and the catalyst component (C) of an organosilicon compound represented by the following formula (1), wherein n is 1 or 2, R1 to and R6 are independently of one another a hydrogen or halogen atom or a hydrocarbon group, or may be bonded with one another to form a ring, R7 is a hydrocarbon group, and when n is 2, two R1s, R2s, R3s, R4s, R5s and R6s may be the same or different.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: March 26, 2002
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Hiroshi Kuribayashi, Makoto Satoh
  • Patent number: 6337376
    Abstract: A method to prepare a polyolefin in the presence of a catalyst comprising: (A) a solid catalyst component prepared by reacting a homogenous solution consisting of (i) at least one member selected from the group consisting of metal magnesium and a hydroxylated organic compound, and oxygen-containing organic compounds of magnesium, (ii) at least one oxygen-containing organic compound of titanium and (iii) at least one silicon compound, first with (iv) at least one first organoaluminum halide compound of the formula: AlR5zX3−z  wherein R5 is a hydrocarbon group having from 1 to 20 carbon atoms, X is a halogen atom, and 1≦z≦2, and wherein the atomic ratio of gram atoms of Al in the component (iv) to gram atoms of Mg in the component (i) (Al/Mg) is from 0.1 to 2.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: January 8, 2002
    Assignee: Tosoh Corporation
    Inventors: Yutaka Naito, Fumiharu Takahashi, Mitsuhiro Mori, Yozo Kondo
  • Patent number: 6331620
    Abstract: Solid catalyst components for the polymerization of olefins, comprising titanium, magnesium and a compound of general formula (I), wherein R1 and R2 may be the same or different and each represents a linear or branched hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 10, as an electron donor, which are combined with organoaluminum compounds to form polymerization catalysts for the production of olefin polymers. This electron donor has no problems of safety and hygiene, and is inexpensive and easily synthesized. This compound can provide highly active and highly stereoregular solid catalyst components for the polymerization of olefins, catalysts for the polymerization of olefins, and processes for producing olefin polymers.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: December 18, 2001
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yasunori Kadoi, Tsuyoshi Ota, Toshio Isozaki, Kiyokazu Katayama, Takanori Sadashima
  • Patent number: 6320003
    Abstract: A method for producing a polyolefin in the presence of a catalyst comprising a transition metal compound and an organometallic compound, wherein a catalyst system is used which comprises (A) a solid catalyst component prepared by reacting a homogeneous solution containing (I) at least one member selected from the group consisting of metal magnesium and a hydroxylated organic compound, and oxygen-containing organic compounds of magnesium, (II) at least one zirconium compound selected from the group consisting of oxygen-containing organic compounds and halogen-containing compounds of zirconium, and (III) at least one silicon compound selected from the group consisting of polysiloxanes and silanes, with (IV) at least one organoaluminum halide compound to obtain a solid product, isolating the solid product, and reacting this solid product with (V) at least one halogen-containing compound of titanium, and (B) at least one catalyst component selected from the group consisting of organoaluminum compounds.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: November 20, 2001
    Assignee: Tosoh Corporation
    Inventors: Sadaki Nishimura, Yutaka Naito, Mitsuhiro Mori, Yozo Kondo
  • Patent number: 6306983
    Abstract: A method is presented for increasing molecular weight and/or stereoregularity of poly(alpha-olefins) by polymerizing alpha-olefins in the presence of 1) a Ziegler-Natta catalyst system and 2) at least one non-polymerizing olefin which is not polymerizable under the polymerization conditions.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: October 23, 2001
    Assignee: 3M Innovative Properties Company
    Inventor: William Henry Sikorski, Jr.
  • Patent number: 6306985
    Abstract: Disclosed is a high activity solid catalyst for synthesizing low-, medium- and high-density polyethylenes by a slurry phase process, prepared by using commercial powered magnesium as raw material, forming a magnesium halide in the nascent state, followed by successively treating said magnesium halide with an alcohol compound and an alkyl aluminum compound, then reacting the resulting suspension of the spheroidal, porous solid complex carrier with a titanium compound in the presence of an electron donor compound an alkyl aluminum compound to obtain a main catalyst component and finally mixing the catalyst component with an organometallic compound as cocatalyst.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: October 23, 2001
    Assignee: China Petrochemical Corporation
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye
  • Patent number: 6303716
    Abstract: Disclosed is a catalyst for synthesizing low-, medium- and high-density polyethylene, prepared by using commercial powdered magnesium as a raw material, forming a magnesium halide in the nascent state, then reacting said magnesium halide with a titanium compound and an alkyl aluminum compound in the presence of an electron donor compound to form a complex, supporting said complex onto silica carrier and drying the resulting mixture by heating to form a solid main catalyst component, and finally mixing said main catalyst component with an organometallic compound as cocatalyst. The catalyst according to the present invention is characterized by a simple preparing procedure, smooth and stable reaction, uniform heat liberation and less agglomerates when used for gas phase polymerizing ethylene, high polymerization activity, high sensitivity to the modification by hydrogen and high copolymerization power, and the products thus obtained have good product morphology.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: October 16, 2001
    Assignees: China Retrochemical Corp., Shanghai Research Institute of Chemical Industry Sinopec Unila
    Inventors: Mingwei Xiao, Zixiao Chai, Xiaofeng Ye
  • Patent number: 6281301
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising a titanium compound, having at least a Ti-halogen bond and an electron donor compound supported on a Mg halide, in which said electron donor compound is selected from esters of malonic acids of formula (I): wherein R1 is a C1-C20 linear or branched alkyl, C3-C20 alkenyl, C3-C20 cycloalkyl, C6-C20 aryl, arylalkyl or alkylaryl group; R2 is a C1-C20 linear alkyl, C3-C20 linear alkenyl, C6-C20 aryl, arylalkyl or alkylaryl group; R3 and R4 are independently selected from the group consisting of C1-C3 alky, cyclopropyl, with the proviso that when R1 is C1-C4 linear or branched alkyl or alkenyl, R2 is different from R1. Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give high yields and polymers having high insolubility in xylene.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: August 28, 2001
    Assignee: Montell Technology Company bv
    Inventors: Giampiero Morini, Giulio Balbontin, John Chadwick, Antonio Cristofori, Enrico Albizzati
  • Patent number: 6255247
    Abstract: This invention is for a process for the polymerization of propylene to a minimum level of xylene solubles by use of the molar ratio of co-catalyst to external electron donor (selectivity control agent). Using a conventional supported heterogeneous Ziegler-Natta catalyst component with an trialkyl aluminum co-catalyst and an cycloalkylalkyldialkoxysilane external electron nor (selectivity control agent) in a Al/Si molar ratio of about results in the minimum amount of xylene solubles.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: July 3, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Edwar Shoukri Shamshoum, David John Rauscher