From Hydrocarbon Patents (Class 526/348)
  • Patent number: 9359546
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: June 7, 2016
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Patent number: 9315589
    Abstract: Provided herein are organic solvent-based processes for the removal of rubber from non-Hevea plants such as guayule shrubs. By the use of the processes, solid purified rubber can be obtained that contains 0.05-0.5 weight % dirt, 0.2-1.5 weight % ash, and 0.1-4 weight % resin (when it has been dried so as to contain 0.8 weight % volatile matter).
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 19, 2016
    Assignee: Bridgestone Corporation
    Inventors: Yingyi Huang, Mark Smale, Robert White, Hiroshi Mouri, William Cole
  • Patent number: 9303094
    Abstract: Process for the transition between an ethylene co-polymerization process in a polymerization reactor in the presence of a catalyst and of ethylene E and an olefin co-monomer A to produce an ethylene copolymer PEA into an ethylene co-polymerization process carried out in the same polymerization reactor in the presence of a catalyst and of ethylene E and an olefin co-monomer B to produce an ethylene copolymer PEB. Co-monomers A and B are different and are both present in the reactor during at least part of the transition from PEA to PEB. The transition is performed continuously by (i) starting the transition by stopping steady state production of ethylene copolymer PEA and (ii) ending the transition when steady state production of ethylene copolymer PEB is achieved.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: April 5, 2016
    Assignee: INEOS SALES (UK) LIMITED
    Inventors: Jean-Louis Chamayou, Benoit Sibourd
  • Patent number: 9303095
    Abstract: The present invention relates to a process of preparing a polyolefin in a loop reactor by introducing anti-fouling agent in by-pass pipes. Also, the invention relates to the use of anti-fouling agent to prevent blockage by feeding the anti-fouling agent into the by-pass pipes of the loop reactor.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 5, 2016
    Inventors: Daniel Siraux, Daan Dewachter, Louis Fouarge
  • Patent number: 9302244
    Abstract: The present embodiments provide a system and method for separation within a polymer production process. Specifically, a flashline heater configured according to present embodiments may provide more time than is required for complete vaporization of liquid hydrocarbons that are not entrained within a polymer fluff produced within a polymerization reactor. Such extra time may allow for liquid hydrocarbons that are entrained within the polymer fluff to be vaporized.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 5, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John D. Hottovy, Scott E. Kufeld
  • Patent number: 9228038
    Abstract: Provided is an ethylene copolymer having improved hygienic property. More particularly, the ethylene copolymer satisfies a correlation between a density thereof and an extract content. The ethylene copolymer having improved hygienic property can be applied in injection molding, rotation molding, or blow molding.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: January 5, 2016
    Assignee: SABIC SK NEXLENE COMPANY PTE. LTD.
    Inventors: Seung Bum Kwon, Se Won Oh, Hyeong Taek Ham, Choon Sik Shim, Sung Seok Chae, Dae Ho Shin
  • Patent number: 9175209
    Abstract: Use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of thermoset polymer particles is disclosed. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 3, 2015
    Assignee: Sun Drilling Products Corporation
    Inventor: Jozef Bicerano
  • Patent number: 9175104
    Abstract: A polymerization to form a branched polyolefin, in which polymerization an ethylene copolymerization catalyst and an ethylene oligomerization catalyst form a series of ethylene oligomers that are ?-olefins are both present, gives an improved polyethylene if the oligomerization catalyst has a relatively high Schulz-Flory constant.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: November 3, 2015
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: Joel David Citron
  • Patent number: 9175119
    Abstract: Copolymers of ethylene and ?-olefins having (a) a density in the range 0.900-0.940 g/cm3, (b) a melt index MI2 (2.16 kg, 190° C.) in the range 0.01-50 g/10 min, (c) a molecular weight distribution (Mw/Mn, by conventional GPC) in the range 2.0-4.5, (d) a comonomer partition factor, Cpf>1, and (e) a melt index MI2 (2.16 kg, 190° C.) normalized Dow Rheology Index (DRI), [DRI/MI2] in the range 3-20. The copolymers may be prepared using catalyst systems containing activating supports. The copolymers are suitably prepared in the gas phase preferably in a single reactor. The copolymers exhibit unique properties in particular with respect to their rheology.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: November 3, 2015
    Assignee: INEOS EUROPE AG
    Inventors: Gaelle Pannier, Choon Kooi Chai
  • Patent number: 9150718
    Abstract: A weather-resistant crosslinked polyolefin composition is a novel formula containing a comprehensive mixture constituted by crosslinking agent, antistatic agent, TiO2 sized in nanometer and TiO2 sized in micrometer and essential components including polyolefin composition resin, lubricant auxiliary crosslinking agent, antioxidant, UV absorber and filler etc; this novel formula is particularly suited to produce a weather-resistant crosslinked polyolefin sheet with a calender machine instead of an extruder conventionally used, and the polyolefin sheets produced thereof are excellent in both heat-resistant and weather-resistant as well as in a high-quality sheet surface and capably made at a high yield rate through the calender machine.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: October 6, 2015
    Assignee: Nan Ya Plastics Corporation
    Inventors: Dein-Run Fung, Ying-Te Huang, Chao-Hsien Lin, Ching-Yao Yuan, Tzai-Shing Chen
  • Patent number: 9138713
    Abstract: The present invention relates to a process of forming a polymer, the process comprising polymerizing olefin monomers to form a reaction mixture, treating the reaction mixture to form a first polymer-rich phase, treating the first polymer-rich phase to form a second polymer-rich phase, and devolatilizing the second polymer-rich phase, the process further comprising at least one step of adjusting the temperature of a first and/or the second polymer-rich phase before the devolatilization. The present invention also relates to a plant that is useful for the process provided above.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: September 22, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Yu Feng Wang
  • Patent number: 9120886
    Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 1, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: John D. Hottovy, Scott E. Kufeld
  • Patent number: 9115280
    Abstract: Composition containing a polyethylene powder having: (a) a specific density of 930 kg/m3 or less; (b) a melt index MI2 greater than 0.5 g/10 min; (c) a ratio of HLMI/MI2 of less than 25, where HLMI is high load melt index measured under a load of 21.6 kg; (d) a bulk density of at least 350 kg/m3; and (e) a d50 greater than 500 ?m, and absorbed within said powder at least 1 wt % of a liquid additive. The polyethylene powder has a porosity of at least 0.04 cm3/g for pores smaller than 2?m.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 25, 2015
    Assignee: INEOS EUROPE AG
    Inventors: Dominique Jan, Yves-Julien Lambert
  • Patent number: 9068024
    Abstract: The invention provides 2,2-dimethoxy-1,2-di-[4-(meth)acryloyloxy]phenylethane-1-one represented by the following formula (A): (wherein R1 and R2, which may be identical to or different from each other, each represent a hydrogen atom or a methyl group).
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: June 30, 2015
    Assignee: TOYO GOSEI CO., LTD.
    Inventors: Satoshi Enomoto, Yuki Hara
  • Patent number: 9056939
    Abstract: The present description relates to an olefin block copolymer with enhanced processability as well as excellences in elasticity and heat resistance, and a preparation method for the same. The olefin block copolymer includes first and second segments, each containing an ethylene or propylene repeating unit and an ?-olefin repeating unit at different mole fractions, where the second segment is dispersed in the form of a closed curve as a dispersed phase on the first segment according to a TEM (Transmission Electron Microscope) image.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 16, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Yong-Ho Lee, Man-Seong Jeon, Jeong-Min Kim, Heon-Yong Kwon, Min-Seok Cho, Seon-Kyoung Kim, Dae-Sik Hong, Ki-Soo Lee, Kyoung-Chan Lim
  • Patent number: 9040151
    Abstract: The present invention generally pertains to multilayer film including four or more discrete layers. The films contain two external layers, an internal stiffening layer and an internal shrink layer. The external layers include linear low density polyethylene resin, the stiffening layer includes polypropylene or a high density polyethylene and the shrink layer includes low density polyethylene. The multilayer films of the present invention have a gloss of at least 62% at 45 degrees, together with a 2% secant tensile modulus greater than 400 MPa.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 26, 2015
    Assignee: Dow Global Technologies LLC
    Inventor: Martin Pavlik
  • Publication number: 20150141590
    Abstract: Processes to produce ethylene copolymers using pyridyldiamido transition metal complexes, a chain transfer agent, and an activator are disclosed.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 21, 2015
    Inventors: John R. Hagadorn, Liehpao O. Farng, Patrick J. Palafox, Jian Yang, Ian C. Stewart
  • Publication number: 20150141605
    Abstract: Processes for forming propylene from methanol are disclosed. The processes involve converting methanol to a product mixture comprising ethylene and propylene, separating the ethylene from the propylene, dimerizing a first portion of the ethylene to form a product mixture comprising 1-butylene, isomerizing the 1-butylene to form a mixture of cis and trans 2-butylene, and performing olefin metathesis on a second portion of the ethylene and the mixture of cis and trans 2-butylene. In one embodiment, the methanol is produced by converting syngas to methanol, and in one aspect of this embodiment, the syngas, or a portion thereof, is produced from renewable feedstocks. In this aspect, renewable propylene is produced. The propylene can be polymerized to form polypropylene or co- or terpolymers thereof, and when the propylene is made from renewable resources, the resulting polymer is a renewable polymer.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 21, 2015
    Inventor: David Bradin
  • Publication number: 20150140887
    Abstract: Propylene polymers having a melt flow index in the range from 3.0 dg/min to 8.0 dg/min can be particularly suited for high-tenacity fibers and yarns and nonwovens. The propylene polymers can be produced by a process that includes polymerizing propylene or propylene and at least one comonomer in presence of a Ziegler-Natta polymerization catalyst, an aluminium alkyl, and hydrogen.
    Type: Application
    Filed: June 27, 2013
    Publication date: May 21, 2015
    Inventors: Peter Geeurickx, Alain Standaert, Jean-Luc Zuliani
  • Patent number: 9034998
    Abstract: A method for producing highly reactive olefin polymers wherein at least 50 mol. % of the polymer chains have terminal double bonds, and a novel polymerization initiating system for accomplishing same.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 19, 2015
    Assignees: University of Massachusetts, Infineum Internatonal Limited
    Inventors: Rudolf Faust, Philip Dimitrov, Rajeev Kumar, Jacob Emert, Jun Hua
  • Patent number: 9035006
    Abstract: The present description relates to an olefin block copolymer preferably useful to form nonslip pads due to excellences in elasticity and heat resistance, and a sheet-shaped molded body comprising the olefin block copolymer The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an ?-olefin repeating unit at different weight fractions. The olefin block copolymer satisfies a defined relationship when a load of 5 to 10 kg is applied to a sheet-shaped molded body of the block copolymer for 12 hours or longer at a temperature of 60° C. or higher, and then removed.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 19, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Sang-Jin Jeon, Seung-Ki Park, Kyung-Seop Noh, Nan-Young Lee, Won-Hee Kim, Sang-Eun An
  • Patent number: 9034991
    Abstract: A polymer reactor-blend comprising at least a first component having a polydispersity index of greater than about 20 and is present in an amount of from about 1 wt. % to about 99 wt. % based on the total weight of the polymer and a second component having a polydispersity index of less than about 20 and is present in an amount of from about 1 wt. % to about 99 wt. % based on the total weight of the polymer wherein a molecular weight distribution of the second component lies within a molecular weight distribution of the first component.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 19, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Mark L. Hlavinka, Qing Yang, William B. Beaulieu, Paul J. Deslauriers
  • Patent number: 9035007
    Abstract: A strap comprising a propylene and 1-hexene copolymer containing from 0.3 wt % to less than 5 wt % of 1-hexene derived units said copolymer having a melt flow rate (MFR) determined according to ISO method 1133 (230° C., 2.16 kg ranging from 0.3 to less than 11 g/10 min.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 19, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Gianni Perdomi, Monica Galvan, Renaud Lemaire, Roberta Marzolla
  • Patent number: 9034995
    Abstract: The present disclosure provides a system for recovering emissions generated from an olefin polymerization process, comprising: a devolatilizer for receiving a fresh sweep gas and emissions generated from the olefin polymerization process and outputting a first fluid and a polyolefin resin; a compression refrigeration unit including a compression device and a first heat exchange device, for receiving said first fluid and outputting a first gas-liquid mixture; a first gas-liquid separation device for separating the first gas-liquid mixture and outputting a first recovery product and a first gas phase composition; a first gas separation device for receiving the first gas phase composition, removing small molecular substances therefrom, and outputting a composition rich in small molecular gases and a second gas phase composition rich in hydrocarbons; and a second gas separation device having a second heat exchange device, a second gas-liquid separation device, and a first gas expansion device.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: May 19, 2015
    Assignees: Hangzhou Shuang'an Science and Technology Company Limited
    Inventors: Yongrong Yang, Zhongwei Yang, Jingdai Wang, Zhengliang Huang, Binbo Jiang, Zuwei Liao
  • Publication number: 20150133608
    Abstract: The present invention relates to a moulded article comprising a polypropylene composition, wherein the polypropylene composition comprises comonomer units derived from ethylene in an amount of from 0.5 wt % to 35 wt %, and from at least one C5-12 alpha-olefin in an amount of from 1.0 mol % to 3.0 mol %, wherein the polypropylene composition has an amount of xylene solubles XS of from 20 wt % to 39 wt %, and the xylene solubles have an amount of ethylene-derived comonomer units of from 4.0 wt % to 70 wt %.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 14, 2015
    Inventor: Kristin Reichelt
  • Publication number: 20150133620
    Abstract: Techniques are provided for polymerization. A polymerization method may include polymerizing a monomer in a polymerization reactor to produce a slurry comprising polyolefin particles and a diluent, flowing the slurry out of the polymerization reactor through an outlet of the polymerization reactor, receiving the slurry from the outlet into a slurry handling system, conveying a first mixture from the slurry handling system to a diluent and monomer recovery system, and injecting steam into the first mixture downstream of the slurry handling system using a steam injection system.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Joel A. Mutchler, David S. Boone
  • Patent number: 9029284
    Abstract: A solid particulate catalyst free from an external carrier comprising: (i) a complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-alkyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 independently is hydrogen or a linear or branched C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms from groups 14-16 of the Periodic Table of the Elements; each R2 and R3 taken together form a 4-7 membered ring condensed to the benzene ring of the indenyl moiety, said ring optionally containing heteroatoms from groups 14-16, each atom forming said ring being optionally substituted with at least one R18 radical; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen ato
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 12, 2015
    Assignee: Borealis AG
    Inventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
  • Publication number: 20150123039
    Abstract: The invention relates to a rotary disc device (1) in a rotary fluidised bed, the outer edge of said disc rotating inside, and faster than, the fluidised bed, thereby allowing: the rotation speed of the fluidised bed to be accelerated, solid particles and/or micro-droplets to be supplied to the fluidised bed or to the free central area, and different annular areas of the fluidised bed to be separated. The invention also relates to methods for transforming solid particles or micro-droplets on contact with the fluids flowing through the rotary fluidised bed or for transforming fluids on contact with solids in suspension in the rotary fluidised bed, using said device.
    Type: Application
    Filed: April 4, 2013
    Publication date: May 7, 2015
    Inventor: Axel De Broqueville
  • Patent number: 9023959
    Abstract: Methods for the preparation of fluorided-chlorided silica-coated alumina activator-supports are disclosed. These activator-supports can be used in catalyst systems for the production of olefin-based polymers, such as polyethylene and polypropylene.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Uriah Kilgore, Qing Yang, Kathy S. Collins
  • Patent number: 9023967
    Abstract: A polymer having a long chain branching content peaking at greater than about 20 long chain branches per million carbon atoms, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 8 long chain branches per million carbon atoms, a polydispersity index of greater than about 20 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution. A polymer having a long chain branching content peaking at greater than about 1 long chain branches per chain, and a polydispersity index of greater than about 10 wherein the long chain branching decreases to approximately zero at the higher molecular weight portion of the molecular weight distribution.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: May 5, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Youlu Yu, Eric D. Schwerdtfeger, Max P. McDaniel, Alan L. Solenberger, Kathy S. Collins
  • Publication number: 20150119542
    Abstract: An electrochemical conversion method for converting at least a portion of a first mixture comprising hydrocarbon to C2+ unsaturates by repeatedly applying an electric potential difference, V(?1), to a first electrode of an electrochemical cell during a first time interval ?1; and reducing the electric potential difference, V(?1), to a second electric potential difference, V(?2), for a second time interval ?2, wherein ?2??1. The method is beneficial, among other things, for reducing coke formation in the electrochemical production of C2+ unsaturates in an electrochemical cell. Accordingly, a method of reducing coke formation in the electrochemical conversion of such mixtures and a method for electrochemically converting carbon to C2+ unsaturates as well as an apparatus for such methods are also provided.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Inventors: Walter Weissman, Sumathy Raman, Mark A. Greaney
  • Publication number: 20150119537
    Abstract: This invention relates to processes using staged hydrogen addition in propylene polymerization. Using this process, broad/bi-modal MWD iPP with excellent stiffness properties and melt flow rates were produced.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 30, 2015
    Inventors: Matthew W. Holtcamp, Jian Yang, Celestino M. Perez, JR., Gregory S. Day, Rohan A. Hule
  • Patent number: 9018328
    Abstract: The invention provides a solution polymerization process comprising: A) polymerizing one or more monomers in the presence of a solvent that comprises a heavy hydrocarbon solvent and a light hydrocarbon solvent, to form a polymer solution; B) transferring the polymer solution to a Liquid-Liquid Separator, without adding heat to the solution, and wherein the pressure of the polymer solution is actively reduced in a controlled manner prior to, or within, the Liquid-Liquid Separator, to induce at least two liquid phases, a polymer-rich phase and a solvent-rich phase, and wherein the concentration of polymer in the polymer-rich phase is higher than that in the polymer solution transferred to the Liquid-Liquid Separator; and C) removing the solvent-rich phase.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: April 28, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Prasanna K. Jog, Robert D. Swindoll, Nile A. Mead, Pradeep Jain, Alec Y. Wang, Job D. Guzman
  • Publication number: 20150112038
    Abstract: A method for controlling the temperature in a polymerization reactor equipped with a cycle gas line for withdrawing reactor gas from the reactor, leading the reactor gas through a heat-exchanger, which is cooled by a cooling medium, which is conveyed in a cooling system through the heat-exchanger, and feeding the reactor gas back to the reactor by adjusting the temperature of the cooling medium entering the heat exchanger, wherein the temperature of the cooling medium entering the heat exchanger is controlled by adjusting the flow rate of the cooling medium in a part of the cooling system by a flow control system comprising two continuously operating flow control devices of different size, which are connected in parallel, a process for polymerizing olefins and a process for controlling the flow rate of a fluid medium.
    Type: Application
    Filed: June 13, 2013
    Publication date: April 23, 2015
    Inventors: Holger Strecker, Manfred Hecker, Rainer Karer, Axel Hamann, Maria De Lange
  • Patent number: 9012359
    Abstract: Activating supports may be suitably prepared by the following procedure (a) providing a porous mineral oxide support material, (b) treating the support with a phosphorus-containing compound, (c) treating the support from step (b) with an organometallic compound, (d) heating the functionalized support from step (c) under an inert gas and then under an atmosphere comprising oxygen, (e) fluorinating the support with a fluorinating agent, and (f) recovering an activating support. The activating supports are suitable used in combination with single site catalysts for the polymerization of olefins. The supports are most preferably used in combination with metallocene complexes. The preparative route for the activating supports provides for supported polymerization catalyst systems having excellent activities.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Ineos Sales (UK) Limited
    Inventors: Melanie Muron, Gaelle Pannier, Christopher John Whiteoak, Roger Spitz, Christophe Boisson
  • Patent number: 9012347
    Abstract: The present invention relates to a preparation method of a metallocene catalyst. More particularly, the present invention relates to a preparation method of a supported hybrid metallocene catalyst, including the steps of treating a support having a water content of 4 to 7% by weight with trialkyl aluminum at a predetermined temperature; supporting alkyl aluminoxane on the support; and supporting a metallocene compound on the alkyl aluminoxane-supported support. According to the present invention, it is possible to prepare a supported hybrid metallocene catalyst which shows a high activity in the polymerization of olefins and enables the preparation of polyolefins having a high bulk density, by a simple process.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Dae-Sik Hong, Eun-Kyoung Song, Man-Seong Jeon
  • Patent number: 9006368
    Abstract: A propylene/ethylene/1-hexene terpolymer containing from 1.0 wt % to 2.5 wt %, of ethylene derived units and from 2.0 wt % to 3.5 wt % of 1-hexene derived units, the sum of the amounts of propylene, ethylene and 1-.hexene derived units being 100, having the following features: a) the amount (Wt %) of 1-hexene (C6) and the amount (Wt %) of ethylene (C2) fulfill the following relation (i): 0.5<C6?C2<1.7 (i) wherein C2 is the % wt of ethylene derived units content and C6 is the % wt of 1-hexene derived units content b) Polydispersity index (PI) ranging from 2 to 4.5; c) melting temperature ranges from 125° C., to 138° C.; d) the melting temperature (Tm) and the sum of ethylene content (C2 wt %) and 1-hexene content (C6 wt %) fulfill the following relation (ii) C2+C6<37?0.24*Tm (ii) e) The melt flow rate (MFR) ranges of from 4 to 7 g/10? dg/min, according to ISO method 1133 (230° C., 2.16 kg).
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: April 14, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Roberta Marzolla, Monica Galvan
  • Patent number: 9006367
    Abstract: Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: April 14, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Ashish M. Sukhadia, Errun Ding, Chung Ching Tso, Albert P. Masino, Qing Yang, Lloyd W. Guatney, Guylaine St. Jean, Daniel G. Hert
  • Patent number: 9000115
    Abstract: The present description relates to olefin block copolymers having excellent elasticity and processability in conjunction with enhanced heat resistance, and to a preparation method thereof. The olefin block copolymers comprise a plurality of blocks or segments that comprise ethylene or propylene repeating units and ?-olefin repeating units at different mole fractions from one another, wherein the block copolymer shows peaks at the 2? of 21.5±0.5° and 23.7±0.5° in a wide-angle x-ray diffraction (WAXD) pattern, and the peak ratio defined by (the peak area at 21.5±0.5°)/(the peak area at 23.7±0.5°) is no more than 3.0.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: April 7, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yong Ho Lee, Manseong Jeon, Heon-Yong Kwon, Min-Seok Cho, Seon Kyoung Kim, Dae-Sik Hong, Se Hui Sohn, Ki-Soo Lee, Kyoung-Chan Lim
  • Patent number: 9000113
    Abstract: New plastomer material for use in automotive parts such as bumpers is devised here, which is a novel polyethylene produced by a gas phase process.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Gerhardus Meier, Ulf Schueller, Maclovio Salinas Herrera, Giampaolo Pellegatti, Gerd Mannebach
  • Patent number: 9000114
    Abstract: A process for continuously mixing at least two fluid streams and splitting the stream of the mixture into at least two partial streams, comprising a) providing streams of the at least two fluids via separated conduits; b) combining the streams of the fluids and forming a homogeneous mixture; c) measuring the pressure in the conduit conveying the mixture of the fluids; d) splitting the stream of the mixture of the fluids into at least two partial streams and feeding each of the partial streams to a conduit equipped with a flow control device controlled by a controller; and e) adjusting the flow rates of the partial streams of the mixture of the fluids by feeding the pressure information measured in step c) as process variable to the controllers controlling the flow control devices, a process for feeding a mixture of at least two fluids via at least two feeding points, an apparatuses for carrying out such processes and a process for polymerizing olefins.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Michael Olmscheid, Manfred Hecker, Rainer Karer, Paulus-Petrus Maria De Lange
  • Patent number: 8999875
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 9000108
    Abstract: The present invention generally relates to a process that selectively polymerizes ethylene in the presence of an alpha-olefin, and to a metal-ligand complex (precatalyst) and catalyst useful in such processes, and to related compositions. The present invention also generally relates to ligands and intermediates useful for preparing the metal-ligand complex and to processes of their preparation.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: April 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Pulikkottil J. Thomas, Robert D. Froese, Xiuhua Cui
  • Patent number: 8993694
    Abstract: Provided is a homogeneous catalytic system for use in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, and more particularly a Group 4 transition metal compound in which a cyclopentadienyl derivative 3,4-positions of which are substituted with alkyls and an electron-donating substituent are crosslinked around a Group 4 transition metal. Also provided is a method of preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having high molecular weight, under high-temperature solution polymerization conditions using the catalytic system including such a transition metal compound and a co-catalyst composed of an aluminum compound, a boron compound or a mixture thereof. The catalyst according to present invention has high thermal stability and enables the incorporation of ?-olefin, and is thus effective in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having various properties, in industrial polymerization processes.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: March 31, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Hoseong Lee, Jongsok Hahn, Dongcheol Shin, Hyosun Lee, Chunji Wu
  • Patent number: 8993697
    Abstract: A polymer comprising a conducting or semiconducting segment coupled to a polymer segment having an insulating polymer backbone, the polymer further comprising a RAFT functional group coupled to the polymer segment, wherein there is no RAFT functional group in between the conducting or semiconducting segment and the polymer segment.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Commonwealth Scientific and Industrial Research Institute Organisation
    Inventors: Ming Chen, Graeme Moad, Ezio Rizzardo, Richard Alexander Evans, Matthias Haeussler
  • Patent number: 8993703
    Abstract: A terpolymer containing propylene, ethylene and an alpha olefins of formula CH2?CHZ wherein Z is an hydrocarbon group having from 2 to 10 carbon atoms wherein: (i) the content of ethylene derived units ranges from 0.5 wt % to 5.0 wt %; (ii) the content of alpha olefin derived units ranges from 1.0 wt % to 5.0 wt %; (iii) the amount (Wt %) of alpha-olefin (C6), the amount (Wt %) of ethylene (C2) and the melting point (Tm) of the terpolymer fulfil the following relation (1) Tm>?(C2+0.8C6)*6+157 (1) (iv) the polydispersity index (PI) ranges from 3 to 8.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 31, 2015
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Roberta Marzolla, Monica Galvan
  • Patent number: 8993702
    Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 31, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Renuka N. Ganesh, Andrew G. Narvaez, Jr., Patrick Brant
  • Publication number: 20150087031
    Abstract: The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 26, 2015
    Inventors: Robert Jansen, Claire Gregoire, philip Travisano, Lee Madsen, Neta Matis, Yael Har-Tal, Shay Eliahu, James Alan Lawson, Noa Lapidot, Luke Burke, Aharon M. Eyal, Timothy Allen Bauer, Hagit Sade, Paul Mcwilliams, Ziv-Vladimir Belman, Bassem Hallac, Michael Zviely, Yelena Gershinksy, Adam Carden
  • Patent number: 8987372
    Abstract: The present invention is directed to adhesives suitable for application using a hot melt process at a relatively low temperature in the range of about 110° C. to about 130° C. Such adhesives exhibit desirable viscoelastic properties and are suitable for bonding an elastic attachment in the manufacture of disposable articles, such as disposable diapers.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Henkel US IP & Holding GmbH
    Inventors: Yuhong Hu, Maria Xenidou
  • Patent number: 8987392
    Abstract: The present invention discloses catalyst compositions employing silicon-bridged metallocene compounds with bulky substituents. Methods for making these silicon-bridged metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: March 24, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Qing Yang, Max P. McDaniel, Jim B. Askew