From Hydrocarbon Patents (Class 526/348)
-
Patent number: 9000108Abstract: The present invention generally relates to a process that selectively polymerizes ethylene in the presence of an alpha-olefin, and to a metal-ligand complex (precatalyst) and catalyst useful in such processes, and to related compositions. The present invention also generally relates to ligands and intermediates useful for preparing the metal-ligand complex and to processes of their preparation.Type: GrantFiled: November 11, 2013Date of Patent: April 7, 2015Assignee: Dow Global Technologies LLCInventors: Jerzy Klosin, Pulikkottil J. Thomas, Robert D. Froese, Xiuhua Cui
-
Patent number: 8999875Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.Type: GrantFiled: May 26, 2011Date of Patent: April 7, 2015Assignee: Basell Polyolefine GmbHInventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
-
Patent number: 8993694Abstract: Provided is a homogeneous catalytic system for use in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, and more particularly a Group 4 transition metal compound in which a cyclopentadienyl derivative 3,4-positions of which are substituted with alkyls and an electron-donating substituent are crosslinked around a Group 4 transition metal. Also provided is a method of preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having high molecular weight, under high-temperature solution polymerization conditions using the catalytic system including such a transition metal compound and a co-catalyst composed of an aluminum compound, a boron compound or a mixture thereof. The catalyst according to present invention has high thermal stability and enables the incorporation of ?-olefin, and is thus effective in preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin, having various properties, in industrial polymerization processes.Type: GrantFiled: April 25, 2013Date of Patent: March 31, 2015Assignee: SK Innovation Co., Ltd.Inventors: Hoseong Lee, Jongsok Hahn, Dongcheol Shin, Hyosun Lee, Chunji Wu
-
Patent number: 8993702Abstract: This invention relates to a transition metal catalyst compound represented by the structure: wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R1 and R3 are, independently, a C1 to C8 alkyl group; and each R2, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, and R14 are, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three of the R10-R14 groups are not hydrogen, compositions thereof and methods of use thereof to prepare polymers.Type: GrantFiled: October 19, 2012Date of Patent: March 31, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: Donna J. Crowther, Renuka N. Ganesh, Andrew G. Narvaez, Jr., Patrick Brant
-
Patent number: 8993703Abstract: A terpolymer containing propylene, ethylene and an alpha olefins of formula CH2?CHZ wherein Z is an hydrocarbon group having from 2 to 10 carbon atoms wherein: (i) the content of ethylene derived units ranges from 0.5 wt % to 5.0 wt %; (ii) the content of alpha olefin derived units ranges from 1.0 wt % to 5.0 wt %; (iii) the amount (Wt %) of alpha-olefin (C6), the amount (Wt %) of ethylene (C2) and the melting point (Tm) of the terpolymer fulfil the following relation (1) Tm>?(C2+0.8C6)*6+157 (1) (iv) the polydispersity index (PI) ranges from 3 to 8.Type: GrantFiled: August 31, 2011Date of Patent: March 31, 2015Assignee: Basell Poliolefine Italia S.r.l.Inventors: Roberta Marzolla, Monica Galvan
-
Patent number: 8993697Abstract: A polymer comprising a conducting or semiconducting segment coupled to a polymer segment having an insulating polymer backbone, the polymer further comprising a RAFT functional group coupled to the polymer segment, wherein there is no RAFT functional group in between the conducting or semiconducting segment and the polymer segment.Type: GrantFiled: June 28, 2013Date of Patent: March 31, 2015Assignee: Commonwealth Scientific and Industrial Research Institute OrganisationInventors: Ming Chen, Graeme Moad, Ezio Rizzardo, Richard Alexander Evans, Matthias Haeussler
-
Publication number: 20150087031Abstract: The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.Type: ApplicationFiled: May 3, 2013Publication date: March 26, 2015Inventors: Robert Jansen, Claire Gregoire, philip Travisano, Lee Madsen, Neta Matis, Yael Har-Tal, Shay Eliahu, James Alan Lawson, Noa Lapidot, Luke Burke, Aharon M. Eyal, Timothy Allen Bauer, Hagit Sade, Paul Mcwilliams, Ziv-Vladimir Belman, Bassem Hallac, Michael Zviely, Yelena Gershinksy, Adam Carden
-
Patent number: 8987393Abstract: The invention relates to a new catalyst component for the polymerization of olefins comprising a compound of formula CyLMZp, wherein M is a Group 4-6 metal, Z is an anionic ligand, p is the number of anionic ligands, Cy is a mono- or poly-substituted cyclopentadienyl-type ligand and L is a guanidinate ligand of the formula wherein: each A is independently selected from nitrogen or phosphorus and R, R1, R2 and R3 are independently selected from the group consisting of hydrogen, hydrocarbyl, silyl and germyl residues, substituted or not with one or more halogen, amido, phosphido, alkoxy, or aryloxy radicals. The invention also relates to a catalyst system for the polymerization of olefins and a process for the polymerization of at least one olefin having 2 to 20 carbon atoms.Type: GrantFiled: November 5, 2010Date of Patent: March 24, 2015Assignee: LANXESS Elastomers B.V.Inventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Victor Fidel Quiroga Norambuena, Alexandra LeBlanc
-
Patent number: 8987372Abstract: The present invention is directed to adhesives suitable for application using a hot melt process at a relatively low temperature in the range of about 110° C. to about 130° C. Such adhesives exhibit desirable viscoelastic properties and are suitable for bonding an elastic attachment in the manufacture of disposable articles, such as disposable diapers.Type: GrantFiled: March 15, 2013Date of Patent: March 24, 2015Assignee: Henkel US IP & Holding GmbHInventors: Yuhong Hu, Maria Xenidou
-
Patent number: 8986618Abstract: A gas-phase polyolefin reactor system for rapidly transitioning from one polyolefin product to another is disclosed. The reactor system comprises a steady-state control valve, a high-flow valve, a polyolefin reactor, a flow meter, a totalizer, an online analyzer and an empirical model. During a transition, the on-line analyzer measures an initial concentration of a reaction component, the empirical model predicts a required amount based upon the measured initial concentration and a selected ending concentration, the flow meter measures a flow rate, the totalizer determines a totalized amount when the flow rate of the first stream reaches the required amount based upon the measured flow rate and outputs the totalized amount to the empirical model, and the empirical model compares the required amount to the totalized amount and determines a transition endpoint. A method of rapidly transitioning the reactor system from one polyolefin product to another is also disclosed.Type: GrantFiled: June 28, 2013Date of Patent: March 24, 2015Assignee: Ineos USA, LLCInventors: Gregory Dudish, Ernest Chan
-
Patent number: 8987400Abstract: Polypropylene having a melting temperature (Tm) of at least 151.0° C., a melt flow rate MFR2 (230° C.) of more than 2.0 g/10 min, a xylene cold soluble fraction (XCS) of not more than 1.5 wt.-%, <2,1> regiodefects of equal or more than 0.4 mol.-% determined by 13C-spectroscopy, and a number average molecular weight (Mn) of not more than 110 kg/mol.Type: GrantFiled: December 21, 2010Date of Patent: March 24, 2015Assignee: Borealis AGInventors: Dietrich Gloger, Katja Klimke, Joachim Fiebig
-
Patent number: 8987394Abstract: Catalyst compositions containing N,N-bis[2-hydroxidebenzyl]amine transition metal compounds are disclosed. Methods for making these transition metal compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.Type: GrantFiled: June 17, 2014Date of Patent: March 24, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Mark L. Hlavinka, Qing Yang, Youlu Yu
-
Patent number: 8987392Abstract: The present invention discloses catalyst compositions employing silicon-bridged metallocene compounds with bulky substituents. Methods for making these silicon-bridged metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.Type: GrantFiled: March 25, 2013Date of Patent: March 24, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Joel L. Martin, Qing Yang, Max P. McDaniel, Jim B. Askew
-
Patent number: 8987398Abstract: The present invention relates to an ethylene-based terpolymer having high elasticity and a preparation method thereof, and more particularly, to a highly elastic, ethylene-based terpolymer, which comprises a specific molar ratio of a ethylene unit, a C6-12 ?-olefin unit and at least one functional unit selected from the group consisting of divinylbenzene and para-methylstyrene and to a method of preparing the highly elastic, ethylene-based terpolymer using a metallocene catalyst.Type: GrantFiled: October 5, 2012Date of Patent: March 24, 2015Assignee: Korea Institute of Industrial TechnologyInventors: Dong Hyun Kim, Joon Chul Lee, Hyun Ki Kim, Tae Wan Kim
-
Patent number: 8981023Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.Type: GrantFiled: October 13, 2010Date of Patent: March 17, 2015Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.Inventors: Hongping Ren, Chuanfeng Li, Xiaoli Yao, Feng Guo, Zhonglin Ma, Haibin Chen, Kaixiu Wang, Jingwei Liu, Yaming Wang
-
Patent number: 8981029Abstract: This invention relates to a process for polymerization, comprising (i) contacting, at a temperature greater than 35° C., one or more monomers comprising ethylene and/or propylene, with a catalyst system comprising a metallocene catalyst compound and an activator, (ii) converting at least 50 mol % of the monomer to polyolefin; and (iii) obtaining a branched polyolefin having greater than 50% allyl chain ends, relative to total unsaturated chain ends. The invention also relates to the branched polyolefins and functionalized branched polyolefins.Type: GrantFiled: May 23, 2013Date of Patent: March 17, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: Peijun Jiang, Patrick Brant
-
Patent number: 8981028Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks differing in tacticity, are prepared by polymerizing propylene, 4-methyl-1-pentene, or another C4-8 ?-olefin in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in tacticity from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: January 30, 2006Date of Patent: March 17, 2015Assignee: Dow Global Technologies LLCInventor: Phillip D. Hustad
-
Publication number: 20150072095Abstract: Molded article comprising a propylene copolymer having a xylene cold soluble content (XCS) in the range of 35 to 60 wt.-% and a comonomer content in the range of 7.0 to 17.0 wt-%, wherein further the propylene copolymer fulfills inequation (I), wherein Co (total) is the comonomer content [wt.-%] of the propylene copolymer Co (XCS) is the comonomer content [wt.-%] of the xylene cold soluble fraction (XCS) of the propylene copolymer. Co ? ? ( total ) Co ? ? ( XCS ) ? 0.Type: ApplicationFiled: April 19, 2013Publication date: March 12, 2015Inventors: Markus Gahleitner, Klaus Bernreitner, Katja Klimke, Martina Sandholzer
-
Patent number: 8975209Abstract: Disclosed is a solid support-polymethylaluminoxane complex exhibiting a higher polymerization activity than a conventional substance and being homogeneous. Also disclosed is a method for producing an olefin-based polymer having a favorable quality using the complex and a transition metal compound. The complex comprises a coating layer containing polymethylaluminoxane and trimethylaluminum on the surface of a solid support. The coating layer comprises a solid polymethylaluminoxane composition in which (i) the content of aluminum is in a range of 36 to 41 mass % and (ii) the molar fraction of methyl groups derived from a trimethylaluminum moiety to the total number of moles of methyl groups is 12 mol % or less. Also disclosed is an olefin polymerization catalyst comprising the complex and a transition metal compound represented by general formula (III): MR5R6R7R8 as catalyst components, and a method for producing a polyolefin comprising polymerizing an olefin using the catalyst.Type: GrantFiled: May 11, 2011Date of Patent: March 10, 2015Assignee: Tosoh Finechem CorporationInventors: Eiichi Kaji, Etsuo Yoshioka
-
Patent number: 8975352Abstract: There is provided compositions and methods for producing three-dimensional objects by selective deposition modeling with a polar build material and a non-polar support material. The build material comprises a hydrocarbon wax material and a viscosity modifier, and the support material comprises a hydrocarbon alcohol wax material and a viscosity modifier. After the selective deposition modeling process has been completed, the object can be placed in a bath of polar solvent to remove the support material. The particular materials provided herein, and the post-processing methods associated therewith, provide for improved part quality of the three-dimensional object and for improved post-processing techniques. The three-dimensional objects can subsequently be used in a number of applications, such as patterns for investment casting.Type: GrantFiled: November 18, 2013Date of Patent: March 10, 2015Assignee: 3D Systems, Inc.Inventors: John Stockwell, Pingyong Xu
-
Patent number: 8974909Abstract: Random copolymers of propylene with ethylene, and optionally other olefins, comprising from 3.5% to 6.5% by weight of ethylene and having a melt flow rate (MFR) according to ISO 1133 (230° C., 2.16 Kg) of less than 10 g/10 min and a melting temperature (Tm), determined by DSC, satisfying the relation: 45° C.?Tm+C?150° C. wherein C is the quantity (by weight) of ethylene in the copolymer. The random copolymers of the invention are specifically suited for cast film and/or sheet applications.Type: GrantFiled: July 29, 2011Date of Patent: March 10, 2015Assignee: Basell Poliolefine Italia S.r.l.Inventors: Marco Ciarafoni, Monica Galvan, Roberta Marzolla, Paola Massari
-
Patent number: 8975202Abstract: The invention provides a polymerization catalyst produced by bringing components (A) to (D) into contact with one another in a hydrocarbon solvent at 30 to 60° C., wherein the component (A) is a transition metal compound, the component (B) is a solid boron compound capable of forming an ion pair with component (A), the component (C) is an organoaluminum compound, and the component (D) is one or more unsaturated hydrocarbon compounds selected from among an ?-olefin, an internal olefin, and a polyene; and the amounts of component (B) and component (C) are 1.2 to 4.0 mol and 5.0 to 50.0 mol, respectively, on the basis of 1 mol of component (A), which catalyst exhibits high activity and can be readily supplied to a polymerization reaction system. The invention also provides a method of storing the polymerization catalyst at 0 to 35° C.Type: GrantFiled: June 10, 2010Date of Patent: March 10, 2015Assignee: Idemitsu Kosan Co., Ltd.Inventors: Masami Kanamaru, Takenori Fujimura, Minoru Yabukami
-
Patent number: 8969494Abstract: This invention discloses caps and closures produced by injection molding with a bimodal high density polyethylene (HDPE) resin comprising a low molecular weight, high density polyethylene fraction substantially free of comonomer and a high molecular weight, low density polyethylene fraction, having a molecular weight distribution of at least 3.5, preferably greater than 4.0, prepared in two reactors connected in series in the presence of a metallocene-containing catalyst system, wherein the metallocene comprises a bisindenyl or a bis-tetrahydrogenated-indenyl component.Type: GrantFiled: September 9, 2013Date of Patent: March 3, 2015Assignee: Total Research & Technology FeluyInventors: Alain Standaert, Romain Luijkx, Martine Slawinski, Aurelien Vantomme
-
Patent number: 8969495Abstract: The present invention relates to compositions and processes of making ethylene/?-olefins. More particularly, the invention relates to processes of producing ethylene/?-olefin compositions having a controlled molecular weight distribution. The molecular weight distribution is controlled, for example, by controlling the relative monomer concentrations during contact with a pre-catalyst and/or using a catalyst comprising a catalytic amount of a molecule having the structure: wherein M=group 2-8 metal, preferably group 4 as a neutral or charged moiety; Y=any substituent including fused rings; L=any ligating group, especially a pyridyl or pyridylamide; X=alkyl, aryl, substituted alkyl, H or hydride, halide, or other anionic moiety; y=an integer from 0 to the complete valence of M; R=alkyl, aryl, haloalkyl, haloaryl, hydrogen, etc; x=1-6, especially 2; Dashed line=optional bond, especially a weak bond; and X and (CR2)x may be tethered or part of a ring.Type: GrantFiled: January 18, 2013Date of Patent: March 3, 2015Assignee: Dow Global Technologies LLCInventors: Phillip D. Hustad, Roger L. Kuhlman, Robert D. J. Froese, Timothy T. Wenzel, Joseph N. Coalter, III
-
Patent number: 8962509Abstract: Process for the preparation of a solid catalyst system (CS) comprising the steps of preparing a liquid clathrate (LC) comprising (a) a lattice (L) being the reaction product of (i) aluminoxane (A), (ii) an organometallic compound (O) of a transition metal (M) of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, and (i) a compound (B) being effective to form with the aluminoxane (A) and the organometallic compound (O) the lattice (L), and (b) a guest (G) being an hydrocarbon compound (HC), and subsequently precipitating said liquid clathrate (LC) obtaining said solid catalyst system (SC).Type: GrantFiled: April 28, 2011Date of Patent: February 24, 2015Assignee: Borealis AGInventors: Kalle Kallio, Marja Mustonen, Pertti Elo, Peter Denifl, John Severn
-
Patent number: 8962755Abstract: A dual reactor solution process gives high density polyethylene compositions containing a first ethylene copolymer and a second ethylene copolymer and which have good processability, toughness, and environmental stress crack resistance combined with good organoleptic properties. The polyethylene compositions are suitable for compression molding or injection molding applications and are particularly useful in the manufacture of caps and closures for bottles.Type: GrantFiled: August 31, 2012Date of Patent: February 24, 2015Assignee: Nova Chemicals (International) S.A.Inventors: XiaoChuan Wang, Yves Lacombe, Mark Edmund Weber
-
Patent number: 8957170Abstract: The invention relates to a catalyst system for the polymerization of olefins comprising a metal complex of formula CyLMD and an activating cocatalyst, wherein M is titanium, Cy is a cyclopentadienyl-type ligand, D is a diene, L is an amidinate-containing ligand of formula (1), wherein the amidinate-containing ligand is covalently bonded to the titanium via the imine nitrogen atom, Sub1 is a substituent, which comprises a group 14 atom through which Sub1 is bonded to the imine carbon atom, Sub2 is a substituent, which comprises a nitrogen atom, through which Sub2 is bonded to the imine carbon atom, and Cy is a mono- or polysubstituted cyclopentadienyl-type ligand, wherein the one or more substituents of Cy are selected from the group consisting of halogen, hydrocarbyl, silyl and germyl residues, optionally substituted with one or more halogen, amido, phosphido, alkoxy, or aryloxy residues.Type: GrantFiled: December 21, 2010Date of Patent: February 17, 2015Assignee: LANXESS Deutschland GmbHInventors: Gerardus Henricus Josephus Van Doremaele, Martin Alexander Zuideveld, Philip Mountford, Alex Heath, Richard T. W Scott
-
Patent number: 8957158Abstract: A novel PE material is devised showing excellent mechanical/optical properties and process ability, e.g. for film extrusion. The polyethylene of the invention is produced in one single e.g. gas phase reactor.Type: GrantFiled: September 22, 2009Date of Patent: February 17, 2015Assignee: Basell Polyolefine GmbHInventors: Fabiana Fantinel, Gerd Mannebach, Shahram Mihan, Gerhardus Meier, Iakovos Vittorias
-
Patent number: 8957171Abstract: Catalysts comprising salan ligands with carbazole moieties. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.Type: GrantFiled: June 19, 2013Date of Patent: February 17, 2015Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.Inventors: Garth R. Giesbrecht, Gregory S. Day, Matthew W. Holtcamp, Moshe Kol, David A. Cano, Eric D. Whetmore, Konstantin Press
-
Patent number: 8957167Abstract: A polymerization process includes contacting the following in a gas-phase reactor system under polymerization conditions for making a polymer product: a metallocene-based catalyst system including a supported constrained geometry catalyst, at least one monomer, and an additive selected from a group consisting of an aluminum distearate, an ethoxylated amine, and a mixture thereof. The additive may be selected from a group consisting of an aluminum distearate, an ethoxylated amine, polyethylenimines, and other additives suitable for use in the production of polymers for food contact applications and end products, including a mixture of a polysulfone copolymer, a polymeric polyamine, and oil-soluble sulfonic acid, in a carrier fluid, and mixtures thereof.Type: GrantFiled: July 27, 2010Date of Patent: February 17, 2015Assignee: Univation Technologies, LLCInventors: F. David Hussein, Kevin J. Cann, F. Gregory Stakem, Ann M. Schoeb-Wolters, Wesley R. Mariott, James M. Farley, Michael D. Awe
-
Patent number: 8957166Abstract: A method for producing a propylene-based polymer, including polymerizing propylene or propylene and an ?-olefin except propylene in the presence of a catalyst with a horizontal polymerization reactor equipped with stirring vanes rotating around a horizontal axis therein by a continuous vapor-phase polymerization, which removes heat of polymerization by heat of vaporization of a liquefied propylene, wherein the reactor can set a plurality of area sections different in temperature in a horizontal direction inside the reactor, and satisfies at least one of i) a temperature difference, ?T1=T??T?, between an area section including an upstream end of the reactor (T?) and a downstream end (T?) thereof is 0.1 to 20° C. and ii) a temperature difference, ?T2=Tx?Tz, between an area section including a catalyst feed part (Tx) and dew point (Tz) of a mix gas in the reactor is 0 to 5° C.Type: GrantFiled: October 29, 2010Date of Patent: February 17, 2015Assignee: Japan Polypropylene CorporationInventors: Yoshitaka Kobayashi, Takanori Nakashima, Kiyoshi Yukawa, Yusuke Yamada, Hajime Aoyama, Nobuhiro Iwai
-
Patent number: 8957168Abstract: Methods for controlling properties of an olefin polymer using an alcohol compound are disclosed. The MI and the HLMI of the polymer can be decreased, and the Mw and the Mz of the polymer can be increased, via the addition of the alcohol compound.Type: GrantFiled: August 9, 2013Date of Patent: February 17, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Albert P. Masino, Ted H. Cymbaluk, John D. Stewart
-
Patent number: 8957169Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.Type: GrantFiled: October 13, 2010Date of Patent: February 17, 2015Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co. Ltd.Inventors: Xiaoli Yao, Chuanfeng Li, Hongping Ren, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang
-
Patent number: 8957172Abstract: Catalysts comprising a non-symmetrical Salan ligand with a carbazole moiety. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.Type: GrantFiled: June 19, 2013Date of Patent: February 17, 2015Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, David A. Cano
-
Publication number: 20150045513Abstract: A blended multimodal polymer product is disclosed that comprises a first polymer, wherein the first polymer is a homopolymer of propylene or a propylene copolymer having an ethylene or a C4 to C10 olefin comonomer; and a second polymer, wherein the second polymer is a propylene homopolymer and a propylene copolymer having an ethylene or a C4 to C10 olefin comonomer, and wherein the first polymer and second polymer have a difference in heat of fusion of about 25 J/g or more. Methods for making such a polymer product using at least two reactors in parallel and for separating a propylene-based polymer from a solvent using a liquid-phase separator are also disclosed.Type: ApplicationFiled: February 28, 2013Publication date: February 12, 2015Inventors: Periagaram S. Ravishankar, Yu Feng Wang, Luke P. Stephens, Florin Barsan, Douglas A. Berti
-
Patent number: 8952114Abstract: Catalysts comprising a halogenated Salan ligand. Also disclosed are catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.Type: GrantFiled: June 19, 2013Date of Patent: February 10, 2015Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Moshe Kol, Gregory S. Day, Konstantin Press
-
Patent number: 8952111Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.Type: GrantFiled: September 19, 2011Date of Patent: February 10, 2015Assignee: Nova Chemicals (International) S.A.Inventors: Peter Phung Minh Hoang, Benjamin Milton Shaw, Patrick Lam, Victoria Ker, Cliff Robert Baar, Lee Douglas Henderson, Charles Ashton Garret Carter, Yan Jiang
-
Patent number: 8952113Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.Type: GrantFiled: October 13, 2010Date of Patent: February 10, 2015Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Lin Kan, Bo Liu, Zhonglin Ma, Feng Guo, Kaixiu Wang, Yaming Wang, Lijuan Yang
-
Patent number: 8951637Abstract: The present invention provides a method for producing water-absorbent resin particles which show an excellent water absorption rate and high equilibrium swelling capacity and which have an appropriate particle size to be excellent in handleability, and water-absorbent resin particles obtained by the method.Type: GrantFiled: November 24, 2010Date of Patent: February 10, 2015Assignee: Sumitomo Seika Chemicals Co., Ltd.Inventors: Atsushi Heguri, Kenji Tanimura, Yuichi Onoda
-
Patent number: 8952112Abstract: This invention relates to a supported nonmetallocene catalyst and preparation thereof. The supported nonmetallocene catalyst can be produced with a simple and feasible process and is characterized by an easily controllable polymerization activity. This invention further relates to use of the supported nonmetallocene catalyst in olefin homopolymerization/copolymerization, which is characterized by a lowered assumption of the co-catalyst as compared with the prior art.Type: GrantFiled: October 13, 2010Date of Patent: February 10, 2015Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Company Ltd.Inventors: Chuanfeng Li, Hongping Ren, Xiaoli Yao, Zhonglin Ma, Feng Guo, Kaixiu Wang, Jingwei Liu, Yaming Wang, Lijuan Yang
-
Patent number: 8946362Abstract: The present invention relates to a preparation method of olefin polymers using a catalyst composition containing a transition metal compound. In detail, the present invention provides a preparation method of olefin polymer using a catalyst composition comprising a transition metal compound, wherein the preparation method comprises introducing a scavenger to a continuous solution polymerization reactor in a specific range of amount to give the olefin polymer with good productivity.Type: GrantFiled: May 13, 2009Date of Patent: February 3, 2015Assignee: LG Chem, Ltd.Inventors: Don-Ho Kum, Eun-Jung Lee, Dong-Kyu Park, Choong-Hoon Lee, Jong-Joo Ha, Seung-Whan Jung, Jung-A Lee, Seong-Jin Kim
-
Patent number: 8946363Abstract: Solid, particulate catalysts comprising bridged bis indenyl ?-ligands are disclosed, together with methods for the preparation and use thereof, for example, in olefin polymerization.Type: GrantFiled: April 27, 2011Date of Patent: February 3, 2015Assignee: Borealis AGInventors: Luigi Resconi, Pascal Castro, Lauri Huhtanen
-
Publication number: 20150031842Abstract: A method is provided for polymerizing an olefin monomer in a reactor with a highly active polyolefin polymerization catalyst system. The method includes introducing a catalyst system comprising a catalyst and a catalyst activator into the reactor containing the olefin monomer with less than 10 seconds or no pre-contacting time of the catalyst and the catalyst activator prior to introducing the catalyst and the catalyst activator into the reactor. The catalyst system may have a standard adjusted catalyst activity of greater than 10 gPgcat?1hr?1.Type: ApplicationFiled: June 5, 2014Publication date: January 29, 2015Inventors: Todd S. Edwards, Kevin W. Lawson
-
Publication number: 20150031262Abstract: Fibers can include a polypropylene composition, which can include a metallocene random copolymer of propylene and a comonomer that is an alpha-olefin different from propylene. The metallocene random copolymer can have a comonomer content of from 1.2 wt % to 1.8 wt %, a molecular weight distribution of at least 1.0 and of at most 4.0 obtained without thermal or chemical degradation, and a melting temperature Tmelt of at most 140° C. A nonwoven can include the fibers, and a laminate can include the nonwoven. The fibers can be produced by polymerizing the propylene and comonomer in presence of a metallocene-based polymerization catalyst to obtain the metallocene random copolymer. The polypropylene composition can be melt-extruded to obtain a molten polypropylene stream, which can be extruded from capillaries of a spinneret to obtain filaments. A diameter of the filaments can be rapidly reduced to obtain a final diameter.Type: ApplicationFiled: August 28, 2012Publication date: January 29, 2015Inventors: Gaëtan Henry, Guillaume Pavy, John Bieser, Hugues Haubruge, Alain Standaert
-
Patent number: 8940850Abstract: An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.Type: GrantFiled: January 16, 2014Date of Patent: January 27, 2015Assignee: Carver Scientific, Inc.Inventors: David R. Carver, Robert G. Carver, Sean W. Reynolds, Sean Claudius Hall, Noah Anthony Davis
-
Patent number: 8937137Abstract: Catalysts comprising Salan ligands with bridged or unbridged diphenyl amine moieties. Also, catalyst systems comprising the catalyst and an activator; methods to prepare the ligands, catalysts and catalyst systems; processes to polymerize olefins using the catalysts and/or catalyst systems; and the olefin polymers prepared according to the processes.Type: GrantFiled: November 11, 2013Date of Patent: January 20, 2015Assignees: ExxonMobil Chemical Patents Inc., Ramot at Tel-Aviv University Ltd.Inventors: Matthew W. Holtcamp, Meagan E. Evans, David A. Cano, Eric D. Whetmore, Gregory S. Day, Moshe Kol
-
Patent number: 8937138Abstract: The present invention discloses an initiating system for cationic polymerization and a polymerization process. The present application relates to an initiating system for cationic polymerization of cationic-polymerizable monomers, and a process for cationic polymerization of cationic-polymerizable monomers by using the initiating system. The present invention particular involves an initiating system for cationic polymerization of cationic-polymerizable monomers in an aqueous reaction medium, and a process for cationic polymerization of cationic-polymerizable monomers by using the initiating system in an aqueous reaction medium.Type: GrantFiled: September 21, 2010Date of Patent: January 20, 2015Assignees: China Petroleum & Chemical Corporation, Beijing University of Chemical TechnologyInventors: Yixian Wu, Qiang Huang, Han Zhou, Ruting Jin, Ping He
-
Patent number: 8932527Abstract: Loop reactors for olefin polymerization and processes utilizing such loop reactors are described herein. In one or more embodiments, the loop reactor generally includes a plurality of vertical sections; a plurality of elbow sections connecting the vertical sections to either a horizontal section having a horizontal length (LH) or another elbow section, at least one elbow section having an internal diameter (d), a radius (Rc) of an inner curvature and a chord length (W) and wherein the horizontal length (LH) is from 0 feet to 3 feet, the chord length (W) is 250 inches or less and a ratio (Rc/d) of the radius (Rc) of the inner curvature to the internal diameter (d) of the at least one elbow section is maintained from 2 to 4; and at least one loop reaction zone configured to polymerize an olefin monomer in the presence of a liquid diluent into a slurry comprising particles of a polyolefin polymer.Type: GrantFiled: August 17, 2014Date of Patent: January 13, 2015Assignee: Chevron Phillips Chemical Co.Inventors: Scott E. Kufeld, Joel A. Mutchler, Ralph W. Romig, John D Stewart, Catherine M Gill, Bruce E. Kreischer, John D. Hottovy
-
Patent number: 8933256Abstract: A complex of formula (I): wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R?2C—, —R?2C—CR?2—, —R?2Si—, —R?2Si—SiR?2—, —R?2Ge—, wherein each R? is independently a hydrogen atom, C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; each R1 is a C4-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring, optionally containing one or more heteroatoms belonging to groups 14-16, or is a C3-C20 hydrocarbyl radical branched at the ?-atom to the cyclopentadienyl ring where the ?-atom is an Si-atom; n is 0-3; each R18 is the same or different and may be a C1-C20 hydrocarbyl radical optionally containing one or more heteroatoms belonging to groups 14-16; each R4 is a hydrogen atom or a C1-6-hydrocarbyl radical; each W is a 5 or 6 membered aryl or heteroaryl ring wherein each atom of said ring is optionally substituted with an R5 group each R5 is the same or different and is a C1-C20 hydrocarbyl radical optionType: GrantFiled: June 29, 2011Date of Patent: January 13, 2015Assignee: Borealis AGInventors: Pascal Castro, Luigi Resconi, Lauri Huhtanen
-
Patent number: 8933175Abstract: A composition comprising a polyethylene wherein the composition is enriched in polymer molecules having topological variations by an enrichment factor ? and wherein the composition displays a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms. A composition comprising an isolated Ziegler-catalyzed polyethylene having a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms at the high molecular weight end.Type: GrantFiled: August 30, 2012Date of Patent: January 13, 2015Assignee: Chevron Phillips Chemical Company LPInventors: Youlu Yu, Chung C. Tso, David C. Rohlfing, Paul J. Deslauriers, Melvin Hildebrand, Max P. McDaniel, Qing Yang