From Ketone Or Ketene Reactant Patents (Class 528/220)
  • Patent number: 6060581
    Abstract: An optical alignment composition including self-photosensitive polyimide having a benzophenone moiety and an active hydrogen moiety, and an LCD having the alignment layer formed of the optical alignment composition are provided. Since the alignment layer with excellent thermal stability and improved pretilt angle is obtained, the LCD having excellent performance can be manufactured.
    Type: Grant
    Filed: December 10, 1997
    Date of Patent: May 9, 2000
    Assignee: Samsung Display Devices Co., Ltd.
    Inventors: Han-sung Yu, Yong-kyu Jang
  • Patent number: 6060575
    Abstract: The present invention provides a series of easily processable poly(ether-imide)s that are organic-soluble and can afford colorless films, their organic solutions and their manufacturing process. The poly(ether-imide) is prepared from a dianhydride and a diamine, wherein the dianhydride is a bis(ether anhydride) having tert-butyl group, i. e. 1,4-bis(3,4-dicarboxyphenoxy)-2-tert-butylbenzene dianhydride.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: May 9, 2000
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Sheng-Huei Hsiao
  • Patent number: 6054554
    Abstract: The invention herein relates to a novel soluble polyimide resin comprising polyalicyclic structures and the process of preparation of the same, wherein aromatic tetracarboxylic dianhydride and novel aromatic diamine having an polyalicyclic group with various structures are used to yield a novel form of a polyimide resin, which has superior heat-resistance, solubility, and transparency.More specifically, the invention herein relates to a novel polyimide resin having excellent heat-resistance and solubility, which is prepared by means of reacting diamine monomers having a novel chemical structure with various types of aromatic carboxilic dianhydrides, in stead of aromatic diamine used for the preparation of the conventional polyimide resin. As a result, the polymers so obtained had the glass transition temperature of 260.degree. C..about.410.degree. C. and showed a increase in solubility in proportion to the increase in a number of the aromatic rings between two phenyl groups.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: April 25, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil Yeong Choi, Mi Hie Yi, Wenxi Huang
  • Patent number: 6051677
    Abstract: Disclosed is a gas separating membrane comprising a layer made of a polycarbodiimide resin having repeating units represented by formula (I): ##STR1## wherein R represents a divalent organic group. The gas separating membrane available according to the present invention has high permeability and separation selectivity as well as excellent permeating performance, and further has excellent heat resistance, chemical resistance and durability.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: April 18, 2000
    Assignee: Nitto Denko Corporation
    Inventors: Masatoshi Maeda, Masahiro Yoshioka, Takahiro Fukuoka, Michie Sakamoto, Amane Mochizuki
  • Patent number: 6048959
    Abstract: Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: April 11, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Robert G. Bryant
  • Patent number: 6046303
    Abstract: The invention herein relates to a soluble polyimide resin for a liquid crystal alignment layer and the manufacturing method thereof, wherein a mixture of aliphatic tetracarboxylic acid dianhydrides and aromatic diamine having aliphatic side chains are used to yield a soluble polyimide resin which has superior heat-resistance, solubility, surface hardness, transparency and liquid crystal alignment capacity.The soluble polyimide resin having alkoxy substituents, for a liquid crystal layer, according to the present invention, is manufactured by adding a mixture of dioxotetrahydrofuran 3-methylcyclohexene-1,2-dicarboxylic dianhydride, which is an aliphatic tetracarboxylic acid dianhydride and aromatic tetracarboxylic acid dianhydride to a mixture of aromatic diamine, and said dioxotetrahydrofuran 3-methylcyclohexene- 1,2-dicarboxylic dianhydride is used in the amount of 50 to 99 mol % to the total amount of anhydrides.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: April 4, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Mi-Hie Yi, Moon-Young Jin, Jin-Tae Jung, Jeong-Ghi Koo, Jae-Eun Cho
  • Patent number: 6040418
    Abstract: Fluorinated polymides comprising units of 2,2',5,5',6,6'-hexafluorobiphenyl-3,3',4,4'-tetracarboxylic dianhydride and aromatic diamines.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: March 21, 2000
    Assignee: Ube Industries, Ltd.
    Inventors: Tomohiko Yamamoto, Tatsuo Tsumiyama, Kouji Sugimoto
  • Patent number: 6037499
    Abstract: This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: March 14, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Chun-Hua K. Chuang
  • Patent number: 6034206
    Abstract: A novel class of polyaryleneamines improved in physical and chemical properties, particularly in heat resistance and solvent resistance, and a process for producing the same are disclosed: said polymers having tertiary arylamino units bound in series.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 7, 2000
    Assignee: Tosoh Corporation
    Inventors: Toshihide Yamamoto, Masakazu Nishiyama, Yasuyuki Koie
  • Patent number: 6031068
    Abstract: The object of the present invention is to provide polyimide composition having such excellent property as low water absorption and low hygroscopic swelling, and a base tape for a TAB carrier tape and a FPC.The another object of the present invention is to provide polyimide composition comprising polyimide consisting of a repeating unit of the general formula (1): ##STR1## The further object of the present invention is to provide a base tape for a TAB carrier tape containing polyimide film made from said polyimide composition as a base film and a FPC containing polyimide film made from said polyimide composition as an insulating material.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: February 29, 2000
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventor: Kohji Okada
  • Patent number: 6031067
    Abstract: The invention herein relates to a soluble polyimide resin and the process of preparation of the same, wherein aromatic tetracarboxylic dianhydride and aromatic diamine having an alicyclic group with various structures of substituted alkyl groups are used to yield a novel form of a polyimide resin, which has superior heat-resistance, solubility and transparency.More specifically, the invention herein relates to a novel polyimide resin having excellent heat-resistance and solubility, which is prepared by means of reacting aromatic diamine monomers having a novel chemical structure with various types of aromatic tetracarboxilic acid dianhydrides, in stead of aromatic diamine used for the preparation of the conventional polyimide resin. As a result, the polymers so obtained had the glass transition temperature of 250.degree. C..about.400.degree. C. and showed a increase in solubility in proportion to the increase in volume of the alkyl group.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: February 29, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Mi-Hie Yi, Wenxi Huang
  • Patent number: 6028159
    Abstract: A polyamideimide for optical communications, having a minimum light absorption loss in a near infrared light wavelength range, high thermal stability and excellent film processibility, and a method for preparing the same are provided. The polyamideimide has a higher refractive index than the conventional fluorinated polyamideimide. Thus, when using such polyamideimide as a material for a core of an optical fiber, the selection range on the material for cladding becomes wide. Also the coating property and adhesiveness to a substrate are improved, thereby providing a good film processibility and heat resistance.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: February 22, 2000
    Assignees: SamSung Electronics Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Dong-hack Suh, Eun-young Chung, Tae-hyung Rhee
  • Patent number: 6025461
    Abstract: A photosensitive polyimide, which comprises a copolymer of (A) three diamine compounds mixture consisting of a diaminopolysiloxane, a hydroxyl group-containing diamine or carboxyl group-containing diamine and 1,4-bis[2-(3-aminobenzoyl)ethenyl]benzene with (B) an aromatic tetrocarboxylic acid dianhydride or a dicarboxylic anhydride having a 2,5-dioxotetrahydrofuryl group as one acid anhydride group, is soluble in all-purpose low boiling organic solvents, typically methyl ethyl ketone and provides a negative type photosensitive polyimide, which is developable with an aqueous alkaline solution.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: February 15, 2000
    Assignee: Nippon Mektron, Limited
    Inventors: Lin-Chiu Chiang, Jeng-Tain Lin
  • Patent number: 6025460
    Abstract: The service life of fiber-reinforced polyimide composites in a high temperature oxidative environment is extended by coating with a polyimide coating precursor solution that is synthesized by reacting an aromatic dianhydride with an aromatic diamine in a non-reactive solvent. The reactive solution is heated to a temperature sufficent to reduce its viscosity prior to its use as a coating. Preferably, a mixture of meta-phenylenediamine and para-phenylenediamine is reacted with biphenyldianhydride in n-methyl pyrrolidinone solvent and thereafter heated to between about 50.degree. C. (122.degree. F.) and 150.degree. C. (302.degree. F.) under nitrogen while stirring for a time sufficient to obtain a polyamic acid polyimide precursor coating solution having a Brookfield viscosity of from about 500 to about 5000 cP and a solids content of from about 5 to about 35 weight percent.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: February 15, 2000
    Assignee: Ohio Aerospace Institute
    Inventors: Anthony M. Mazany, Stanley G. Prybyla
  • Patent number: 6022095
    Abstract: Disclosed is an improved composition comprising a photopatternable polymer containing at least some monomer repeat units with photosensitivity-imparting substituents, said photopatternable polymer being of the general formula ##STR1## wherein x is an integer of 0 or 1, A is one of several specified groups, such as ##STR2## B is one of several specified groups, such as ##STR3## or mixtures thereof, and n is an integer representing the number of repeating monomer units. Also disclosed is a process for preparing a thermal ink jet printhead with the aforementioned polymer and a thermal ink jet printhead containing therein a layer of a crosslinked or chain extended polymer of the above formula.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: February 8, 2000
    Assignee: Xerox Corporation
    Inventors: Ram S. Narang, Timothy J. Fuller, Thomas W. Smith, David J. Luca, Ralph A. Mosher
  • Patent number: 6020386
    Abstract: Hydroxyfunctional compounds suitable for use in the polyisocyanate polyaddition process are obtained from polyurethane and/or polyurethane polyurea waste by decomposition with an alcohol and subsequent reaction of the alcoholysis products to reduce their content of low molecular weight, sterically unhindered aromatic amines. In this process, polyurethane and/or polyurethane polyurea waste is first treated with a low molecular weight diol or polyol at a temperature of from about 160 to 260.degree. C. The resultant alcoholysis product may then either be further heated at a temperature lower than that used in the first step within the ranger of from about 50 to 180.degree. C. or reacted with a dialkyl carbonate and/or 1,3-dicarbonyl compound.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: February 1, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Thomas Munzmay, Walter Meckel, Ulrich Liman, Hartmut Nefzger, Werner Rasshofer, Karl-Heinz Dorner, Andreas Ruckes
  • Patent number: 6013760
    Abstract: The invention herein relates to a soluble polyimide resin for a liquid crystal alignment layer and the process of preparation of the same, wherein aliphatic tetracarboxylic dianhydride and aromatic diamine having the amide group are used to yield a novel form of a polyimide resin having superior heat-resistance, solubility, transparency, and liquid crystal alignment capacity.More specifically, the invention herein relates to a novel polyimide resin having excellent heat-resistance, solubility, liquid crystal alignment property, and high pretilt angle, which is prepared by means of jointly using the aromatic diamine, used for the preparation of the conventional polyimide resin, and the aromatic diamine having a long alkyl chain with a substituted amide group, and reacting the same with various types of carboxylic dianhydride.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: January 11, 2000
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Mi-Hie Yi, Moon-Young Jin, Dae-Woo Ihm, Jae-Min Oh
  • Patent number: 6013759
    Abstract: A polyamideimide for optical communications, having a minimum optical loss in a near infrared light wavelength range, high thermal resistance and good film processibility, and a method for preparing the same are provided. The polyamideimide is very useful as an optical material in the optical communications field adopting the light of near infrared light wavelength.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: January 11, 2000
    Assignee: SamSung Electronics Co., Ltd.
    Inventors: Dong-hack Suh, Eun-young Chung, Tae-hyung Rhee
  • Patent number: 6007877
    Abstract: Disclosed is a composition which comprises a polymer containing at least some monomer repeat units with water-solubility- or water-dispersability-imparting substituents and at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation, said polymer being of the formula ##STR1## wherein x is an integer of 0 or 1, A is one of several specified groups, such as ##STR2## B is one of several specified groups, such as ##STR3## or mixtures thereof, and n is an integer representing the number of repeating monomer units. In one embodiment, a single functional group imparts both photosensitivity and water solubility or dispersability to the polymer. In another embodiment, a first functional group imparts photosensitivity to the polymer and a second functional group imparts water solubility or dispersability to the polymer.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: December 28, 1999
    Assignee: Xerox Corporation
    Inventors: Ram S. Narang, Timothy J. Fuller
  • Patent number: 6008316
    Abstract: A functionalized polyamine comprising the reaction product of (A) a cyano- or guanidino-containing compound selected from the group consisting of cyanamides or salts thereof, dicyanamides or salts thereof, dicyandiamides or salts thereof, guanidines or salts thereof, biguanidines or salts thereof, and combinations thereof, and (B) a polyamine prepared from at least one monomeric amine, wherein the cyano- or guanidino-functional groups are attached to the polyamine or incorporated therein to form the functionalized polyamine, provided that the monomeric amine and the cyano- or guanidino-containing compound are present in the functionalized polyamine in a molar ratio of from 1.1:1 to 100:1, respectively. The functionalized polyamines are especially useful as anti-dye transfer and color protection agents in laundry detergent compositions.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: December 28, 1999
    Assignee: National Starch and Chemical Investment Holding Corporation
    Inventors: Alvie L. Foster, Jr., Ivonne C. Weidner, Klein A. Rodrigues, Allen M. Carrier
  • Patent number: 6001942
    Abstract: The invention relates to a silicon-containing polyimide resin comprising (I) 0.1 to 100 mole % of structural units represented by the formula: ##STR1## where Ar.sup.1 is a tetra valent organic group having at least one aromatic ring, R independently represents a monovalent hydrocarbon group free of aliphatic unsaturated bonds, X is selected from an alkyleneoxyalkylene or an alkylene group having 2 or more carbon atoms, Y is an oxygen atom, an alkyleneoxyalkylene group, or an alkylene group having 2 or more carbon atoms, l, m, n are each integers having a value of 1 to 10, p is an integer having a value of 1 to 80, and a is 0 or 1; and (II) 99.9 to 0 mole % of structural units represented by the formula: ##STR2## where Ar.sup.2 is a tetravalent organic group having at least one aromatic ring, and Ar.sup.3 is a divalent organic group having at least one aromatic group.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: December 14, 1999
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventors: Masaaki Amako, Haruhiko Furukawa, Yoshitsugu Morita, Hiroshi Ueki
  • Patent number: 6001955
    Abstract: Thermoplastic compositions of polyketones having an increased flexural modulus are made by intermixing alternating aliphatic polyketones with a stiffening quantity of pentaerythritol.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: December 14, 1999
    Assignee: Shell Oil Company
    Inventor: Joseph Michael Machado
  • Patent number: 5998572
    Abstract: Methods and devices for controlling the oxidation of a hydrocarbon to an acid by regulating the temperature hold-up time, and conversion in consecutive reaction zones. The temperature in the consecutive reaction zones progressively decreases, while the hold-up time increases. Preferably, the conversion also increases. One of the major advantages of the methods and devices of the present invention is that an outstanding balance between productivity and selectivity/yield of the desired acid may be achieved. In this respect high yields and selectivities may be obtained without sacrificing productivity.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: December 7, 1999
    Assignee: RPC Inc.
    Inventors: Ader M. Rostami, Mark W. Dassel, Eustathios Vassiliou, David C. DeCoster
  • Patent number: 5990259
    Abstract: Polymer composition made by combining a polyketone polymer and a monophenolic compound of the general formula: ##STR1## R.sup.1 and R.sup.2, independently, are hydrogen or alkyl groups with 1-6 carbon atoms,Y is an organic group from 3 up to 15 carbon atoms.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: November 23, 1999
    Assignee: Shell Oil Company
    Inventors: Abraham Adriaan Smaardijk, Hendrik De Wit
  • Patent number: 5986036
    Abstract: A new holographic substrate utilizing flexible, optically transparent fluorinated polyimides. Said substrates have extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: November 16, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul A. Gierow, William R. Clayton, Anne K. St. Clair
  • Patent number: 5981689
    Abstract: Poly(vinylamine)-based superabsorbent gels are disclosed. The superabsorbent gels either comprise a mixture of a poly(vinylamine) polymer and an acidic water-absorbing polymer, like polyacrylic acid, or comprise a salt of a poly(vinylamine) polymer. An improved method of preparing poly(vinylamine) also is disclosed.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: November 9, 1999
    Assignee: Amcol International Corporation
    Inventors: Michael A. Mitchell, Thomas W. Beihoffer, Leticia L. Trzupek, Jerald W. Darlington, Jr.
  • Patent number: 5977289
    Abstract: The present invention provides a series of easily processable poly(ether-imide)s that are organic-soluble and can afford colorless films, their organic solutions and their manufacturing process. The poly(ether-imide) is prepared from a dianhydride and a diamine, wherein the dianhydride is a bis(ether anhydride) having tert-butyl group, i.e. 1,4-bis(3,4-dicarboxyphenoxy)-2-tert-butylbenzene dianhydride. The present invention is also directed to synthesis of this special dianhydride.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: November 2, 1999
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Sheng-Huei Hsiao
  • Patent number: 5977290
    Abstract: The invention relates to a process for the condensation of aldehydes or ketones with C--H acidic compounds (in particular Knoevenagel reaction) in the presence of at least one molecular sieve in the form of a zeolite or sheet silicate and one alkali carbonate, alkaline earth carbonate or ammonium carbonate as catalyst system. The products obtained are important intermediates or end products for the perfume industry.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: November 2, 1999
    Assignee: Novartis AG
    Inventor: Bernd Siebenhaar
  • Patent number: 5969087
    Abstract: A novel polyimide having a repeating structure unit expressed by the following general formula (1), a method for manufacturing the same, a gas separation membrane using the novel polyimide and the method for manufacturing the same. The gas separation membrane using this polyimide is excellent in gas permeable performance and separation selectivity for gas, for example, carbon dioxide, methane, etc.General Formula (1) ##STR1## where R denotes a quadrivalent organic group.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: October 19, 1999
    Assignee: Nitto Denko Corporation
    Inventor: Masatoshi Maeda
  • Patent number: 5969079
    Abstract: Thermomechanical and thermo-oxidative stabilities in resin composites across the range of aerospace "engineering thermoplastic" resins are improved by forming four crosslinks at each addition polymerization site in the backbone of the resin using crosslinking functionalities of the general formula: ##STR1## wherein Z= ##STR2## .beta.=the residue an organic radical selected from the group consisting of: ##STR3## R.sub.R =a divalent organic radical; X=halogen;Me=methylT=allyl or methallyl.G=--CH.sub.2 --,--S--, --CO--, --SO--, --O--, --CHR.sub.3 --, or --C(R.sub.3).sub.2 --;i=1 or 2;R.sub.3 =hydrogen, lower alkyl, lower alkoxy, aryl, or aryloxy; and.theta.=--C.tbd.N, --O--C.tbd.N, --S--C.tbd.N, or --CR.sub.3 .dbd.C(R.sub.3).sub.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: October 19, 1999
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5968543
    Abstract: Polymers useful as orthopedic implants or vehicles for the sustained delivery of pharmaceutical, cosmetic and agricultural agents are prepared in such a manner that the rate and degree to which they are hydrolyzed can be controlled without addition of exogenous acid. This control results from the incorporation of esters of short-chain .alpha.-hydroxy acids such as esters of glycolic acid, lactic acid or glycolic-co-lactic acid copolymer into the polymer chain and variation of the amount of these esters relative to the polymer as a whole.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: October 19, 1999
    Assignee: Advanced Polymer Systems, Inc.
    Inventors: Jorge Heller, Steven Y. Ng
  • Patent number: 5969082
    Abstract: A novel polyalkyl ether/polyaryl ether sulfone or ketone copolymer and a specific polyether ester copolymer are useful for producing a medical material to be used to contact the blood; and methods for producing the medical material comprising said polyalkyl ether/polyaryl ether sulfone or ketone copolymer or a specific polyether ester copolymer.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: October 19, 1999
    Assignee: Teijin Limited
    Inventors: Hiroaki Kuwahara, Takeyuki Kawaguchi, Satoru Ohmori, Shunichi Matsumura
  • Patent number: 5969080
    Abstract: A film excellent in flatness, and not degraded in flatness by curling, etc. even at high temperature during processing and use as a product.The film of the present invention is made of an aromatic polyamide and/or aromatic polyimide, and satisfies the following:(Pmax-Pmin)/Pavr.ltoreq.1.0where Pmax is the maximum value of the orientation degree obtained from the Raman spectrum in the section direction of the film; Pmin is the minimum value and Pavr is the average value.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: October 19, 1999
    Assignee: Toray Industries, Inc.
    Inventors: Toshiya Ieki, Akimitsu Tsukuda, Toshihiro Tsuzuki
  • Patent number: 5969088
    Abstract: An angularity enhancement layer in a liquid crystal display, which display comprises a liquid crystal cell, wherein the angularity enhancement layer includes a negative birefringent polyimide layer comprising a plurality of structural units having pendant fluorene groups, said angularity enhancement layer being disposed on at least one surface of said liquid crystal cell. A liquid crystal display can comprise an angularity enhancement construction of the invention which comprises a polyimide layer.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: October 19, 1999
    Assignee: 3M Innovative Properties Company
    Inventors: Stephen A. Ezzell, Hassan Sahouani, Ernest L. Thurber
  • Patent number: 5965691
    Abstract: A process for aligning liquid crystals adjacent to a surface of an optical alignment layer comprising: exposing at least one optical alignment layer, comprising anisotropically absorbing molecules, to polarized light; the polarized light having a wavelength within the absorption band of said anisotropically absorbing molecules; wherein the exposed anisotropically absorbing molecules induce alignment of a liquid crystal medium at an angle + and - with respect to the direction of the polarization of the incident light beam and along the surface of the optical alignment layer; and applying a liquid crystal medium to said optical alignment layer; wherein said anisotropically absorbing molecules consist essentially of diaryl ketones, is described.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: October 12, 1999
    Assignee: Elsicon, Inc.
    Inventors: Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun
  • Patent number: 5955562
    Abstract: A alternating aliphatic polyketone polymer is surface derivatized to alter the surface properties of an article without affecting the bulk properties of the polymer it is made from. Derivitization may be done with reducing agents and/or silylating agents. Articles so produced display a range of improved properties including reduced wettability and improved tribological properties such as lubricity and wear resistance.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: September 21, 1999
    Assignee: Shell Oil Company
    Inventors: Carlton Edwin Ash, Donald Ross Kelsey
  • Patent number: 5955563
    Abstract: A polyketone is provided wherein the polyketone is water soluble and curable. A method to make a such a polymer is also disclosed, the method including the steps of: providing a polyketone, the polyketone comprising 1,4-diketone units; contacting the polyketone with a diamine wherein the diamine comprises one nitrogen which is more reactive than another of the nitrogens under conditions effective to incorporate the more reactive nitrogen in the polyketone; contacting the polyketone having the diamine incorporated into the polyketone with maleic anhydride under conditions effective to react the less reactive nitrogen with the maleic anhydride; contacting the polyketone having maleic anhydride incorporated thereto with a strong base; and recovering a functionalized polyketone wherein the functionalized polyketone is water soluble and curable.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: September 21, 1999
    Assignee: Shell Oil Company
    Inventors: Pui Kwan Wong, Arthur Ray Pace, Randall Charles Weber
  • Patent number: 5952453
    Abstract: Methylenedianiline-free, PMR-type, curable compositions based on m-phenylenediamine or mixtures of m-phenylenediamine and p-phenylenediamine are described.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: September 14, 1999
    Assignee: Cytec Technology Corp.
    Inventors: Patrick T. McGrail, Paul Eustace, William S. Dewar
  • Patent number: 5952448
    Abstract: This invention relates to a poly (imide amic ester) random copolymer, a precursor thereof, and a process for preparing the same. Specifically this invention relates to a novel precursor of polyimide, poly(imide amic ester) which is chemically stable and has excellent workability in either liquid or solid state, a polyimide obtained therefrom and a process for preparing the same.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: September 14, 1999
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Myung-Hun Lee, Seo-Bong Lee, Chang-Jin Lee, Eun-Kyoung Kim, Mi-Seon Ryoo
  • Patent number: 5945489
    Abstract: The liquid oligomeric compositions of this invention are made by the Michael addition reaction of acetoacetate functional donor compounds with multifunctional acrylate receptor compounds where the equivalent ratios of multifunctional acrylate to acetoacetate vary from .gtoreq.1:1 to .gtoreq.13.2:1 depending on the functionality of both multifunctional acrylate and acetoacetate. Unuseable gelled or solid oligomer products occur below the claimed ranges. The liquid oligomers of this invention are further crosslinked to make coatings, laminates and adhesives.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: August 31, 1999
    Assignee: Ashland, Inc.
    Inventors: Thomas M. Moy, Laurence Dammann, Roman Loza
  • Patent number: 5942555
    Abstract: A photoactivatable reagent useful as a chain transfer reagent for providing a semitelechelic polymer having one or more terminal photoactivatable groups. The reagent provides one or more photoactivatable groups and one or more sulfhydryl (or other chain transfer) groups, the photoactivatable and chain transfer groups optionally being joined together by a spacer group. The reagent can be used to prepare a polymer by serving to initiate the polymerization of ethylenically unsaturated monomers. The reagent itself becomes an integral part of the resultant polymer, thereby providing the polymer with a terminal photoactivatable nature. The method provides a number of benefits, including the ability to provide homogeneous photoactivatable polymer compositions, e.g., in terms of the uniform location of the photogroup(s) on the terminal portion of each polymer molecule and the ability to build a desired nonpolar quality, and in turn improved surfactancy, into otherwise polar polymers.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: August 24, 1999
    Assignee: SurModics, Inc.
    Inventors: Melvin J. Swanson, Richard A. Amos, Dale G. Swan, Gary W. Opperman
  • Patent number: 5942588
    Abstract: Aqueous alkyldiketene dispersions which contain a C.sub.14 -C.sub.22 -alkyldiketene and from 1 to 10% by weight of a polymeric protective colloid contain, as the protective colloid(a) copolymers of(1) N-vinylpyrrolidone and(2) at least one quaternized N-vinylimidazole or a substituted quaternized N-vinylimidazoleas polymerized units in a molar ratio of from 80:20 to 5:95 and have a K value of at least 20 (according to H. Fikentscher in 0.5 M aqueous sodium chloride solution at a polymer concentration of 0.1% by weight and at 25.degree. C.) or(b) condensates which are obtainable by(1) partial amidation of polyethyleneimines with monocarboxylic acids and, if required(2) condensation of the partially amidated polyethyleneimines with at least bifunctional crosslinking agents which have a halohydrin, glycidyl, aziridine or isocyanate unit or a halogen atom as a functional groupto give crosslinked, amidated polyethyleneimines which have a viscosity of at least 100 mPa.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: August 24, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Roland Ettl, Primoz Lorencak, Gunter Scherr, Wolfgang Reuther, Gunther Glas
  • Patent number: 5939521
    Abstract: This invention relates the novel diamines, the polyimide oligomers and the polyimides derived therefrom and to the method of preparing the diamines, oligomers and the polyimides. The thermoplastic polyimides derived from the aromatic diamines of this invention are characterized as having a high glass transition temperature, good mechanical properties and improved processability in the manufacture of adhesives, electronic and composite materials for use in the automotive and aerospace industry. The distinction of the novel aromatic diamines of this invention is the 2,2',6,6'-substituted biphenyl radicals which exhibit noncoplanar conformation that enhances the solubility of the diamine as well as the processability of the polyimides, while retaining a realatively high glass transition temperature and improved mechanical properties at useful temperature ranges.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: August 17, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Chun-Hua K. Chuang
  • Patent number: 5939513
    Abstract: Methods of removing a pigment stain from a substrate comprise cleaning the substrate with a detergent composition comprising polyamine N-oxide polymer formed of units having structural formula (I) ##STR1## wherein P is a polymerizable unit, the N--O group may be attached to or form part of P, A is ##STR2## --O--, --S--, or --N--; --x-- is 0 or 1; and R is an aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic group and the nitrogen of the N--O group may be attached to or from part of R.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: August 17, 1999
    Assignee: The Procter & Gamble Company
    Inventors: Abdennaceur Fredj, Jean-Pol Boutique
  • Patent number: 5932688
    Abstract: An improved polybenzimidazole wherein the total concentration of metals other than alkali metal and alkaline earth metals is 10 ppm or less. The resulting polybenzimidazole is industrially useable in parts or components of apparatus for the manufacture of semiconductors and display devices.
    Type: Grant
    Filed: January 14, 1997
    Date of Patent: August 3, 1999
    Assignee: Hoechst Japan Limited
    Inventor: Makoto Murata
  • Patent number: 5929201
    Abstract: The present invention relates to amine compositions and the preparation of polyimides. The polyimides can be used for inducing alignment of a liquid crystal medium with polarized light and liquid crystal display elements.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: July 27, 1999
    Assignee: Elsicon, Inc.
    Inventors: Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun
  • Patent number: 5929150
    Abstract: A polyketone solution is prepared by the dissolution of alternating aliphatic polyketone in a solution of ZnX.sub.2. X can be Cl, Br, or I. At a given temperature, these solvents completely dissolve polyketone when aqueous or organic solutions are made from particular concentrations.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: July 27, 1999
    Assignee: Shell Oil Company
    Inventor: Carlton Edwin Ash
  • Patent number: 5925688
    Abstract: Polyketone polymers are cured by exposure to high energy radiation. Radiation sources include gamma radiation sources such as Co.sup.60 emitters as well as e-beam, ion and other commercially used sources of high energy radiation. The materials so produced are high molecular weight crosslinked polyketone polymers which exhibit enhanced mechanical and tribological properties.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: July 20, 1999
    Assignee: Shell Oil Company
    Inventors: Carl Edwin Ash, Narayana Mysore
  • Patent number: 5925494
    Abstract: The invention provides a method for vapor-depositing a polymer film having constituents that are synthesized during the deposition and that can therefore be customized by time-dependent process control during the deposition. In the vapor-deposition process, a hydrocarbon precursor is reacted with an oxygen-containing precursor in a plasma environment. The plasma reaction synthesizes O--H bonds and forms a polymer having O--H bonds, C--C bonds, and C--H.sub.x bonds. Preferably, the hydrocarbon and oxygen-containing precursors are employed in a ratio selected such that the resulting polymer film has a selected level of oxygen constituency providing a corresponding selected ratio of O--H bond concentration to C--H.sub.x bond concentration. The precursor ratio is preferably varied as a function of time during the plasma reaction to result in a corresponding distribution, e.g., a depth-dependent distribution, of O--H bonds in the film.
    Type: Grant
    Filed: February 16, 1996
    Date of Patent: July 20, 1999
    Assignee: Massachusetts Institute of Technology
    Inventor: Mark W. Horn
  • Patent number: 5921649
    Abstract: A composite of a polyketone and an amine modified acid copolymer having low acid content is presented. The composite may also have additional layers of other polymers such as polyolefins. Processes for making these composite and a kit of parts suitable for making these composites are also presented.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: July 13, 1999
    Assignee: Shell Oil Company
    Inventor: Carlton Edwin Ash