And Other Blood Constituents Patents (Class 600/326)
  • Patent number: 9775546
    Abstract: Embodiments of the present disclosure provide a hypersaturation index for measuring a patient's absorption of oxygen in the blood stream after a patient has reached 100% oxygen saturation. This hypersaturation index provides an indication of the partial pressure of oxygen of a patient. In an embodiment of the present invention, a hypersaturation index is calculated based on the absorption ratio of two different wavelengths of energy at a measuring site. In an embodiment of the invention, a maximum hypersaturation index threshold is determined such that an alarm is triggered when the hypersaturation index reaches or exceeds the threshold. In another embodiment, an alarm is triggered when the hypersaturation index reaches or falls below its starting point when it was first calculated.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: October 3, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Mohamed K. Diab, Prashanth Iyengar, Anand Sampath, Ammar Al-Ali
  • Patent number: 9763606
    Abstract: A method including placing a portion of a foot of a newborn in a device, the device including a light emitter and a corresponding receiver coupled on opposite sides of the device, the device further including a processor for processing data from the light emitter and receiver; and determining a presence of congenital heart disease. An apparatus including a body including a chamber of a size to accommodate a portion of a newborn's foot; at least one light emitter and a corresponding detector coupled on opposite sides of the body, the emitter configured to emit light of a prescribed wavelength into the chamber; and a processor coupled to the body and configured to receive a signal from the at least one detector.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: September 19, 2017
    Assignee: LOS ANGELES BIOMEDICAL RESEARCH INSTITUTE AT HARBOR-UCLA MEDICAL CENTER
    Inventors: Ruey-Kang Chang, Yann Ping Pan
  • Patent number: 9662047
    Abstract: The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: May 30, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Ishan Barman, Narahara Chari Dingari, Ramachandra Dasari, Michael Feld, Jonathan Feld, David Feld, Alison Hearn, Chae-Ryon Kong, Jeon Woong Kang
  • Patent number: 9636058
    Abstract: An optical sensor unit (10) for measuring a concentration of a gas is provided, comprising at least one sensing layer (122) adapted to be irradiated with a predetermined radiation; at least one gas-permeable layer (121) adjacent to one side of the at least one sensing layer (122) and adapted to pass gas which concentration is to be measured through the gas-permeable layer (121) towards the sensing layer (122); a removable protective layer (150) covering at least the gas-permeable layer (121) and adapted to be removed before use of the optical sensor unit (10), wherein the optical sensor unit (10) is adapted to measure an optical response of the at least one sensing layer (122), which optical response depends on the concentration of the gas.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 2, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Hans Willem Van Kesteren, Josephus Arnoldus Henricus Maria Kahlman, Nicolaas Lambert
  • Patent number: 9408538
    Abstract: The present invention pertains to a method and apparatus for pressure sore detection. A modulated optical signal based on a digital code sequence is transmitted to human tissue. A temporal transfer characteristic is derived from the modulated optical signal. Tissue characteristics is determined based on the temporal transfer characteristic.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 9, 2016
    Assignees: Triple Ring Technologies, Inc., Ocela Technologies, Inc.
    Inventors: Lester John Lloyd, Kate Leeann Bechtel, Joseph Anthony Heanue, Brian Patrick Wilfley
  • Patent number: 9404961
    Abstract: A physiological sensor includes a light source and an age detector circuit in communication with the light source. The age detector circuit is configured to determine an age of the light source based on current-voltage characteristics of said light source. In addition, a method includes measuring an initial I-V characteristic and an actual I-V characteristic of the light source, and comparing the initial I-V characteristic to the actual I-V characteristic since changes in the I-V characteristics indicate aging. Actual I-V characteristics can be compared between light sources when they age at different rates to determine light source aging. Moreover, the method may include updating the memory device with the actual I-V characteristic at predetermined times.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 2, 2016
    Assignee: Covidien LP
    Inventors: Oleg Gonopolskiy, Arik Anderson, Bruce J. Barrett, Ronald A. Widman
  • Patent number: 9354165
    Abstract: A method and analyzer for identifying, verifying or otherwise characterizing a sample involves emitting electromagnetic radiation in at least one beam at a sample. The electromagnetic radiation includes at least two different wavelengths. A sample detector detects affected electromagnetic radiation resulting from the emitted electromagnetic radiation affected by the sample and provides output representing the detected affected radiation. A processor determines sample coefficients from the output and identifies, verifies or otherwise characterizes the sample using the sample coefficients and training coefficients determined from training samples. The coefficients reduce sensitivity to a sample retainer variation and/or are independent of concentration.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 31, 2016
    Assignee: Klein Medical Limited
    Inventors: Raymond Andrew Simpkin, Donal Paul Krouse, Bryan James Smith
  • Patent number: 9320642
    Abstract: The invention provides a method of selecting one or more patient temperature regulation tools is provided. The method comprises: providing a database storing one or more properties of each of a plurality of temperature regulation tools; selecting one or more patient temperature regulation tools from the database; calculating an estimated patient heat balance taking into account one or more of the one or more properties of the selected patient temperature regulation tool(s); providing an indication of the estimated patient heat balance; and providing a visual aid illustrating the one or more selected patient temperature regulation tools regulating the temperature of a patient. The method may be used for selecting one or more patient temperature tools for a patient who is to undergo a medical procedure. Additionally or alternatively, the method may be use as an e-learning tool.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 26, 2016
    Assignee: THE SURGICAL COMPANY INTERNATIONAL B.V.
    Inventors: Robertus Gerardus Van Oudenallen, Berend Jan Teunissen
  • Publication number: 20150073241
    Abstract: The present disclosure provides systems and methods for calibrating medical devices and processing physiological measurements using a medical device management system. As an example, the medical device can be a handheld glucometer configured for invasive testing and non-invasive testing of physiological parameters of a patient.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Inventor: Marcelo M. Lamego
  • Publication number: 20150011852
    Abstract: An optical sensor unit (10) for measuring a concentration of a gas is provided, comprising at least one sensing layer (122) adapted to be irradiated with a predetermined radiation; at least one gas-permeable layer (121) adjacent to one side of the at least one sensing layer (122) and adapted to pass gas which concentration is to be measured through the gas-permeable layer (121) towards the sensing layer (122); a removable protective layer (150) covering at least the gas-permeable layer (121) and adapted to be removed before use of the optical sensor unit (10), wherein the optical sensor unit (10) is adapted to measure an optical response of the at least one sensing layer (122), which optical response depends on the concentration of the gas.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 8, 2015
    Inventors: Hans Willem Van Kesteren, Josephus Henricus Henricus Maria Kahlman, Nicolaas Lambert
  • Publication number: 20140336478
    Abstract: Optical sensor devices, image processing devices, methods and computer readable code computer-readable storage media for detecting biophysical parameters, chemical concentrations, chemical saturations, vital signs and physiological information such as a malignant condition are provided. In some embodiments, the optical sensor includes an array of photodetectors, where each photodetector is configured to detect a spectrum of light. In some embodiments, the image processing device receives a live still or video electronic image, or alternatively, the electronic image is provided from an electronic storage media. Exemplary physiological parameters include but are not limited to a pulse rate, a biophysical or physiological property of skin, a cardiovascular property, a property related to an organ such as the liver or the kidneys, and a temperature fluctuation.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventor: Yosef SEGMAN
  • Patent number: 8798704
    Abstract: According to various embodiments, a medical system and method for determining a microcirculation parameter of a patient may include a photoacoustic sensor. Specifically, a signal from a photoacoustic sensor may be used to determine if a patient is likely to have sepsis or shock. Although sepsis and shock present similarly with regard to many patient parameters, they may be differentiated by characteristic microcirculation changes.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 5, 2014
    Assignee: Covidien LP
    Inventor: Edward M. McKenna
  • Publication number: 20140163329
    Abstract: Methods and systems for determining a physiological parameter of a subject through interrogation of an eye of the subject with an optical signal are described. Interrogation is performed unobtrusively. The system includes a gaze attractor for attracting the gaze of the subject to cause an eye of the subject to move into alignment with regard to an interrogation signal source and/or response signal sensor to facilitate detection of a signal from the eye of the subject.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: Elwha LLC
    Inventors: Allen L. Brown, JR., Douglas C. Burger, Eric Horvitz, Roderick A. Hyde, Edward K.Y. Jung, Eric C. Leuthardt, Jordin T. Kare, Chris Demetrios Karkanias, John L. Manferdelli, Craig J. Mundie, Nathan P. Myhrvold, Barney Pell, Clarence T. Tegreene, Willard H. Wattenburg, Charles Whitmer, Lowell L. Wood, JR., Richard N. Zare
  • Publication number: 20140114144
    Abstract: A system and method for determining a pH level of blood in a vessel of a patient including a flexible elongated member configured and dimensioned for insertion in the vessel of the patient, a sensor positioned at the distal portion of the elongated member, and a connector connecting the elongated member to an indicator. The sensor measures the pH level of blood downstream of the blood clot. A system and method are also provided for determining a density of a blood clot in a vessel of a patient for subsequent selection of a treatment method. The system includes a sensor positioned at the distal portion of the elongated member, and a connector connecting the elongated member to an indicator, wherein the sensor determines the density of the blood clot and the indicator provides an indication of the density of the clot.
    Type: Application
    Filed: October 12, 2013
    Publication date: April 24, 2014
    Inventor: Marc-Alan Levine
  • Patent number: 8625087
    Abstract: Disclosed herein is a packing container including: a packing container body including a leading-out section which contains an optical probe having a first end section for incoming of a laser beam and a second end section for outgoing of the incoming laser beam, which leads out the first end section of the optical probe thus contained to the exterior and which is sealed, and a window section by which the laser beam going out from the second end section of the contained optical probe is led out to the exterior; and a light-transmitting member which closes the window section and permits the laser beam to pass therethrough.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: January 7, 2014
    Assignee: Sony Corporation
    Inventor: Yoshiro Takiguchi
  • Publication number: 20130281806
    Abstract: A non-invasive gas analyte sensing and monitoring system and method is provided that is particularly applicable to transcutaneous monitoring of arterial blood gases in a mammal. The system and method relies on diffusion of the analyte to be measured into a diffusion chamber and remote sensing of the analyte in the diffusion chamber using optical chemical sensors and associated optoelectronics.
    Type: Application
    Filed: September 30, 2011
    Publication date: October 24, 2013
    Inventors: Govind Rao, Yordan Kostov, Xudong Ge, Leah Tolosa, Hyung Woo, Rose Viscardi
  • Patent number: 8548549
    Abstract: A method for noninvasively measuring analyte levels includes using a non-imaging OCT-based system to scan a two-dimensional area of biological tissue and gather data continuously during the scanning. Structures within the tissue where measured-analyte-induced changes to the OCT data dominate over changes induced by other analytes are identified by focusing on highly localized regions of the data curve produced from the OCT scan which correspond to discontinuities in the OCT data curve. The data from these localized regions then can be related to measured analyte levels.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: October 1, 2013
    Assignee: GLT Acquisition Corp.
    Inventors: Matthew J. Schurman, Walter J. Shakespeare, William Henry Bennett
  • Patent number: 8532737
    Abstract: Apparatus for automatically monitoring sleep, including a video recorder for recording live images of a subject sleeping, including a transmitter for transmitting the recorded images in real-time to a mobile device, and a computing device communicating with said transmitter, including a receiver for receiving the transmitted images in real-time, a processor for analyzing in real-time the received images and for automatically inferring in real-time information about the state of the subject, and a monitor for displaying in real-time the information inferred by said processor about the state of the subject. A method and a computer-readable storage medium are also described and claimed.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 10, 2013
    Inventor: Miguel Angel Cervantes
  • Patent number: 8527023
    Abstract: The device for the transcutaneous determination of blood gases including a transcutaneous sensor for the measurement of at least one of the parameters of skin carbon dioxide partial pressure (PsCO2) and skin oxygen partial pressure (PsO2) includes at least one sensor for the measurement of the tissue blood flow (F) local with respect to the transcutaneous sensor, and includes a device for the calculation of at least one of the parameters of transcutaneous carbon dioxide partial pressure (tcpCO2) and transcutaneous oxygen partial pressure (tcpO2) from the measured skin carbon dioxide partial pressure (PsCO2) or the measured skin oxygen partial pressure (PsO2), with a factor dependent on the local tissue blood flow (F) being taken into account in the calculation of at least one of the parameters of transcutaneous carbon dioxide partial pressure (tcpCO2) and transcutaneous oxygen partial pressure (tcpO2).
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 3, 2013
    Assignee: Sentec AG
    Inventors: Josef Hayoz, Rolf Wagner
  • Patent number: 8515514
    Abstract: Provided is a method of calibrating a pulse oximeter, in which the effects caused by tissue of a subject can be taken into account. A detector output signal is measured when living tissue of the subject is present between emitters and the detector in a sensor. Nominal calibration and nominal calibration characteristics are read from a memory, whereupon values for the same nominal characteristics for the sensor on living tissue of the subject are established using the detector output signal. Then, changes in the nominal calibration characteristics induced by the living tissue are calculated and a subject-specific calibration is formed by correcting the nominal calibration with the changes. Finally, the hemoglobin fractions are solved using the corrected nominal calibration.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 20, 2013
    Assignee: Datex-Ohmeda, Inc.
    Inventor: Matti Huiku
  • Patent number: 8480581
    Abstract: Methods and systems for implantably determining a patient's anemia status and treating anemia are described. Blood viscosity is compared one or more thresholds to determine a patient's anemia status. Therapy, in the form of electrical stimulation therapy or administration of a pharmaceutical delivered to the patient's kidneys or hypothalamus is controlled based on the anemia status.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 9, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yunlong Zhang, Bin Mi, John D. Hatlestad
  • Publication number: 20130096403
    Abstract: The present invention generally relates to a non-invasive biosensor device configured to measure physiological parameters of a subject. In one aspect, a method of determining a training threshold of a subject is provided. The method includes the step of detecting an oxygenation parameter of a tissue of the subject using Near InfraRed Spectroscopy (NIRS). The method further includes the step of processing the oxygenation parameter. Additionally, the method includes the step of determining the training threshold of the subject using the result of the processing. In another aspect, a biosensor device for determining a lactate threshold of a subject during exercise is provided. In a further aspect, a biosensor device for measuring parameters of a subject during exercise is provided.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: UNIVERSITY OF HOUSTON SYSTEM
  • Patent number: 8401604
    Abstract: Embodiments of the present system and methods measure a concentration of a substance, such as glucose, in a body. The present embodiments measure a first amount of infrared (IR) radiation absorbed or emitted from the body in a first wavelength band, and a second amount of IR radiation absorbed or emitted from the body in a second wavelength band. The present embodiments also measure a temperature at a surface of the body and an ambient temperature. A normalized ratio parameter is calculated from the four measurements, and the concentration of the substance in the body is calculated by correlating the normalized ratio parameter with the body surface temperature and the ambient temperature using an empirically derived lookup table. Also disclosed are methods for creating the empirically derived lookup table.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 19, 2013
    Assignee: Glucovista, LLC
    Inventor: Jonathan Gerlitz
  • Patent number: 8320981
    Abstract: An implantable system includes light sources to transmit toward vascularized tissue, in a time multiplexed manner, light having a first wavelength of approximately 660 nm, light having a second wavelength of approximately 810 nm, light having a third wavelength of approximately 910 nm, and light having a fourth wavelength of approximately 980 nm. The system includes one or more light detector to detect light of the first, second, third and fourth wavelengths scattered by vascularized tissue. Additionally, one or more processor is configured to determine levels of blood oxygen saturation based on the detected scattered light of the first and third wavelengths, determine levels of tissue oxygen saturation based on the detected scattered light of the first and third wavelengths, determine levels of hemoglobin concentration based on the detected scattered light of the second wavelength, and determine levels of tissue hydration based on the detected scattered light of the second and fourth wavelengths.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 27, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Carl Mayer, Craig Seyl, Joseph Lee Hollmann, Eric Weiss, Lyle Frank Weaver, Timothy A. Fayram
  • Publication number: 20120238834
    Abstract: Assessment of a respiratory condition of a subject, by acquiring a temporally varying hemodynamic waveform signal related to blood flow in a tissue; deriving from the hemodynamic waveform signal an evaluation of blood CO2; acquiring at least one more signal; and determining the medical condition based on the blood CO2 and the at least one more signal. A device for performing the assessment may include an implement disposable on the subject's skin and structured to acquire a temporally varying hemodynamic waveform signal and derive from the signal a blood CO2 value or a close approximation thereof; an oximeter disposable on the subject's skin and structured to provide an oxygen saturation value of the blood of the subject or a close approximation thereof; and an apparatus structured to evaluate the medical condition of the subject based on the blood CO2 and oxygen saturation or close approximations thereof.
    Type: Application
    Filed: December 1, 2010
    Publication date: September 20, 2012
    Applicant: NEETOUR MEDICAL LTD.
    Inventor: Ofer Hornick
  • Patent number: 8233960
    Abstract: The present invention provides a method and device of quantitatively or qualitatively examining and diagnosing chronic fatigue syndrome (CFS) by: irradiating a sample derived from an examinee or other animal with light having a wavelength in a range of 400 nm to 2500 nm or a wavelength in part of the range; detecting reflected light, transmitted light, or transmitted and reflected light to obtain an absorption spectral data; and analyzing absorbance at all measurement wavelengths or at specific wavelengths in the absorption spectral data by using an analytical model prepared beforehand.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: July 31, 2012
    Assignees: Fatigue Science Laboratory Inc., Osaka University
    Inventors: Hirohiko Kuratsune, Akikazu Sakudo, Kazuyoshi Ikuta
  • Patent number: 8206650
    Abstract: Some embodiments of the invention provide a system comprising a meter and a disposable cartridge for analyzing a fluid sample typically blood that is drawn into the cartridge by capillary action, negative pressure, positive pressure, or a combination thereof. The cartridge has at least one flow path, and includes at least one optical chamber for spectroscopic measurement, and at least one biosensor for biosensor measurement. The meter has a sample slot for receiving the disposable cartridge. The cartridges have electrical output contacts, and the meter slot has electrical input contacts. When the output contacts mate with the input contacts, the optical chamber becomes positioned for spectroscopic measurement. The present invention can provide joint-diagnostic spectroscopic and biosensor measurements.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 26, 2012
    Assignee: Chromedx Inc.
    Inventor: James Samsoondar
  • Patent number: 8190223
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 29, 2012
    Assignee: Masimo Laboratories, Inc.
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Greg Olsen, Roger Wu, Rick Fishel
  • Publication number: 20120123223
    Abstract: A medical system according to embodiments of the present invention includes at least one sensor configured to monitor physiological status of a patient and to generate sensor data based on the physiological status, a user interface device, a processor communicably coupled to the user interface device, the processor configured to: present via the user interface device an array of two or more possible input elements, the input elements each comprising a class of patients or a diagnosis and treatment pathway; receive a selected input element based on a user selection among the two or more possible input elements; acquire the sensor data and process the sensor data to generate physiological data; and present via the user interface screen the physiological data according to a template that is customized for the selected input element.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Inventors: Gary A. FREEMAN, Guy Robert JOHNSON
  • Patent number: 8175668
    Abstract: An intravenous implantable optical sensor assesses the relative absorbance of multiple wavelengths of light in order to determine oxygen saturation. The calculation of oxygen saturation is enhanced by use of a function of hematocrit which is derived from the relative absorbance of light of an isobestic wavelength along two different length paths through the blood. The use of the hematocrit-dependent term and multiple wavelengths of light to calculate oxygen saturation provides results that are less susceptible to noise and variation in hematocrit and thus provides a more accurate measure of oxygen saturation over a wider range of conditions than previously possible. The optical sensor may form part of an implantable system which performs the calculation of oxygen saturation and uses the results for a diagnostic or therapeutic purpose.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 8, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Taraneh Ghaffari Farazi, John W. Poore
  • Patent number: 8145288
    Abstract: A sensor may be adapted to reduce signal artifacts by deflecting the effects of outside forces and sensor motion. A sensor is provided with a rigid annular structure adapted to reduce the effect of motion of a sensor emitter and/or detector. Further, a method of deflecting or minimizing outside forces and sensor motion is also provided.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: March 27, 2012
    Assignee: Nellcor Puritan Bennett LLC
    Inventor: Clark R. Baker, Jr.
  • Patent number: 8143605
    Abstract: A method and system are presented for use in determining one or more parameters of a subject. A region of interest of the subject is irradiated with acoustic tagging radiation, which comprises at least one acoustic tagging beam. At least a portion of the region of interest is irradiated with at least one electromagnetic beam of a predetermined frequency range. Electromagnetic radiation response of the at least portion of the region of interest is detected and measured data indicative thereof is generated. The detected response comprises electromagnetic radiation tagged by the acoustic radiation. This enables processing of the measured data indicative of the detected electromagnetic radiation response to determine at least one parameter of the subject in a region corresponding to the locations in the medium at which the electromagnetic radiation has been tagged by the acoustic radiation, and outputting data indicative of the at least one determined parameter.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: March 27, 2012
    Assignee: Or-Nim Medical Ltd.
    Inventors: Yaacov Metzger, Michal Rokni, Revital Pery-Shechter
  • Publication number: 20120059234
    Abstract: An extracorporeal blood chamber for an optical blood monitoring system includes an opaque chamber body in order to prevent inaccuracies when measuring oxygen saturation levels due to light ducting, which can occur at low oxygen saturation levels and low hematocrit levels. In one embodiment, the blood chamber need not include a moat as is present in conventional blood chambers.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: HEMA METRICS, LLC
    Inventors: Louis L. Barrett, Perry N. Law
  • Patent number: 8126527
    Abstract: This document discusses, among other things, quantification of hemoglobin content, and therefore blood volume, of muscle. An analysis of the optical spectra can determine the ratio of hemoglobin (Hb) to myoglobin (Mb) content in intact muscle. The peak position of the in vivo optical spectra from intact tissue is used to determine the ratio of Hb to Mb contributing to the optical signal. The wavelength of the peak is a linear function of the percent contribution of Hb to the optical spectra. Such analysis in combination with known Mb concentrations yields a non-invasive measure of the Hb content for in vivo muscle.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: February 28, 2012
    Assignee: University of Washington through its Center for Commercialization
    Inventors: David J. Marcinek, Kevin Conley, Kenneth A. Schenkman
  • Publication number: 20120041290
    Abstract: Method and system for early detection of precancerous and other abnormal changes in tissue of various organs. The system comprises a combination of endoscopic scanning with light scattering spectroscopy and improves detection of abnormalities that may otherwise remain undetected. The system may include a probe that collects data of quality that is independent of a distance of the probe from the scanned tissue. During endoscopy, tissue of an organ is imaged using polarized multispectral light scattering scanning and results are presented to a user in a manner that allows detecting abnormal morphological and biochemical changes in the tissue. A determination of whether to perform biopsy may be performed while the endoscopy is being performed, which thus provides guided biopsy. An entire surface of the organ may be rapidly scanned and results of the scanning are analyzed with a reduced time delay.
    Type: Application
    Filed: January 22, 2010
    Publication date: February 16, 2012
    Applicant: BETH ISRAEL DEACONESS MEDICAL CENTER, INC
    Inventor: Lev T. Perelman
  • Patent number: 8078251
    Abstract: A photoplethysmographic sensor designed for use on the presenting portion of a fetus during labor and delivery. The sensor has a non-deployed state in which the sensor presents a smaller footprint, or cross sectional area, for transvaginal insertion. Once the sensor is applied to the fetal tissue it is moved into the deployed state, which has a larger footprint or cross sectional area, than the sensor does in the non-deployed state. The deployed state optimizes the physical distance between the light emitter and the photodetector to maximize the photoplethysmographic measurement accuracy from the fetal tissue.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: December 13, 2011
    Assignee: Kestrel Labs, Inc.
    Inventors: Jonas Alexander Pologe, Theodore Philip Delianides
  • Publication number: 20110237914
    Abstract: Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 29, 2011
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Marcelo Lamego, Mohamed Diab, Ammar Al-Ali
  • Publication number: 20110118574
    Abstract: A physiological signal sensing device for examination of human is provided. The physiological signal sensing device includes a light emitting fiber and a light receiving fiber. The light emitting fiber includes a plurality of light emitting portions, wherein the light emitting fiber provides a plurality of sensing beams, and the sensing beams are respectively emitted through the light emitting portions. The light receiving fiber includes a plurality of light receiving portions. The light receiving fiber corresponds to the light emitting fiber. The sensing beams are emitted through the light emitting portions, reflected or refracted by the human. And then the sensing beams are received by the light receiving portions.
    Type: Application
    Filed: March 10, 2010
    Publication date: May 19, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wen-Ying Chang, Cheng-Hung Chang
  • Publication number: 20100324390
    Abstract: The invention provides a chest-based oximeter (1) for measuring oxygen saturation of haemoglobin in blood of the chest of a subject, comprising at least one radiation source (5,7) adapted to emit radiation onto the chest, at least one radiation detector (9) adapted to detect radiation reflected from the chest, and a pressure device (11) adapted to apply pressure to the oximeter to connect the oximeter to the chest.
    Type: Application
    Filed: November 3, 2008
    Publication date: December 23, 2010
    Inventors: James Andrew McLaughlin, John McCune Anderson
  • Publication number: 20100168536
    Abstract: A system for monitoring a patient, including: a body-worn monitor having an electrical sensor that measures an electrical waveform from the patient and a wireless transmitter configured to receive the electrical waveform and transmit it over a wireless interface; a computer-based system configured to receive the electrical waveform from the wireless interface and store it in a database; a first algorithm configured to analyze the electrical waveform from the database by comparing it to an secondary electrical waveform previously measured from the patient to determine a property related to the patient's cardiac condition; and a second algorithm configured to analyze the patient's cardiac condition determined by comparing the secondary electrical waveform to the electrical waveform and, in response, transmit a text message.
    Type: Application
    Filed: February 12, 2010
    Publication date: July 1, 2010
    Applicant: TRIAGE WIRELESS, INC.
    Inventors: Matthew BANET, Randon SCHULTZ, Robert MURAD
  • Publication number: 20100130842
    Abstract: The device for the transcutaneous determination of blood gases including a transcutaneous sensor for the measurement of at least one of the parameters of skin carbon dioxide partial pressure (PsCO2) and skin oxygen partial pressure (PsO2) includes at least one sensor for the measurement of the tissue blood flow (F) local with respect to the transcutaneous sensor, and includes a device for the calculation of at least one of the parameters of transcutaneous carbon dioxide partial pressure (tcpCO2) and transcutaneous oxygen partial pressure (tcpO2) from the measured skin carbon dioxide partial pressure (PsCO2) or the measured skin oxygen partial pressure (PsO2), with a factor dependent on the local tissue blood flow (F) being taken into account in the calculation of at least one of the parameters of transcutaneous carbon dioxide partial pressure (tcpCO2) and transcutaneous oxygen partial pressure (tcpO2).
    Type: Application
    Filed: April 28, 2008
    Publication date: May 27, 2010
    Inventors: Josef Hayoz, Rolf Wagner
  • Publication number: 20100081903
    Abstract: Disclosed are methods and devices for measuring a state of anesthesia in a noninvasive manner. Optical techniques may be used to measure changes in a functional near-infrared (fNIR) signal, where the fNIR signal is received in response to directing wavelengths of light in a near-infrared range on a patient. The optical density change may be used to obtain a change in deoxyhemoglobin (deoxy-Hb) concentration and/or a change in an oxyhemoglobin concentration (oxy-Hb). The changes in the deoxy-Hb and/or the oxy-Hb may then be compared to determine a state of anesthesia. The effect of artifacts (e.g., strong surgery room lighting, patient-table tilting, patient intubation/extubation) on the fNIR signal may be removed using a noise removal algorithm. In selecting the noise removal algorithm, a switching technique may be used to select the component analysis algorithm, such as a principal component analysis (PCA), an independent component analysis (ICA), or the like.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 1, 2010
    Applicant: DREXEL UNIVERSITY
    Inventor: Kurtulus Izzetoglu
  • Publication number: 20090156914
    Abstract: A sensor is provided that is appropriate for transcutaneous detection of tissue or blood constituents. A sensor for tissue constituent detection may include a gas collection chamber with a conduit to a sensing component and a conduit from the sensing component to the chamber. A sensor as provided may also include a barrier layer to prevent water from infiltrating the sensor.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Michael P. O'Neil, David B. Swedlow
  • Patent number: 7473227
    Abstract: The invention concerns a medical device for implantation in a body, comprising a stimulation unit, a sleep detector unit having at least one signal input which is adapted to detect a sleep condition of the body and to produce a sleep signal, an apnea detector unit which is adapted to detect sleep apnea in dependence on at least one body signal caused by the body and to produce an apnea signal, a therapy unit which is at least indirectly connected to the stimulation unit! the sleep detector unit and to the apnea detector unit and which is adapted to produce, in dependence on the apnea signal and the sleep signal, at least one apnea therapy signal which represents therapy information for preventing and/or for the treatment of sleep apnea, and to send same to the stimulation unit.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: January 6, 2009
    Assignee: Biotronik GmbH & Co.KG
    Inventors: William Hsu, Mark Johnson, Gerlad Czygan
  • Publication number: 20090005663
    Abstract: An apparatus for the measurement of at least one analyte in the blood of a patient, which includes a light source generating broadband light and a light-transmission arrangement having a plurality of transmitting fibers is positioned for simultaneously transmitting multiple wavelengths of the broadband light from the light source to the blood of the patient. The measurement apparatus further includes an optical fiber arrangement having a plurality of light detector fibers for leading multi-wavelength light, in spectrally unseparated form, transmitted through, or reflected from, the blood and a light detection arrangement for receiving the multi-wavelength light in its spectrally unseparated form from the optical fiber arrangement, for spectrally decomposing the received light, and for determining amplitudes of selected wavelengths of the decomposed light.
    Type: Application
    Filed: September 8, 2008
    Publication date: January 1, 2009
    Applicant: Edwards Lifesciences Corporation
    Inventors: Dawood Parker, David Keith Harrison
  • Patent number: 7384794
    Abstract: Fibres with an extraction phase coated thereon in combination with a positioning device are described to perform adsorption of components of interest from an animal or animal tissue for the investigation of living systems. A number of interfaces to analytical instrumentation are disclosed including mass spectrometry, LC/MS, MALDI and CE as well as direct spectroscopic on-fibre measurement.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: June 10, 2008
    Inventor: Janusz B. Pawliszyn
  • Patent number: 7254426
    Abstract: Blood sugar levels are non-invasively measured based on temperature measurements. Blood sugar levels obtained by non-invasive measurements of temperatures are corrected by blood oxygen saturation and the volume of blood flow so that the measurement data can be stabilized.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: August 7, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Ok-Kyung Cho, Yoon-Ok Kim
  • Patent number: 7254430
    Abstract: Blood sugar levels are non-invasively measured based on temperature measurements. Blood sugar levels obtained by non-invasive measurements of temperatures are corrected by blood oxygen saturation and the volume of blood flow so that the measurement data can be stabilized.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: August 7, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Ok-Kyung Cho, Yoon-Ok Kim
  • Patent number: 7254428
    Abstract: Blood sugar levels are measured non-invasively based on temperature measurement. Non-invasively measured blood sugar level values obtained by a temperature measurement scheme are corrected by blood oxygen saturation and blood flow volume, thereby stabilizing the measurement data. A guide is provided for guiding an analyte to a measurement portion.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 7, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Ok-Kyung Cho, Yoon-Ok Kim, Nobuhiko Sato, Hiroshi Mitsumaki
  • Patent number: 7251517
    Abstract: Blood sugar levels are measured non-invasively based on temperature measurement. Non-invasively measured blood sugar level values obtained by a temperature measurement scheme are corrected by blood oxygen saturation and blood flow volume, thereby stabilizing the measurement data.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: July 31, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Ok-Kyung Cho, Yoon-Ok Kim, Kurazo Maruoka, Hiroshi Mitsumaki