Nuclear Radiation (e.g., Radioactive Emission, Etc.) Patents (Class 600/436)
  • Patent number: 9402980
    Abstract: According to one general aspect, there is a medical device including a locking mechanism that is used to connect a plurality of catheters, a multi-balloon inflator that inflates multiple balloons on a single catheter, an extraction point used to remove human fluids from the human body, and a connecting point that allows a syringe or a machine to insert liquid saline solution or radioactive isotopes into the multi-balloon inflator.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 2, 2016
    Assignee: BEST MEDICAL INTERNATIONAL, Inc.
    Inventor: Manny Subramanian
  • Patent number: 9400333
    Abstract: A survey meter according to the present invention is a portable radiation measurement device. The survey meter comprises a tip portion, an intermediate portion, and a grip portion. A display unit is provided on the top surface of the intermediate portion. The tip portion extends to the intermediate portion with a bent portion therebetween. The tip portion forms an inclined portion. The grip portion has a constricted portion. A radiation detection unit is provided inside the tip portion and is formed by a plurality of sensors arranged in the right-left direction.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: July 26, 2016
    Assignee: HITACHI ALOKA MEDICAL, LTD.
    Inventors: Toshiro Obata, Hiraku Katsuyama
  • Patent number: 9396533
    Abstract: A method for analyzing brain images includes receiving a plurality of three-dimensional image datasets comprising a plurality of voxels for a corresponding plurality of subjects; dividing the plurality of three-dimensional image datasets into at least a first and a second group; dividing the first group into A1 to An subgroups; dividing the second group into B1 to Bn subgroups; determining statistical individual variability between datasets selected from the A1 to An subgroups and the B1 to Bn subgroups; determining statistical individual variability between datasets in the first and second groups responsive to the statistical individual variability between datasets selected from the plurality of three-dimensional image datasets in the A1 to An subgroups and the B1 to Bn subgroups; and for each of the first and second groups, generating a reliability map comprising a map of probabilities that a voxel in an image dataset of the respective first and second groups satisfies a predetermined statistical threshold.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: July 19, 2016
    Inventor: Frank M. Skidmore
  • Patent number: 9390823
    Abstract: There is provided is a radiation image acquiring device which corrects a positional displacement between a collimator and a detector and obtains an image without artifacts. The device includes a detector (21) to measure a radiation; a collimator (26) including a through-hole (27) having one or more detectors (21) disposed therein and configured to limit an incident direction of the radiation; a positional displacement measuring unit configured to measure a positional displacement between the detector (21) and the collimator (26) by use of a profile of a radiation source measured by the detector (21) based on the radiation source disposed corresponding to a predetermined detector (21).
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: July 12, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Atsuro Suzuki, Takafumi Ishitsu, Isao Takahashi, Wataru Takeuchi, Keiji Kobashi
  • Patent number: 9370332
    Abstract: Robotic navigation is provided for nuclear probe imaging. Using a three-dimensional scanner (19), the surface of a patient is determined (42). A calibrated robotic system positions (48) a nuclear probe about the patient based on the surface. The positioning (48) may be without contacting the patient and the surface may be used in reconstruction to account for spacing of the probe from the patient. By using the robotic system for positioning (48), the speed, resolution and/or quality of the reconstructed image may be predetermined, user settable, and/or improved compared to manual scanning. The reconstruction (52) may be more computationally efficient by providing for regular spacing of radiation detection locations within the volume.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 21, 2016
    Assignee: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Gianluca Paladini, Ali Kamen, Oliver Kutter
  • Patent number: 9320478
    Abstract: Simultaneous dual-isotope positron emission tomography (PET) is used to improve disease evaluation. Two distinct molecular probes are simultaneously provided to the imaging target. One of the probes is labeled with a radionuclide that emits positrons to provide double coincidence events in PET. The other probe is labeled with a radionuclide that emits positrons+prompt gammas to provide triple coincidence events in PET. One of the probes is a metabolic probe, and the other probe is a selective probe that includes a ligand or antibody that is biologically responsive to receptor/antigen status. A PET system is employed that can provide simultaneous double coincidence and triple coincidence PET images. The resulting images provide simultaneous metabolic imaging and receptor/antigen imaging. Applications include disease evaluation, such as cancer staging (e.g., for breast cancer, prostate cancer, etc.).
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 26, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Peter D. Olcott, Craig S. Levin, Sanjiv Sam Gambhir
  • Patent number: 9295408
    Abstract: An apparatus and method perform non-invasive lithium measurement of a patient wherein an apparatus comprising a permanent magnet, and at least one radiofrequency coil tuned to the resonant frequency of one or more isotopes of lithium are coupled to a cavity less than 5 cm in diameter in which a subject's body part (other than the subject's brain) can be inserted, wherein, the concentration of lithium in the subject's body is assessed based on one or more measurements of an amount of lithium detected in the body part without the need for withdrawing fluids from the body.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: March 29, 2016
    Assignee: WEINBERG MEDICAL PHYSICS LLC
    Inventor: Irving N. Weinberg
  • Patent number: 9275451
    Abstract: A method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map which is associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 1, 2016
    Assignee: Biosensors International Group, Ltd.
    Inventors: Shlomo Ben-Haim, Benny Rousso
  • Patent number: 9223031
    Abstract: A process and device for generating a prototype waveform and a weighting function. The process including obtaining waveforms generated by a detector having at least one photosensor, generating an initial estimate for the prototype waveform and the weighting function and parameterizing the prototype waveform and the weighting function and determining for each waveform an optimal amplitude and an optimal time offset of the prototype waveform.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: December 29, 2015
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Kent Burr, Gin-Chung Wang
  • Patent number: 9117133
    Abstract: An apparatus for analyzing a subject including a hyperspectral image module is provided. It is used to identify a suspect region of a subject by using a hyperspectral sensor (for obtaining a hyperspectral image of the subject), a control computer including a processor unit (PU) and a computer readable memory (CRM) (for controlling and is in electronic communication with the sensor), a control software module including instructions stored in the CRM and executed by the PU (for controlling said at least one operating parameter of the sensor), a spectral calibrator module including instructions stored in the CRM and executed by the PU (for applying a wavelength dependent spectral calibration standard constructed for the sensor to a hyperspectral image), and a light source for illuminating the subject. An optional contact probe module is used to collect a signal of the suspect region for medical diagnosis.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 25, 2015
    Assignee: Spectral Image, Inc.
    Inventors: Michael Barnes, Zhihong Pan, Sizhong Zhang
  • Patent number: 9078622
    Abstract: A method for selecting data to reconstruct a three-dimensional (3D) image of a subject of interest includes acquiring a 3D emission dataset of the subject of interest, acquiring a respiratory signal of the subject of interest, the respiratory signal including a plurality of respiratory cycles, and calculating a respiratory profile using the respiratory signal. The method further includes, for each respiratory cycle, generating a gating window, calculating a minimum total squared difference (TSD) between a plurality of phases in the respiratory profile and the same plurality of phases in the respiratory cycle, and positioning the gating window based on the TSD values calculated, and reconstructing a 3D image using only the emission data within the plurality of gated windows. A system and non-transitory computer readable medium are also described herein.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 14, 2015
    Assignee: General Electric Company
    Inventors: Scott David Wollenweber, Michael George Bonner, Michael Joseph Cook
  • Patent number: 9069089
    Abstract: Positron emission tomography (PET) systems suitable for use with dirty (positron+prompt gamma) emitters are provided. One or more prompt gamma detectors are added to the PET system, where the prompt gamma detectors are responsive to the prompt gammas provided by the dirty emitter, but are not responsive to 511 keV annihilation photons. The prompt gamma detectors can surround the imaging PET detector array and/or be disposed as end caps relative to a generally cylindrical PET detector array. The prompt gamma detectors need not provide spatial resolution, because coincidence events in the PET detector array are classified as 2-photon or 3-photon events depending on whether or not there is a time-coincident signal from the prompt gamma detectors. One application of this approach is dual isotope PET where distinct tracers labeled with clean and dirty positron emitters are simultaneously imaged.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 30, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Peter D. Olcott, Craig S. Levin
  • Patent number: 9060672
    Abstract: A method for coregistering images involves defining middle paths through image objects depicting tissue slices of needle biopsies. First landmarks are defined on a first middle path through a first image object in a first digital image of a first tissue slice, and second landmarks are defined on a second middle path through a second image object of a second digital image of a second tissue slice. Individual first landmarks are associated with individual second landmarks. A first pixel in the first object is coregistered with a second pixel in the second object using multiple first and second landmarks. The first image is displayed in a first frame on a graphical user interface, and the second image is displayed in a second frame such that the first pixel is centered in the first frame, the second pixel is centered in the second frame, and the images have the same orientations.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 23, 2015
    Assignee: Definiens AG
    Inventors: Nicolas Brieu, Melanie Goerner, Guenter Schmidt, Gerd Binnig
  • Patent number: 9037220
    Abstract: A device (1) for use in imaging a subject using both light and gamma rays emanating from the subject, the device including: a first sensor means (2) responsive to light received thereby from the subject to generate first signals (6) for use in forming a first image (10) of the subject; a second sensor means (3) responsive to gamma rays received thereby from the subject to generate second signals (7) for use in forming a second image (11) of the subject and arranged to receive gamma rays from the subject which have passed from the subject through the first sensor means before reaching the second sensor means.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: May 19, 2015
    Assignee: University of Leicester
    Inventors: John Ernest Wyper Lees, Alan Christopher Perkins
  • Publication number: 20150126863
    Abstract: Disclosed is a radiation diagnostic apparatus that includes an examination table that has a length in a first direction, a fixing frame that is fixedly disposed on a floor to be separated from the examination table in the first direction and includes a guide member provided in the first direction, a transfer frame that contacts the guide member and moves along the first direction with respect to the fixing frame, a first rotary arm that is rotatably connected to the transfer frame, and a second rotary arm that is rotatably connected to the first rotary arm and is provided for a radiation source and a radiation detector to face each other.
    Type: Application
    Filed: June 3, 2014
    Publication date: May 7, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-pil LEE, Su-young KO
  • Publication number: 20150119692
    Abstract: Maximum and minimum dimensional characteristics of a conduit are determined by imaging a portion of the conduit into which an expandable medical device is to be implanted at appropriate points in the cardiac cycle (or other suitable cycle, such as the respiratory cycle, or at other suitable times). The dimensional characteristics of the conduits within the portion of interest may be evaluated and compared to the maximum and minimum dimensional characteristics of the medical device to be implanted in the conduit to determine whether the medical device is of an appropriate size for properly fitting in the conduit.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 30, 2015
    Inventors: Brian McHenry, Victor Okali, Alexander Hill
  • Patent number: 9002438
    Abstract: A system for the measurement of radiation emitted from an in-vivo administered radioactive analyte. The system employs a sensor having a scintillation material to convert gamma radiation to visible light, which enables embodiments of the sensor to be ex vivo. A light detector converts the visible light to an electrical signal. This signal is amplified and is processed to measure the captured radiation. Temperature of the sensor may be recorded along with this radiation measurement for temperature compensation of ex vivo embodiments. The sensor enables collection of sufficient data to support separate application to predictive models, background comparisons, or change analysis.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Lucerno Dynamics
    Inventors: Joshua G. Knowland, Charles W. Scarantino, Ronald K. Lattanze
  • Publication number: 20150087974
    Abstract: Systems and methods are provided for evaluating tissue for abnormal glucose uptake within a region of interest within a patient. A PET scanner obtains PET imagery including the region of interest and at least part of the liver. An SUV calculator calculates a first set of SUVs representing the region of interest and a second set SUVs representing the liver from the set of at least one PET image. A standardization component calculates a correction value as a function of the second set of SUVs and applies the correction value to either a decision threshold associated with the region of interest or the first set of SUVs. A diagnosis component compares the first set of SUVs to the decision threshold to determine if the glucose uptake within the region of interest is abnormal. A display provides the determination to a user.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventor: Richard R. Black
  • Patent number: 8989845
    Abstract: A CT imaging system (12) generates structural data of a first FOV which is reconstructed by a CT reconstruction processor (52) into a CT image representation. A nuclear imaging system acquires functional data from a second FOV which is smaller than the first FOV. A first PET reconstruction processor (60) reconstructs the functional data into a PET image representation. A fusion processor (64) combines the PET image representation with a map extracted from the CT image representation to generate an extended FOV image representation. A spill-over correction unit (66) and a backscatter correction unit (68) derive spill-over correction data and backscatter correction data from the extended FOV image representation. A reconstruction processor (70) generates a spill-over and backscatter corrected functional image representation based on the spill-over correction data, the backscatter correction data, and the functional data.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Ralph Brinks, Eike G. Gegenmantel
  • Publication number: 20150065874
    Abstract: Methods and apparatus for imaging with detectors having moving heads are provided. One apparatus includes a gantry and a plurality of detector units mounted to the gantry. At least some of the plurality of detector units are movable relative to the gantry to position one or more of the detector units with respect to a subject. The detector units are movable along parallel axes with respect to each other.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: Tzachi Rafaeli, Yaron Hefetz
  • Publication number: 20150065873
    Abstract: Methods and systems for controlling movement of detectors having multiple detector heads are provided. One system includes a gantry, a patient support structure supporting a patient table thereon, and a plurality of detector units. At least some of the detector units are rotatable to position the detector units at different angles relative to the patient table. The imaging system further includes a detector position controller configured to control the position of the rotatable detector units, wherein at least some of the rotatable detector units positioned adjacent to each other have an angle of rotation to allow movement of the rotatable detector units a distance greater than a gap between adjacent rotatable detector units The detector position controller is configured to calculate at least one of field of view avoidance information or collision avoidance information to determine an amount of movement for one or more of the rotatable detector units.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventors: Leonid Tsukerman, Jean-Paul Bouhnik, Yaron Hefetz
  • Publication number: 20150065875
    Abstract: A navigation attachment for a manually guided instrument which is designated for the surgical and/or therapeutic treatment of a body and/or for implementation of a diagnostic procedure on the body is provided. The navigation attachment includes a fastener adapted to be fixedly connected with the instrument; at least one image pickup unit, including a device to determine a distance between the navigation attachment and a surface of the body; wherein at least three distances are usable to represent a position (x, y, z, t) of the instrument and/or a front section of the instrument in relation to the body or to a component of the body. Further, a navigation procedure is provided.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventor: Michael FRIEBE
  • Patent number: 8972227
    Abstract: The present system and method for simulating particles and waves is useful for calculations involving nuclear and full spectrum radiation transport, quantum particle transport, plasma transport and charged particle transport. The invention provides a mechanism for creating accurate invariants for embedding in general three-dimensional problems and describes means by which a series of simple single collision interaction finite elements can be extended to formulate a complex multi-collision finite element.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: March 3, 2015
    Assignee: Varian Medical Systems, Inc.
    Inventor: Richard Andrew Holland
  • Publication number: 20150038839
    Abstract: An imaging system includes radiation source (106) that emits radiation that traverses an examination region and a portion of a subject therein and a detector array (114) that detects radiation that traverses the examination region and the portion of the subject therein and generates a signal indicative thereof. A volume scan parameter recommender (120) recommends at least one spectral scan parameter value for a volume scan of the portion of the subject based on a spectral decomposition of first and second 2D projections acquired by the radiation source and detector array. The first and second 2D projections have different spectral characteristics. A console (122) employs the recommended at least one spectral scan parameter value to perform the volume scan of the portion of the subject.
    Type: Application
    Filed: February 20, 2013
    Publication date: February 5, 2015
    Inventors: Dirk Schaefer, Axel Thran, Thomas Koehler
  • Publication number: 20150038840
    Abstract: A portable imaging system for imaging a region of interest (ROI) includes a housing (12), a radiation detector(16)mounted to the housing (12), the detector generating radiation data indicating a location of gamma photon strikes on the detector, a motion sensor (20) which senses motion of the detector and outputs motion data indicative of the location and orientation of the detector at the time of each gamma photon strike, and at least one processor (22, 26) programmed to receive the radiation data from the radiation detectors (16) and the motion data from the motion sensor (20) and reconstruct a 3D volume image of the ROI from the received radiation and motion data.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 5, 2015
    Inventors: Rizwan Hassan, Lingxiong Shao, Steven Allen
  • Publication number: 20150025377
    Abstract: A radiographic imaging device comprising an imaging platform that includes an imaging surface on which a breast of a test subject is to be rested; a radiation irradiation section disposed to face the imaging surface and irradiates radiation at the imaging surface; a main radiation protection portion that is disposed at the side of a region between the radiation irradiation section and the imaging surface and that is adapted to protect the test subject from the radiation; and an auxiliary radiation protection portion disposed at a side portion of the main radiation protection portion, and that is movable between a protecting position, at which the auxiliary radiation protection portion is adapted to protect the test subject, and a non-protecting position, at which the auxiliary radiation protection portion is withdrawn from the protecting position.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Inventors: Yoshihiro NISHI, Kenji TAKATA
  • Patent number: 8938280
    Abstract: A diagnostic imaging arrangement comprises a magnetic resonance examination (1) system to acquire magnetic resonance signals and an emission tomography system (2) to acquire nuclear decay signals. An analysis module (4) is provided to derive motion correction(s) from the magnetic resonance signals. A reconstruction module (5) reconstructs a motion corrected emission tomographic image from the nuclear decay signals on the basis of the motion correction. Also a therapeutic arrangement is disclosed with a diagnostic imaging arrangement and a therapy module, with a system controller is further coupled to the therapy module and has the function to control the therapy module on the basis of image information generated by the diagnostic imaging system.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 20, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Paul Harvey
  • Patent number: 8934959
    Abstract: Magnetic resonance (MR) imaging typically has excellent spatial resolution, but relatively poor temporal resolution. In contrast, positron emission tomography (PET) typically has excellent temporal resolution, but poor spatial resolution relative to MR. Resultantly, it is advantageous to use combined PET-MR imaging sequences to create hybrid or enhanced images that reap the benefits of both modalities. A contrast agent (80) that includes both a PET tracer (82) and MR contrast enhancement (86) can be used in such a combined modality setting. The contrast agent (80) also includes a targeting system (84) that allows the contrast agent (80) to pool in a region of interest.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: January 13, 2015
    Assignee: Koninklijke Philips N.V.
    Inventor: Dragos-Nicolae Peligrad
  • Patent number: 8923952
    Abstract: A system and method for performing quantitative lesion analysis in molecular breast imaging (MBI) using the opposing images of a slightly compressed breast that are obtained from the dual-head gamma camera. The method uses the shape of the pixel intensity profiles through each tumor to determine tumor diameter. Also, the method uses a thickness of the compressed breast and the attenuation of gamma rays in soft tissue to determine the depth of the tumor from the collimator face of the detector head. Further still, the method uses the measured tumor diameter and measurements of counts in the tumor and background breast region to determine relative radiotracer uptake or tumor-to-background ratio (T/B ratio).
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: December 30, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Michael K. O'Connor, Carrie B. Hruska
  • Patent number: 8909325
    Abstract: A system for calculating a position of a radioactivity emitting source in a system-of-coordinates, the system comprising (a) a radioactive emission detector; (b) a position tracking system being connected to and/or communicating with the radioactive emission detector; and (c) a data processor being designed and configured for receiving data inputs from the position tracking system and from the radioactive emission detector and for calculating the position of the radioactivity emitting source in the system-of-coordinates.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: December 9, 2014
    Assignee: Biosensors International Group, Ltd.
    Inventors: Yoav Kimchy, Roni Amrami, Yona Bouskila, Udi Antebi, Nick Sidorenko, Gal Ben-David, Yoel Zilberstein
  • Publication number: 20140350380
    Abstract: Methods for identifying networks correlating with placebo effects, progression of neurological disease symptoms, progression of pre-phenoconversion states of neurological diseases, and efficacious/non-efficacious candidate treatments for neurological diseases are provided.
    Type: Application
    Filed: September 18, 2012
    Publication date: November 27, 2014
    Applicant: THE FEINSTEIN INSTITUTE FOR MEDICAL RESEARCH
    Inventor: David Eidelberg
  • Publication number: 20140350387
    Abstract: An electromagnetic tracking system including a patient support element and an electromagnetic field generator. The patient support element is superposed relative to the electromagnetic field generator, and the electromagnetic field generator is selectively moveable relative to the patient support element.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 27, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jeffrey H. Siewerdsen, Jongheun Yoo
  • Patent number: 8898038
    Abstract: A method for determining a beam parameter of an unflattened photon beam generated by an accelerator includes measuring radiation dose values in the plane perpendicular to the beam propagation direction, determining the extension of the unflattened beam using a definition of the beam extension of a flattened beam. The method also includes normalizing the radiation dose values, such that essentially the same value for the extension of the unflattened beam is obtained as would be obtained if the beam was flattened and determining the beam parameter of the unflattened beam using a beam parameter definition of a flattened beam.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: November 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Christian Ehringfeld
  • Publication number: 20140336507
    Abstract: The present invention provides a human tissue radiation protector with auxiliary method of radiotherapy, wherein said human tissue radiation protector comprises an interconnected expander, a syringe and a marker set onto the expander; said marker is made of radiopaque materials, which could assist the expander in positioning; as well as multiple radiation dosage detector capable of measurement the radiation dosage at different positions of the expander; said method allows to place the expander of the human tissue radiation protector between the tumor and nearby human tissues or organs so as to separate them, and assist the expander in positioning via the marker and measurement the radiation dosage via the radiation dosage detector.
    Type: Application
    Filed: April 10, 2014
    Publication date: November 13, 2014
    Inventor: HSIAO-HSU CHENG
  • Patent number: 8886293
    Abstract: A system and method for molecular breast imaging (MBI) provides enhanced tumor analysis and, optionally, a real-time biopsy guidance. The system includes a detector head including a gamma ray detector and a collimator. The collimator include multiple collimation sections having respectively different spatially-oriented structures. In addition or alternatively, the multiple collimating section have respectively different collimation characteristics. An image of the tissue acquired with the system may include spatially separate image portions containing image information about the same portion of the imaged tissue. A system is optionally configured to acquire updatable images to provide real-time feedback about the biopsy procedure.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Michael K O'Connor, Carrie B Hruska, Amanda L Weinmann
  • Publication number: 20140328461
    Abstract: Radiosurgery systems are described that are configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, and in some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a fiducial marker is used to identify the location of the target tissues.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Michael Gertner, Steven D. Hansen
  • Publication number: 20140330119
    Abstract: An imaging method for identifying abnormal tissue in the lung is provided, comprising the recording of slice images of the lung by means of X-ray radiation, recording of blood vessels, differentiation of blood vessels and abnormal tissue, segmentation of the abnormal tissue and display of the segmented abnormal tissue on an output device. In addition, a computer tomograph for identifying abnormal tissue in the lung is provided, having a radiation source for recording slice images of the lung and blood vessels by means of X-ray radiation, a computer unit for differentiating the blood vessels from the abnormal tissue and for segmenting the abnormal tissue, as well as an output device for displaying the segmented abnormal tissue.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventors: THOMAS BUELOW, RAFAEL WIEMKER, CRISTIAN LORENZ, STEFFEN RENISCH, THOMAS BLAFFERT
  • Patent number: 8880144
    Abstract: Provided is a positron emission tomography (PET) detector module using Geiger-mode avalanche photodiode (GAPD) as a photosensor. The PET detector module includes: a PET detector unit with a scintillation crystal detecting gamma rays emitted from a living body and converting them into a scintillation light and a first GAPD photosensor and a second GAPD photosensor each being connected to either end of the scintillation crystal and converting the scintillation light into an electrical signal; and a depth of interaction (DOI) decoding unit receiving the signals from the PET detector unit and comparing amplitude of the signals detected by the first GAPD photosensor and the second GAPD photosensor, thereby providing the depth information where the gamma rays are incident on the scintillation crystal (DOI). The disclosed PET detector module can provide improved energy resolution and additional DOI information while maintaining linearity.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 4, 2014
    Assignee: Industry—University Cooperation Foundation Sogang University
    Inventors: Jihoon Kang, Yong Choi, Key Jo Hong, Wei Hu, Yoon Suk Huh, Hyun Keong Lim, Sangsu Kim
  • Patent number: 8874193
    Abstract: An image recording device is disclosed for the simultaneous recording of magnetic resonance image data and nuclear medical image data, in particular PET image data. In at least one embodiment, the image recording device includes a nuclear medical detector arrangement integrated into a magnetic resonance device, wherein a fluorescence detector arrangement including an optical system and designed for fluorescence imaging is also integrated into the magnetic resonance device.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Stefan Popescu
  • Patent number: 8864681
    Abstract: Biopsy devices and methods useful with Positron Emission Tomography (PET) and Breast Specific Gamma Imaging (BSGI) are disclosed. A biopsy device including a flexible tube having a side aperture, and a PET or BSGI imageable material disposed within the flexible tube is disclosed. A biopsy method is disclosed that includes advancing a flexible tube having a PET or BSGI imageable material distally through the biopsy device. Various other embodiments and applications are disclosed.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 21, 2014
    Assignee: Devicor Medical Products, Inc.
    Inventors: Jessica P. Leimbach, Edward A. Rhad
  • Patent number: 8865123
    Abstract: This invention relates to strontium-phosphate microparticles that incorporate radioisotopes for radiation therapy and imaging.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: October 21, 2014
    Assignee: MO-SCI Corporation
    Inventors: Delbert E. Day, Yiyong He
  • Patent number: 8866087
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Manitoba
    Inventors: Stephen Pistorius, Hongyan Sun
  • Publication number: 20140309529
    Abstract: Radiation detection probes for use with remote surgical robots are described. Probes may include a radiation detector (e.g., scintillator) that emits a signal (e.g., light) upon exposure to ionizing radiation originating from a radionuclide located within the body of a patient. In some embodiments, an optical fiber cable extending from a scintillator may transmit the signal to a photomultiplier and/or other signal processor, so as to ultimately provide an indication to an observer as to the potential presence/location of the radionuclide. The radiation detector may be located at a distal end of the probe, arranged to be inserted within the body of a patient during surgery, without any electrical component(s). That is, any electrical component(s) of or connected to the probe remain outside the body of the patient during surgery. The radiation detector may further be able to be inserted within the lumen of a relatively small trocar, e.g.
    Type: Application
    Filed: January 24, 2014
    Publication date: October 16, 2014
    Inventors: Michael Edward O'Neill, Paul Edward Glynn, Mamadou Diagne, Alberto Pierotti
  • Patent number: 8862201
    Abstract: Investigation of in vivo models of disease requires imaging studies involving single subjects in single imaging sessions, serial imaging of individuals or groups of subjects, and integration of data across diverse and heterogeneous experimental methodologies. Each type of experiment is preferably supported by various feature sets that can be rigorously applied to produce quantitative, reproducible results. Current imaging scanners are not equipped with standardized capability that supports an automated and scientifically rigorous workflow suited to hypothesis testing. An imaging system includes a research workstation at which a user can design, execute, study, and report imaging plans. Flexibility that comes along with a modular design of the system allows the user to customize workflow parameters for more robust hypothesis testing.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: October 14, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Lyubomir Zagorchev, Andrew Buckler, Eric Jean
  • Patent number: 8855748
    Abstract: The invention relates generally to biopsy needle guidance which employs an x-ray/gamma image spatial co-registration methodology. A gamma camera is configured to mount on a biopsy needle gun platform to obtain a gamma image. More particular, the spatially co-registered x-ray and physiological images may be employed for needle guidance during biopsy. Moreover, functional images may be obtained from a gamma camera at various angles relative to a target site. Further, the invention also generally relates to a breast lesion localization method using opposed gamma camera images or dual opposed images. This dual head methodology may be used to compare the lesion signal in two opposed detector images and to calculate the Z coordinate (distance from one or both of the detectors) of the lesion.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: October 7, 2014
    Assignee: Hampton University
    Inventors: Cynthia Keppel, Douglas Kieper
  • Publication number: 20140275976
    Abstract: A method for evaluating diastolic function of a heart includes measuring a volumetric flow of blood through the heart and determining volume change rates during a diastolic flow period. A diastolic index is formulated from a combination of volume change rates and features of the volumetric change and is weighted by the index for evaluating the weighted feature at a heightened sensitivity against a preselected value. The index weighting provides a measure of diastolic filling performance specific to the weighting parameter. As a result, guidance is provided in evaluating volume changes in heart failure patients, cardiac diastolic performance, medication/titration for diastolic performance, an athletic training program, and cardiac reserve. Guidance is also provided for improving exercise capacity in patients with diastolic dysfunction without requiring the patient to be evaluated during exertion.
    Type: Application
    Filed: December 17, 2013
    Publication date: September 18, 2014
    Applicant: ADVENTIST HEALTH SYSTEM/SUNBELT, INC.
    Inventor: Richard J. Moro
  • Publication number: 20140276032
    Abstract: A dual modality probe is disclosed having both a gamma probe sensor and an ultrasound sensor. A dual imaging system is provided having the probe and at least one external gamma imaging detector and a data acquisition computer system for collecting data simultaneously from the gamma probe sensor, the gamma imaging detector, and the ultrasound sensor of the probe. A method for evaluating a target organ of a patient utilizing the probe and imaging system, and performing a biopsy of the organ is disclosed.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Stanislaw Majewski, Gary Marano, Alexander Stolin, James Proffitt
  • Publication number: 20140257088
    Abstract: Radiation diagnosis devices, systems and methods are in general catheter form and include at least one diagnostic balloon that provides at least one diagnosis function and assists in placement of at least one radiation detector at a desired diagnosis location within an existing body cavity or at a percutaneous site. Data collected by the detector that is positioned as determined by the medical professional allows the medical professional to monitor radiation levels, either residual from a prior radiation treatment, during a brachytherapy treatment at the diagnostic catheter insertion site or in adjoining site, or during externally administered radiation.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Inventor: Mark A. D'Andrea
  • Publication number: 20140257099
    Abstract: The invention relates to a method and apparatus for control of a charged particle cancer therapy system. A treatment delivery control system is used to directly control multiple subsystems of the cancer therapy system without direct communication between selected subsystems, which enhances safety, simplifies quality assurance and quality control, and facilitates programming. For example, the treatment delivery control system directly controls one or more of: an imaging system, a positioning system, an injection system, a radio-frequency quadrupole system, a ring accelerator or synchrotron, an extraction system, a beam line, an irradiation nozzle, a gantry, a display system, a targeting system, and a verification system. Generally, the control system integrates subsystems and/or integrates output of one or more of the above described cancer therapy system elements with inputs of one or more of the above described cancer therapy system elements.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Inventor: Vladimir Balakin
  • Patent number: 8831708
    Abstract: A nuclear probe and ultrasound transducer are interconnected, such as being in a same hand-held housing. The interconnection aligns the coordinate systems in a known spatial relationship. The ultrasound data is used to detect transducer offset or change in position without a tracking sensor. The radiation detected by the nuclear probe may be reconstructed into an image based on the detected transducer position since the nuclear probe moves with the ultrasound transducer. Both anatomical and functional imaging may be provided together without the complications of calibration and tracking. Where a therapeutic transducer is included, therapy may also be provided. The anatomical and functional information identifies the regions for treatment. The same device, already positioned correctly based on the functional and anatomical imaging, is then used for treatment with high intensity focused ultrasound.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 9, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Gianluca Paladini