Parameter Control In Response To Sensed Physiological Load On Heart Patents (Class 607/17)
  • Patent number: 8812108
    Abstract: Various system embodiments comprise a myocardial stimulator, at least one sensor adapted for use in detecting heart rate to determine heart rate turbulence (HRT), and a controller connected to the myocardial stimulator and the at least one sensor. The myocardial stimulator is adapted to deliver pacing pulses through at least one electrode to provide cardiac pacing. The controller is adapted to intermittently deliver a sequence of stress-inducing pacing pulses adapted to increase sympathetic tone during the stress-inducing pacing. The controller is further adapted to determine HRT from the detected heart rate to assess cardiac stress to the stress-inducing pacing pulses, and adjust at least one parameter of the stress-inducing pacing pulses to adjust cardiac stress if the cardiac stress to the stress-inducing pacing pulses is undesirable.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy
  • Publication number: 20140228837
    Abstract: Certain embodiments of the present disclosure are directed toward devices, methods and systems for controlling depolarization in cardiac cells. One such device includes one or more circuits that are configured and arranged to generate an electrical stimulus at a high frequency. The circuit is configured to provide electrical stimulus over a period of time sufficient to depolarize the cardiac cells. An electrode arrangement is configured and arranged to deliver the high frequency electrical stimulus to cardiac cells and depolarize the cardiac cells.
    Type: Application
    Filed: October 4, 2012
    Publication date: August 14, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Laurent Giovangrandi, Burak Dura, Michael Q. Chen, Omer T. Inan, Paul J. Wang
  • Publication number: 20140228904
    Abstract: A system level scheme for networking of implantable devices, electronic patch devices/sensors coupled to the body, and wearable sensors/devices with cellular telephone/mobile devices, peripheral devices and remote servers is described.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: IP HOLDINGS, INC.
    Inventors: Raman K. Rao, Sanjay K. Rao
  • Patent number: 8805503
    Abstract: A cardiac rhythm management system modulates the delivery of pacing and/or autonomic neurostimulation pulses based on heart rate variability (HRV). An HRV parameter being a measure of the HRV is produced to indicate a patient's cardiac condition, based on which the delivery of pacing and/or autonomic neurostimulation pulses is started, stopped, adjusted, or optimized. In one embodiment, the HRV parameter is used to evaluate a plurality of parameter values for selecting an approximately optimal parameter value.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Gerrard M. Carlson, Andrew P. Kramer, Jiang Ding, Yinghong Yu
  • Patent number: 8805497
    Abstract: Cardioprotective pre-excitation pacing may be applied to stress or de-stress a particular myocardial region delivering of pacing pulses in a manner that causes a dyssynchronous contraction. Such dyssynchronous contractions are responsible for the desired cardioprotective effects of pre-excitation pacing but may also be hazardous. Described herein is a method and system that uses measures of a patient's heart rate or exertion level to control the duty cycles of intermittent pre-excitation pacing.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, Shantha Arcot-Krishnamurthy, Allan C. Shuros, David L. Whitehouse
  • Patent number: 8805479
    Abstract: A system for determining a functional property of a moving object includes a tag contactable to the object such that the tag follows the movement of the object. The system further includes a movement determination device configured to determine the movement of the tag. The system also includes a functional property determination device configured to determine a functional property of the object from the determined movement of the tag.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: August 12, 2014
    Assignees: Koninklijke Philips N.V., The General Hospital Corp.
    Inventors: Robert Manzke, Raymond Chan, Vivek Reddy, Andre Luiz Buchele D'avila
  • Patent number: 8805513
    Abstract: A system example may include a vagus nerve stimulator, a physiological parameter monitor and a controller. The stimulator may be configured to deliver vagus nerve stimulation in a recurring succession of stimulation cycles, where the vagus nerve stimulation is provided for a portion of each cycle and not provided for another portion each stimulation cycle. The monitor may be configured to monitor a physiological parameter within the portion of each cycle when the stimulation is generated and within another portion of each cycle when the stimulation is not generated. The controller may be configured to determine a change in the sensed physiological parameter where the change reflects a difference in the sensed physiological parameter between the portions of a stimulation cycle, compare the detected change to a target change to provide a comparison result, and adjust the vagus nerve stimulation based on the comparison result.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Patent number: 8805500
    Abstract: A method and medical device for delivering an atrial pacing pulse to an atrial chamber to generate an evoked atrial depolarization, delivering a stimulation pulse to an atrioventricular node during a stimulation window to increase a PR interval of the heart, the stimulation window having a start time corresponding to the delivered atrial pacing pulse so that the stimulation pulse is delivered during a refractory period corresponding to the evoked atrial depolarization, and delivering a ventricular pacing pulse to a first ventricular chamber during the increased PR interval to cause a contraction of the first ventricular chamber to occur prior to a contraction of a second ventricular chamber to increase dyssynchrony between the contraction of the first ventricular chamber and the contraction of the second ventricular chamber.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Vinayakrishnan Rajan, Richard N. M. Cornelussen, Berthold Stegemann, Lilian Kornet
  • Publication number: 20140222099
    Abstract: A system and method for cardiac resynchronization therapy (“CRT”) in which a model of baseline cardiac electrical activity, such as a model of global baseline cardiac electrical activity derived from various surface electrocardiograph (“ECG”) signals, is utilized to automatically adjust pacing control parameters of a cardiac implantable electrical device (“CIED”) are provided. The baseline model is compared to CRT response patterns using modified pacing control parameters in an iterative fashion, based on a patient-specific response pattern phenotype determination, until ventricular electrical asynchrony is minimized. The pacing control parameters resulting in the minimum ventricular electrical asynchrony are used to generate final control parameters for CRT.
    Type: Application
    Filed: July 16, 2012
    Publication date: August 7, 2014
    Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL
    Inventor: Michael O. Sweeney
  • Patent number: 8798747
    Abstract: A cardiac rhythm management (CRM) system includes a non-invasive hemodynamic sensing device and an implantable medical device to sense a hemodynamic signal and derive one or more cardiac performance parameters from the hemodynamic signal. The non-invasive hemodynamic sensing device includes at least a portion configured for external attachment to a body in which the implantable medical device is implanted. The one or more cardiac performance parameters are used for various diagnostic, monitoring, and therapy control purposes.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Joseph M. Pastore, Jeffrey E. Stahmann, Rodney W. Salo, Jesse W. Hartley
  • Patent number: 8798746
    Abstract: This document discusses, among other things, a cardiac mechanical alternans (MA) detector circuit. In an example, the mechanical alternans detector circuit is configured to determine a mechanical alternans (MA) condition. In an example, the MA detector circuit can include a physiologic impedance input configured to receive physiologic information indicative of mechanical alternans. In an example, the MA detector circuit can include an intravascular pressure input configured to receive physiologic information indicative of mechanical alternans.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, Allan C. Shuros, Arjun Sharma
  • Patent number: 8798748
    Abstract: An active implantable medical device or pacing, resynchronization defibrillation and/or cardioversion, and/or a device for diagnosing patient conditions, having a predictive diagnosis of the patient's status. The device measures a physiologic parameter, notably the minute ventilation; measures a physical parameter, notably the acceleration; discriminates between phases of activity and rest of the patient; and includes a memory containing a plurality of fields selectively updated by statistical processing. These fields are comprising one first set containing data related to the patient's activity phases, and one second set containing data related to the patient's rest phases. The statistical processing is updating in a dissociated manner the first and second sets of fields, selectively as a function of the value taken by the status indicator, and the analysis evaluates at least one clinical status index based upon the data contained in the fields of both first and second sets.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: August 5, 2014
    Assignee: Sorin CRM S.A.S.
    Inventor: Cyrille Casset
  • Patent number: 8798771
    Abstract: Improving cardiac response in terms of pressure, ejected volume, and filling and ejection times by cardiac reverse remodelling, including temporary, occasionally harmful stimulation sequences. An original pacing configuration (a) is switched to a modified pacing configuration (b) in a direction opposite to that of an optimization of the hemodynamic parameters, to cause an immediate change in the response to controlled stimulation of the myocardium. This response is assessed based on: the maximum value (P (b, a)) achieved by the peak-to-peak (PEA (i)) of the first peak of endocardial acceleration (PEA) after a pacing configuration change, the mean PEA value (A (b, a)) after stabilization, the PEA variability (V (b, a)) around this average value, and the duration (T (b, a)) of stabilization after the pacing configuration change.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: August 5, 2014
    Assignee: Sorin CRM S.A.S.
    Inventors: Cyrille Casset, Melanie Heurteau
  • Patent number: 8792998
    Abstract: Methods, systems and devices efficiently identify cardiac resynchronization therapy (CRT) pacing parameter set(s) that provide improved hemodynamic response relative to an initial CRT pacing parameter set, wherein each CRT pacing parameter set includes at least two CRT pacing parameters. User input(s) are accepted that specify a maximum amount of time and/or parameter sets that can be used to perform testing, and specify relative importance of parameters within the sets. Based on the accepted user input(s), there is a determination of how many different variations of each of the CRT pacing parameters can be tested, and based on this determination different CRT pacing parameter sets are selected and tested to obtain a hemodynamic response measure corresponding to each of the different sets tested. Additionally, one or more of the tested CRT pacing parameter sets, if any, that provide improved hemodynamic response relative to the initial CRT pacing parameter set is/are identified.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Cecilia Qin Xi, Yasser Sowb
  • Publication number: 20140207205
    Abstract: A connector for a multipolar lead has a cavity that contains a stack of alternating annular electrical contact elements and annular isolation elements. The isolation elements comprise an annular rigid sleeve and an annular flexible seal disposed against an annular face in an interior region of the rigid sleeve. The flexible seal extends axially from one lateral side of the rigid sleeve to the other in the interior region of the rigid sleeve. The sleeve and the seal include are immobilized relatively to each other in the axial direction by use of mating surface profiles respectively defined on an inner annular side of the sleeve and on an outer annular side of the flexible seal.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: SORIN CRM SAS
    Inventors: Elodie Jullien, François Lucas
  • Patent number: 8784323
    Abstract: In specific embodiments, a method to monitor pulmonary edema of a patient, comprises (a) detecting, using an implanted posture sensor, when a posture of the patient changes from a first predetermined posture to a second predetermined posture, (b) determining an amount of time it takes an impedance signal to achieve a steady state after the posture of the patient changes from the first predetermined posture to the second predetermined posture, where the impedance signal is obtained using implanted electrodes and is indicative of left atrial pressure and/or intra-thoracic fluid volume of the patient, and (c) monitoring the pulmonary edema of the patient based on the determined amount of time it takes the impedance signal to achieve the steady state after the posture of the patient changes from the first predetermined posture to the second pre-determined posture.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 22, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Fujian Qu, Steve Koh, Dan E. Gutfinger, Alex Soriano
  • Publication number: 20140194941
    Abstract: Methods, apparatus, and systems are provided to control contraction of the heart. At least one sensing element receives signals indicating electrical activity of sinus rhythm of the heart. Based on the received signals, the progress of contraction of the heart is determined. Based on the progress of contraction, the chamber of the heart may then be stimulated at a plurality of locations. In another embodiment, a plurality of electrodes are implanted in the left ventricle to stimulate at multiple locations in the left ventricle for the purpose of improving hemodynamic performance and increasing cardiac output in a patient who is suffering from congestive heart failure.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: MIROWSKI FAMILY VENTURES, LLC
    Inventor: Morton M. MOWER
  • Publication number: 20140194763
    Abstract: Systems and methods define an index of risk for cardiac disease by detecting cellular derangements that may lead to cardiomyopathy, heart rhythm disorders or ischemic heart disease. The markers include fluctuations or abnormal rate-behavior of electrical, mechanical or other measurable biosignals. The invention operates in modes that can be applied to prevent atrial fibrillation or the risk for ventricular arrhythmias. Alternative embodiments are applied to tissue outside the heart such as skeletal muscle, smooth muscle, the central nervous system, the respiratory system, the urogenital system and the gastrointestinal system.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 10, 2014
    Applicant: The Regents of the University of California
    Inventor: Sanjiv Narayan
  • Patent number: 8774918
    Abstract: Electrical crosstalk between two implantable medical devices or two different therapy modules of a common implantable medical device may be evaluated, and, in some examples, mitigated. In some examples, one of the implantable medical devices or therapy modules delivers electrical stimulation to a nonmyocardial tissue site or a nonvascular cardiac tissue site, and the other implantable medical device or therapy module delivers cardiac rhythm management therapy to a heart of the patient.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 8, 2014
    Assignee: Medtronic, Inc.
    Inventors: William T. Donofrio, John E. Burnes, Paul G. Krause, Xiaohong Zhou, Gerald P. Arne, David J. Peichel, James D. Reinke
  • Patent number: 8774934
    Abstract: A temperature sensor for detecting heating of at least one electrode pole of a temporarily or permanently implantable electrode line or a similar implant having at least one elongated electrical conductor which is connected to at least one electrode pole. The temperature sensor has an impedance detecting unit or is connected to one and is configured for evaluating an electrode pole impedance detected by the impedance detecting unit in such a manner that the evaluation takes place with respect to a temperature-dependent feature of the electrode impedance. The impedance detecting unit is electrically connected to the at least one electrode pole or is configured and arranged to be electrically connected to the at least one electrode pole.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 8, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8768465
    Abstract: Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Employing sums of the measured activation times to select one of the left ventricular electrodes for delivery of subsequent pacing pulses.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: July 1, 2014
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W. Stadler
  • Patent number: 8768463
    Abstract: A method of data management for optimizing the patient outcome from the provision of cardiac resynchronization therapy (CRT) is described. A regression equation is constructed using 3 data points on a plot of AV delay vs. HR. The x-axis consist of the three points consist of resting HR, HR at the optimal AV delay value during light exercise, and the upper tracking or paced HR. The y-values associated with the three points consist of the AV delay values computed using an equation for ventricular filling time and the optimally determined AV delay value. Also described is a process for determining the sensed to paced AV delay offset. The combined processes yield 4 (the three constant values in the polynomial regression equation Y=b2X2+b1X+a and the sensed to paced AV delay offset) which can be stored on the patient's pacemaker for determining dynamically the AV delay value which is physiologically fine-tuned for each patient from resting HR to the upper tracking or paced HR.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: July 1, 2014
    Assignee: Shape Medical Systems, Inc.
    Inventors: Stephen T. Anderson, Dean J. MacCarter
  • Publication number: 20140180149
    Abstract: One embodiment enables detection of MI/I and emerging infarction in an implantable system. A plurality of devices may be used to gather and interpret data from within the heart, from the heart surface, and/or from the thoracic cavity. The apparatus may further alert the patient and/or communicate the condition to an external device or medical caregiver. Additionally, the implanted apparatus may initiate therapy of MI/I and emerging infarction.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: INFINITE BIOMEDICAL TECHNOLOGIES, LLC
    Inventors: Ananth NATARAJAN, Nitish V. THAKOR
  • Publication number: 20140180354
    Abstract: A single-pass pacing lead capable of sensing and pacing both the atria and the ventricles is described. In some examples, the single-pass pacing lead is connected to a DDD pacemaker. In some examples, the single-pass pacing lead comprises four electrodes. In some examples, the lead includes three electrodes configured to be positioned in or near an atrium, e.g., the right atrium, and one electrode configured to be positioned in or near a ventricle, e.g., the left ventricle, when the lead is implanted. In other examples, the lead includes two electrodes configured to be positioned in each of the atrium and ventricle when the lead is implanted. In some examples, one of the electrodes, which is configured to be positioned proximate the coronary sinus ostium when the lead is implanted, comprises a helical element for fixation of the lead to tissue.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Inventors: Kenneth M Anderson, John L Sommer
  • Publication number: 20140180353
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 26, 2014
    Applicant: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 8761880
    Abstract: Stimulation energy can be provided to a His-bundle to activate natural cardiac contraction mechanisms. Interval information can be used to describe a cardiac response to His-bundle stimulation, and the interval information can provide cardiac stimulation diagnostic information. For example, interval information can be used to discriminate between intrinsic conduction cardiac contractions and contractions responsive to His-bundle pacing.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 24, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Jiang Ding, Shantha Arcot-Krishnamurthy, Allan C. Shuros
  • Patent number: 8758242
    Abstract: At least one of a medical device, such as an implantable medical device, and a programming device determines values for one or more metrics that indicate the quality of a patient's sleep. Sleep efficiency, sleep latency, and time spent in deeper sleep states are example sleep quality metrics for which values may be determined. In some embodiments, determined sleep quality metric values are associated with a current therapy parameter set. In some embodiments, a programming device presents sleep quality information to a user based on determined sleep quality metric values. A clinician, for example, may use the sleep quality information presented by the programming device to evaluate the effectiveness of therapy delivered to the patient by the medical device, to adjust the therapy delivered by the medical device, or to prescribe a therapy not delivered by the medical device in order to improve the quality of the patient's sleep.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Kenneth T. Heruth
  • Patent number: 8761905
    Abstract: Methods, apparatus, and systems are provided to stimulate multiple sites in a heart. A controller senses electrical activity associated with sinus rhythm of the heart. A signal generator is configured to generate an electrical signal for stimulating the heart. Based on the electrical signal, a distributor circuit then distributes the stimulating signals, such as pacing pulses, to a heart. The distributor circuit may vary the delay time between stimulating signals, inhibit a stimulating signal, trigger application of a stimulating signal, or vary the characteristics, such as the pulse width and amplitude, of a stimulating signal.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: June 24, 2014
    Assignee: Mirowski Family Ventures, L.L.C.
    Inventor: Morton M. Mower
  • Publication number: 20140172035
    Abstract: An apparatus comprises a cardiac signal sensing circuit and a first implantable electrode pair. At least one electrode of the first implantable electrode pair is configured for placement at a location in a right branch of a His bundle of the subject. The apparatus can include a therapy circuit and a control circuit. The control circuit can include an AH delay calculation circuit configured to calculate an optimal paced AH delay interval. The pacing stimulation location is distal to a location of RV conduction block in a right branch of the His bundle. The control circuit initiates delivery of an electrical stimulation pulse to the stimulation location in the His bundle according to the calculated paced AH delay interval and in response to an intrinsic depolarization event sensed in an atrium of the subject.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Jiang Ding, Barun Maskara, Yinghong Yu
  • Publication number: 20140172034
    Abstract: An assembly is provided for introducing a device within a heart of a patient. The assembly is comprised of a sheath having at least one internal passage. An intra-cardiac implantable medical device (IIMD) is retained within the at least one internal passage, wherein the IIMD is configured to be discharged from a distal end of the sheath. The IIMD has a housing with a first active fixation member configured to anchor the IIMD at a first implant location within a local chamber of the heart.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: PACESETTER, INC.
    Inventors: Gene A. Bornzin, John W. Poore, Zoltan Somogyi, Xiaoyi Min, Didier Theret
  • Patent number: 8755882
    Abstract: Embodiments of close loop optimization of atrio-ventricular (A-V) delay interval and/or inter-ventricular (V-V) timing are disclosed. An implantable medical device includes a housing that supports a processing means adapted for implantation in a patient. There can be two or more electrodes electrically coupled to the processing means where the two or more electrodes can be used for sensing a patient's cardiac signals, which include a far-field EGM. The processing means can determine a width of a P-wave from the sensed far-field EGM. Also included can be a means for delivering an adapted cardiac pacing therapy based upon the width of the P-wave, including revised A-V delay and/or V-V temporal intervals.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: June 17, 2014
    Assignee: Medtronic, Inc.
    Inventor: Li Wang
  • Patent number: 8755874
    Abstract: In an implantable medical device such as an implantable cardiac defibrillator, and a method for classifying arrhythmia events, IEGM signals are analyzed to detect an arrhythmia event and a respiratory pattern of the patient is sensed. At least one respiratory parameter reflecting characteristics of the respiratory pattern of the patient is determined based on the sensed respiratory pattern and a respiratory measure corresponding to a change of a rate of change of the at least one respiratory parameter is calculated. The detected arrhythmia event is classified based on the respiratory measure and the IEGM signals, wherein arrhythmia events that satisfy at least a first criterion is classified as an arrhythmia event requiring therapy.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 17, 2014
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Rupinder Bharmi, Michael Broomé, Karin Järverud
  • Patent number: 8755884
    Abstract: Cardiac pacing methods for an implantable single chamber pacing system, establish an offset rate for pacing at a predetermined decrement from either a baseline rate (i.e. dictated by a rate response sensor), or an intrinsic rate. Pacing maintains the offset rate until x of y successive events are paced events, at which time the offset rate is switched to the baseline rate for pacing over a predetermined period of time. Following the period, if an intrinsic event is not immediately detected, within the interval of the offset rate, the rate is switched back to baseline for pacing over an increased period of time. Some methods establish a preference rate, between the offset and baseline rates, wherein an additional criterion, for switching from the offset rate to the baseline rate, is established with respect to the preference rate.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: June 17, 2014
    Assignee: Medtronic, Inc.
    Inventors: Wade M Demmer, Karen J Kleckner, Paul A Belk
  • Patent number: 8755883
    Abstract: A system, method, or device monitor a force-frequency relationship exhibited by a patient's heart. A contractility characteristic, such as a heart sound characteristic of an S1 heart sound, is measured. The contractility characteristic indicates the forcefulness of a contraction of the heart. The frequency at which the heart is contracting is determined. A group of (contractility characteristic, heart rate) pairs is stored in a memory device. The group of pairs defines a force-frequency relationship for the heart. The method may be implemented by an implantable device, or by a system including a implantable device.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Gerrard M. Carlson
  • Patent number: 8751011
    Abstract: The disclosure is directed towards posture-responsive therapy. To avoid interruptions in effective therapy, an implantable medical device may include a posture state module that detects the posture state of the patient and automatically adjusts therapy parameter values according to the detected posture state. A system may include an external programmer comprising a user interface that receives user input defining therapy parameter values for delivery of therapy to a patient, and user input associating one or more of the therapy parameter values with a plurality of posture states based on user input, a processor that automatically defines therapy parameter values for delivery of therapy to a patient when the patient occupies the posture states based on the association, and an implantable medical device that delivers the therapy to the patient in response to detection of the posture states.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: June 10, 2014
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Joseph J. Nolan, Rajeev Sahasrabudhe, Shyam Gokaldas
  • Patent number: 8750975
    Abstract: In an implantable heart monitoring device and method, particularly for monitoring diastolic dysfunction, a control circuit (a) detects the heart rate, (b) derives information correlated to the stroke volume of the heart at the detected heart rate, and (c) stores the detected heart rate and the derived information correlated to the stroke volume in a memory. The control circuit automatically implements (a), (b) and (c) at a number of different occasions for a number of different, naturally varying heart rates, so that the memory contains information indicating the stroke volume as a function of the heart rate.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: June 10, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Andreas Blomqvist, Michael Broome
  • Patent number: 8750995
    Abstract: An implantable heart stimulating device for indicating congestive heart failure (CHF) has a processor and a sensor combination that senses at least two heart events during one heart cycle at different locations of the heart. The processor is supplied with signals from the sensor combination relating to the sensed events, and determines therefrom at least one heart time interval between the sensed events in the same heart cycle. The processor determines a CHF indicator value representing a degree of CHF based on a variability measure calculated from at least two heart time intervals from at least two different heart cycles. The processor determines the CHF indicator value in relation to previous CHF indicator values.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: June 10, 2014
    Assignee: St. Jude Medical AB
    Inventor: Björling Anders
  • Patent number: 8750996
    Abstract: The invention relates to a medical implantable lead for monitoring and/or controlling an organ inside a human or animal body. The lead comprises a first electrode (6I) at a distal end of the lead adapted to be in contact with tissue of the organ, a connector at a proximal end of the lead adapted to be connected to a monitoring and/or controlling device, a conducting arrangement comprising a first conducting coil (9I) of at least one electrically conducting wire (10I) for connecting the first electrode electrically to the connector to receive and/or transmit electric signals from and to the tissue, respectively, and a flexible tubing (7) surrounding the lead from the proximal to the distal end, wherein the lead is tapered in a distal portion and has a smaller cross sectional dimension at the distal portion than at the rest of the lead.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: June 10, 2014
    Assignee: St. Jude Medical AB
    Inventors: Anders Bjorling, Caroline Sparf
  • Patent number: 8750963
    Abstract: An implantable electromedical device, having a detection unit for capturing possible device-impairing effects, a control unit, which is connected to the detection unit, a diagnostic and/or treatment unit, and a test unit, of which the test unit is designed to test the diagnostic-treatment unit, and to output test results for storage, of which the diagnostic and/or treatment unit includes sensor units and/or treatment delivery units as components and is designed to record physiological parameters and/or bring about delivery of a treatment, and of which the control unit is designed to actuate the test unit for testing the diagnostic-treatment unit.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: June 10, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Publication number: 20140155949
    Abstract: A method for managing bradycardia through vagus nerve stimulation is provided. An implantable neurostimulator configured to deliver electrical therapeutic stimulation in both afferent and efferent directions of a patient's cervical vagus nerve is provided. An operating mode is stored, which includes parametrically defining a maintenance dose of the electrical therapeutic stimulation tuned to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. The maintenance dose is delivered via a pulse generator through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead independent of cardiac cycle. The patient's physiology is monitored, and upon sensing a condition indicative of bradycardia, the delivery of the maintenance dose is suspended.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 5, 2014
    Applicant: CYBERONICS, INC.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Publication number: 20140155948
    Abstract: Various aspects of the present disclosure are directed toward an implantable electrostimulation device, a plurality of sensing and pacing elements, and a fine wire lead extending in a sealed relationship from the electrostimulation device and to the plurality of sensing and pacing elements. The fine wire lead includes multiple discrete conductors and a drawn silica or glass fiber core, a polymer cladding on the drawn silica or glass fiber core, and a conductive metal cladding over the polymer cladding. Additionally, the fine wire lead simultaneously delivers different electrical signals or optical signals between the sensing and pacing elements and the electrostimulation device.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 5, 2014
    Applicant: Cardia Access, Inc.
    Inventor: Cardia Access, Inc.
  • Publication number: 20140148713
    Abstract: A device includes a lead configured to for use in applying an atrioventricular delay (“AVD”), an acceleration sensor adapted to output an endocardial acceleration signal, and circuitry configured to receive and process said endocardial acceleration signal to provide ventricular pacing by varying, in a controlled manner, the AVD in a range having a plurality of AVD values. The circuitry derives from said endocardial acceleration signal a value of a parameter representative of an component of the endocardial acceleration signal corresponding to the first endocardial acceleration peak associated with an isovolumetric ventricular contraction (“EAX component”), and evaluates a degree of variation of said parameter values as a function of said plurality of AVD values to detect atrial and ventricular events.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Inventor: Francesca Anselmi
  • Publication number: 20140142646
    Abstract: Methods and/or devices are disclosed herein for monitoring cardiac impedance signal and delivering therapy to a patient's heart based upon the monitored cardiac impedance.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, Todd M. Zielinski, Eduardo Warman, Sarkar Shantanu
  • Publication number: 20140142649
    Abstract: Response to cardiac resynchronization therapy is predicted for a given stimulation site so that an atrioventricular delay of an implantable device administering cardiac resynchronization therapy may be set to a proper amount. The first deflection of ventricular depolarization is measured, such as through a surface electrocardiogram or through an intracardiac electrogram measured by a lead positioned in the heart at the stimulation site. The maximum deflection of the ventricular depolarization is then measured by the lead positioned at the stimulation site. The interval of time between the first deflection and the maximum deflection of the ventricular depolarization is compared to a threshold to determine whether the stimulation site is a responder site. If the interval is larger than the threshold, then the site is a responder and the atrioventricular delay of the implantable device may be set to less than the intrinsic atrioventricular delay of the patient.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Julio C. Spinelli, Yinghong Yu
  • Patent number: 8731666
    Abstract: A method and device for delivering pre-excitation pacing to prevent or reduce cardiac remodeling following a myocardial infarction is described. The pre-excitation pacing is modulated in accordance with an assessment of cardiac function in order to balance the beneficial effects of stress reduction with hemodynamic compromise.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 20, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Rodney W. Salo, Jesse W. Hartley, Andrew P. Kramer, Jeffrey E. Stahmann
  • Publication number: 20140135865
    Abstract: A seed assembly for delivery to an interior of a heart includes an electrical stimulation circuit for delivering an electrical stimulus to cardiac tissue. A first electrode assembly is mechanically and electrically coupled to the seed assembly via a micro lead the first electrode assembly configured to deliver the electrical stimulus generated by the electrical stimulation circuit to the cardiac tissue. The seed assembly and the first electrode assembly are sized and shaped to fit entirely within the heart.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Roger Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
  • Publication number: 20140135645
    Abstract: An exemplary includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 15, 2014
    Applicant: PACESETTER, INC.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 8725255
    Abstract: Systems and methods provide for pacing a heart to improve pumping efficiency of the heart, such as by producing a cardiac fusion response for patient's subject to cardiac resynchronization therapy. A pacing parameter, such as an A-V delay, V-V delay, lead/electrode configuration or vector, is adjusted and a cardiac signal vector representative of all or a portion of one or more cardiac activation sequences is monitored during pacing parameter adjustment. A change in a characteristic of the cardiac signal vector is detected in response to an adjusted pacing parameter, the change indicative of a cardiac fusion response. A pacing therapy may be delivered to produce the cardiac fusion response using the adjusted pacing parameter.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 13, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Yi Zhang, Jiang Ding, Yinghong Yu, Yanting Dong
  • Patent number: 8721558
    Abstract: A device for the in vivo determination of the blood flow rate in a patient's blood vessel includes a microelectrode arrangement provided for placement in the blood vessel, an electrical power source which provides excitation energy having physiologically harmless parameters for obtaining a measured signal, a signal detector for detecting an electrical measured signal resulting from the blood flow in the presence of the excitation energy at measuring electrodes of the microelectrode arrangement, and a signal evaluation device, connected to the signal detector, for determining the blood flow rate on the basis of the measured signal.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 13, 2014
    Assignee: BIOTRONIK CRM Patent AG
    Inventors: Gernot Kolberg, Klaus Bartels
  • Patent number: 8718762
    Abstract: A cardiac medical device and associated method control delivery of dual chamber burst pacing pulses in response to detecting tachycardia. In one embodiment, a single chamber pacing pulse is delivered in response to detecting a tachycardia. Dual chamber pacing pulses are delivered subsequent to the single chamber pacing pulse. An intrinsic depolarization is sensed subsequent to delivering the dual chamber pacing pulses. The tachycardia episode is classified in response to the sensed intrinsic depolarization.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 6, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Troy Edward Jackson, Jeffrey M. Gillberg