Parameter Control In Response To Sensed Physiological Load On Heart Patents (Class 607/17)
  • Patent number: 9517350
    Abstract: An example of a method embodiment may include receiving a user programmable neural stimulation (NS) dose for an intermittent neural stimulation (INS) therapy, and delivering the INS therapy with the user programmable NS dose to an autonomic neural target of a patient. Delivering the INS therapy may include delivering NS bursts, and delivering the NS bursts may include delivering a number of NS pulses per cardiac cycle during a portion of the cardiac cycles and not delivering NS pulses during a remaining portion of the cardiac cycles. The method may further include sensing cardiac events within the cardiac cycles, and controlling delivery of the user programmable NS dose of INS therapy using the sensed cardiac events to time delivery of the number of NS pulses per cardiac cycle to provide the user programmable NS dose. The user programmable NS dose may determine the number of NS pulses per cardiac cycle.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: December 13, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Jason J. Hamann, Stephen B. Ruble, Juan Gabriel Hincapie Ordonez
  • Patent number: 9511234
    Abstract: Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Employing sums of the measured activation times to select one of the left ventricular electrodes for delivery of subsequent pacing pulses.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Robert W Stadler
  • Patent number: 9504835
    Abstract: Devices and methods for providing pacing in multiple modes are provided. One device operates in a dual chamber (DDD or biventricular) mode and in a pacing mode favoring the spontaneous atrioventricular conduction such as an AAI mode (10) with a ventricular sensing or a mode with hysteresis of the atrioventricular delay. The device controls (10-18) the conditional switching from one mode to the other. The device comprises a hemodynamic sensor, including an endocardial acceleration sensor, derives a hemodynamic index representative of the hemodynamic tolerance of the patient to the spontaneous atrioventricular conduction. The device controls inhibiting or (20) forcing the conditional switching of the device to the DDD (or biventricular) mode according to the evolution of the hemodynamic index.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: November 29, 2016
    Assignee: SORIN CRM SAS
    Inventor: Laurence Graindorge
  • Patent number: 9463316
    Abstract: An electrode assembly for temporary cardioversion/defibrillation and/or for temporary stimulation of the heart after open heart surgery consisting of two defibrillation electrodes with at least one indifferent pole each and an elastic section is disclosed. Each defibrillation electrode in the operating position is positioned on the right and left atrium. The defibrillation electrodes each distally comprise a fixation member and each end in a protective tube to protect the epicardium at a proximal end. The fixation members are elastic and enable reversible fastening of the defibrillation electrodes in the pericardium on the right and left side. The protective tubes are preferably fed together into a guide tube, where the guide tube is slidable along the longitudinal axis. The stimulation electrodes (different electrode poles) for stimulation of the atria are designed appropriately together with the defibrillation electrode in one piece.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: October 11, 2016
    Inventor: Peter Osypka
  • Patent number: 9440081
    Abstract: Cardiac pacing methods for an implantable single chamber pacing system, establish an offset rate for pacing at a predetermined decrement from either a baseline rate (i.e. dictated by a rate response sensor), or an intrinsic rate. Pacing maintains the offset rate until x of y successive events are paced events, at which time the offset rate is switched to the baseline rate for pacing over a predetermined period of time. Following the period, if an intrinsic event is not immediately detected, within the interval of the offset rate, the rate is switched back to baseline for pacing over an increased period of time. Some methods establish a preference rate, between the offset and baseline rates, wherein an additional criterion, for switching from the offset rate to the baseline rate, is established with respect to the preference rate.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: September 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Wade M Demmer, Karen J Kleckner, Paul A Belk
  • Patent number: 9440080
    Abstract: A method of modifying tissue behavior, comprising: determining a desired modification of tissue behavior for at least one of treatment of a disease, short or long term modification of tissue behavior, assessing tissue state and assessing tissue response to stimulation; selecting an electric field having an expected effect of modifying protein activity of at least one protein as an immediate response of a tissue to the field, said expected effect correlated with said desired modification; and applying said field to said tissue.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 13, 2016
    Assignee: Impulse Dynamics NV
    Inventors: Benny Rousso, Yuval Mika, Shlomo Ben-Haim, Hani N. Sabbah
  • Patent number: 9440067
    Abstract: An electrode lead of a pacemaker includes a metal conductive core and a carbon nanotube film. The metal conductive core defines an extending direction. The carbon nanotube film wraps around the metal conductive core. The carbon nanotube film includes a plurality of carbon nanotubes extending substantially along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 13, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Quan Wang, Li Qian, Liang Liu, Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 9427594
    Abstract: A distributed leadless implantable system and method are provided that comprise a leadless implantable medical device (LIMD). The LIMD comprises a housing having a proximal end configured to engage local tissue of interest in a local chamber, cardiac sensing circuitry to sense cardiac signals; and a controller configured to analyze the cardiac signals and, based thereon, to produce a near field (NF) event marker indicative of a local event of interest (EOI) occurring in the local chamber. The system and method further comprise a subcutaneous implantable medical device (SIMD). The SIMD comprises cardiac sensing circuitry to sense cardiac signals, a controller configured to identify a candidate EOI from the cardiac signals, and pulse sensing circuitry to detect the NF event marker from the LIMD. The SIMD controller is configured to declare the candidate EOI as a valid EOI or an invalid EOI based on the NF event marker.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 30, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, Laurence S. Sloman, John W. Poore, Yelena Nabutovsky
  • Patent number: 9421378
    Abstract: A spinal cord stimulation device having a stimulation unit for generation and delivery of stimulation pulses, a control unit for controlling the stimulation unit with respect to stimulation intensity and an autonomic nervous system (“ANS”) sensing unit that is configured to generate ANS indicating signals that represent an increased sympathetic tone or an increased parasympathetic tone, respectively. The control unit is configured to control the intensity of respective stimulation pulses depending on a respective ANS indicating signal as generated by said ANS sensing unit.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: August 23, 2016
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Jie Lian, Dirk Muessig
  • Patent number: 9403016
    Abstract: The invention relates to improved cardiac pacemakers and methods of use thereof. In particular the cardiac pacemakers are useful for normalizing heart rates over resting heart rates in order to condition the heart to improve overall cardiac output.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 2, 2016
    Assignee: The University of Vermont and State Agricultural College
    Inventor: Markus Meyer
  • Patent number: 9402557
    Abstract: A method for detecting heart beats within a cardiac signal is disclosed. A cardiac signal is acquired and segmented. Peak detection is performed within each segment. A search within the detected peaks is performed to locate physiologically permissible peak sequences. A particular peak sequence is selected based on feature space criteria or interpeak temporal regularity criteria or both.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 2, 2016
    Inventor: Bruce Hopenfeld
  • Patent number: 9402677
    Abstract: Methods and cryogenic devices for assessing, and treating patients having sympathetically mediated disease, involving augmented peripheral chemoreflex and heightened sympathetic tone by reducing chemosensor input to the nervous system via carotid body ablation. Some methods include advancing a cryo-ablation catheter into a patient's vasculature and ablating tissue within a carotid septum.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: August 2, 2016
    Assignee: CIBIEM, INC.
    Inventors: Mark S. Leung, Zoar Jacob Engelman, Martin M. Grasse, Mark Gelfand, Howard Levin
  • Patent number: 9392950
    Abstract: This device includes a sensor of endocardiac acceleration EA and one or more circuits configured for: extracting from the EA signal a predetermined EA parameter, determining a period of sleep, evaluating the clinical condition of the patient based on the EA parameter variations on this sleep period, and issuing an alert of worsening of the patient's condition. The device further determines a variability index of the EA parameter on the sleep period, and then calculates a ratio between this calculated variability index and a reference value, and delivers this ratio as a clinical status index. The alert signal is generated by the crossing by this ratio of a predetermined alert threshold.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: July 19, 2016
    Assignee: SORIN CRM SAS
    Inventor: Paola Milpied
  • Patent number: 9370662
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: June 21, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 9370659
    Abstract: An example of a method embodiment may deliver intermittent neural stimulation (INS) therapy to an autonomic neural target of a patient. The INS therapy includes neural stimulation (NS) ON times alternating with NS OFF times, and includes at least one NS burst of NS pulses during each of the NS ON times. For a given NS OFF time and subsequent NS ON time, delivering INS therapy may include monitoring a plurality of cardiac cycles during the NS OFF time, using the monitored plurality of cardiac cycles to predict cardiac event timing during the subsequent NS ON time, and controlling delivery of the INS therapy using the predicted cardiac event timing to time NS burst delivery of at least one NS burst for the subsequent NS ON time based on the predicted cardiac event timing.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: June 21, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, Stephen B. Ruble, David J. Ternes, Juan Gabriel Hincapie Ordonez, Jason J. Hamann
  • Patent number: 9364193
    Abstract: A system and method provide heart sound tracking, including an input circuit, configured to receive heart sound information, and a heart sound recognition circuit. The heart sound recognition circuit can be coupled to the input circuit and can be configured to recognize, within a particular heart sound of a particular heart sound waveform, a first intra heart sound energy indication and a corresponding first intra heart sound time indication using the heart sound information from the particular heart sound waveform and the heart sound information from at least one other heart sound waveform. The particular heart sound can include at least a portion of one of S1, S2, S3, and S4. Further, the first intra heart sound energy indication and the corresponding first intra heart sound time indication can correspond to the at least a portion of one of S1, S2, S3, and S4, respectively.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: June 14, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson
  • Patent number: 9357944
    Abstract: An implantable medical device performs impedance measurement and demodulation, such as for obtaining lead impedance measurements, or thoracic impedance measurements, such as for extracting respiration, cardiac stroke, or fluid status information. A 4-point FIR filter demodulator can be used to demodulate a two-phase current excitation waveform. The demodulator can also be used to measure noise for triggering a noise response. Among other things, an increased excitation current level can be used when noise is deemed to be present.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 7, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Lyden, William J. Linder, Angela M. Muttonen, George D. Ritzinger
  • Patent number: 9351656
    Abstract: An implantable medical device has an impedance processor for determining atrial impedance data reflective of the cardiogenic impedance of an atrium of a heart during diastole and/or systole of heart cycle. Ventricular impedance data reflective of the cardiogenic impedance of a ventricle during diastole and/or systole are also determined. The determined impedance data are processed by a representation processor for estimating a diastolic and/or a systolic atrial impedance representation and a diastolic and/or a systolic ventricular impedance representation. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of at least one heart valve based on the estimated atrial and ventricular impedance representations.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: May 31, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Karin Jarverud, Andreas Blomqvist
  • Patent number: 9339651
    Abstract: A system for controlling a position of a patient's tongue includes attaching at least one electrode to the patient's Hypoglossal nerve and applying an electric signal through the electrode to at least one targeted motor efferent located within the Hypoglossal nerve to stimulate at least one muscle of the tongue. The system may also include the use of more than one contact to target more than one motor efferent and stimulating more than one muscle. The stimulation load to maintain the position of the tongue may be shared by each muscle. The position of the patient's tongue may be controlled in order to prevent obstructive sleep apnea.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: May 17, 2016
    Assignee: IMTHERA MEDICAL, INC.
    Inventors: Paul M. Meadows, Marcelo G. Lima, Stanley R. Craig, Faisal N. Zaidi, Monir M. Elias
  • Patent number: 9333352
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: May 10, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 9327117
    Abstract: This disclosure provides techniques for bladder sensing. In accordance with the techniques described in this disclosure, a device may measure the impedance of a bladder, determine the posture of a patient, and determine a status of the bladder based on the impedance and posture.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 3, 2016
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Keith A. Miesel
  • Patent number: 9295847
    Abstract: Method and systems related to monitoring right ventricular function during pacing by a cardiac rhythm management device are described. One or more pacing parameters are selected to provide cardiac resynchronization therapy. For example, the one or more pacing parameters may be selected to provide an optimal or improved therapy. The heart is paced using the selected pacing parameters. While pacing with the selected parameters, pressure is sensed via a pressure sensor disposed the pulmonary artery. The sensed pressure is analyzed to determine right ventricular function achieved during the pacing using the selected pacing parameters. A signal, such as an alert signal or control signal, is generated based on the right ventricular function achieved during the pacing.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Barun Maskara, Jonathan T. Kwok, Jiang Ding, Yinghong Yu
  • Patent number: 9289599
    Abstract: An implanted electrical signal generator delivers a novel exogenous electrical signal to a vagus nerve of a patient. The vagus nerve conducts action potentials originating in the heart and lungs to various structures of the brain, thereby eliciting a vagal evoked potential in those structures. The exogenous electrical signal simulates and/or augments the endogenous afferent activity originating from the heart and/or lungs of the patient, thereby enhancing the vagal evoked potential in the various structures of the brain. The exogenous electrical signal includes a series of electrical pulses organized or patterned into a series of microbursts including 2 to 20 pulses each. No pulses are sent between the microbursts. Each of the microbursts may be synchronized with the QRS wave portion of an ECG. The enhanced vagal evoked potential in the various structures of the brain may be used to treat various medical conditions including epilepsy and depression.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 22, 2016
    Assignee: DIGNITY HEALTH
    Inventor: Arthur D. Craig
  • Patent number: 9283392
    Abstract: Delivery of an implantable wireless receiver-stimulator (R-S) into the heart using delivery catheter is described. R-S comprises a cathode and an anode and wirelessly receives and converts energy, such as acoustic ultrasound energy, to electrical energy to stimulate the heart. Conductive wires routed through the delivery system temporarily connect R-S electrodes to external monitor and pacing controller. R-S comprises a first temporary electrical connection from the catheter to the cathode, and a second temporary electrical connection from the catheter to the anode. Temporary electrical connections allow external monitoring of heart's electrical activity as sensed by R-S electrodes to determine tissue viability for excitation as well as to assess energy conversion efficiency.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 15, 2016
    Assignee: EBR Systems, Inc.
    Inventors: David F. Moore, Mark W. Cowan, N. Parker Willis
  • Patent number: 9277886
    Abstract: An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 8, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Andreas Blomqvist, Karin Jarverud
  • Patent number: 9278219
    Abstract: A system and method control a pacing parameter in a closed-loop manner by determining a value of an EGM-based index corresponding an optimal electrical activation condition of a patient's heart and adjusting a pacing therapy to maintain the EGM-based index value. The closed loop control method performed by the system may establish a relationship between an EGM-based index and multiple settings of a pacing control parameter. Values of the EGM-based index are stored with corresponding setting shifts relative to a previously established optimal setting. A processor of an implantable medical device monitors the EGM-based index during cardiac pacing. Responsive to detecting an EGM-based index value corresponding to a non-optimal setting of the control parameter, the processor determines an adjustment of the control parameter from the stored index values and corresponding setting shifts.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 8, 2016
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9272148
    Abstract: A system and method select a pacing site for a cardiac pacing therapy. A change from a baseline mechanical activity is extracted from a signal of mechanical heart activity during pacing at each one of multiple pacing sites along a heart chamber. A change from a baseline electrical activity is extracted from a signal of electrical heart activity during pacing at each of the of pacing sites. The pacing sites are sorted in a first order based upon the changes in mechanical heart activity and in a second order based upon the changes in electrical heart activity. A pacing site is selected from the multiple pacing sites as a common pacing site between the first order and the second order.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: March 1, 2016
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9272146
    Abstract: A device includes a lead configured to for use in applying an atrioventricular delay (“AVD”), an acceleration sensor adapted to output an endocardial acceleration signal, and circuitry configured to receive and process said endocardial acceleration signal to provide ventricular pacing by varying, in a controlled manner, the AVD in a range having a plurality of AVD values. The circuitry derives from said endocardial acceleration signal a value of a parameter representative of an component of the endocardial acceleration signal corresponding to the first endocardial acceleration peak associated with an isovolumetric ventricular contraction (“EAX component”), and evaluates a degree of variation of said parameter values as a function of said plurality of AVD values to detect atrial and ventricular events.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: March 1, 2016
    Assignee: SORIN CRM S.A.S.
    Inventor: Francesca Anselmi
  • Patent number: 9265431
    Abstract: A neurostimulation system provides for capture verification and stimulation intensity adjustment to ensure effectiveness of vagus nerve stimulation in modulating one or more target functions in a patient. In various embodiments, stimulation is applied to the vagus nerve, and evoked responses are detected to verify that the stimulation captures the vagus nerve and to adjust one or more stimulation parameters that control the stimulation intensity.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 23, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Juan Gabriel Hincapie Ordonez, David J. Ternes, Jason J. Hamann, Stephen Ruble
  • Patent number: 9248290
    Abstract: A device according to some embodiments may include a housing configured for location external to a body of a subject. The device may also include at least one processor associated with the housing and configured to communicate with a circuit implanted in the subject within proximity to a tongue of the subject, wherein the circuit is in electrical communication with at least one electrode, receive a physiological signal from the subject via the circuit, and send a control signal to the implanted circuit in response to the physiological signal, wherein the control signal is predetermined to activate neuromuscular tissue within the tongue.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: February 2, 2016
    Inventor: Adi Mashiach
  • Patent number: 9205267
    Abstract: A method for use by an active medical device includes using a stimulation device and an endocardial acceleration sensor to obtain a plurality of hemodynamic parameters associated with at least three atrioventricular delays. The method further includes using the plurality of hemodynamic parameters to find a second derivative associated with the atrioventricular delays. The method further includes using interpolation to estimate an atrioventricular delay which will reduce the second derivative associated with the atrioventricular delays. The method further includes using the estimated atrioventricular delay in a subsequent stimulation.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: December 8, 2015
    Assignee: SORIN CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 9186061
    Abstract: A system and method for evaluating a patient status from sampled physiometry for use in heart failure assessment is presented. Physiological measures are stored, including at least one of direct measures regularly recorded on a substantially continuous basis by an implantable medical device for a patient and measures derived from the direct measures. At least one of those of the physiological measures, which each relate to a same type of physiometry, and those of the physiological measures, which each relate to a different type of physiometry are sampled. A status for the patient is determined through analysis of the sampled physiological measures assembled from a plurality of recordation points. The sampled physiological measures are evaluated. Trends that are indicated by the patient status, which might affect cardiac performance of the patient, are identified. Each trend is compared to worsening heart failure indications to generate a notification of parameter violations.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: November 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gust Bardy
  • Patent number: 9179846
    Abstract: A method and system are provided for characterizing cardiac function. The method and system comprise collecting cardiac signals associated with electrical or mechanical behavior of a heart over at least one cardiac cycle; identifying a timing feature of interest (FOI) from the cardiac signals; collecting dynamic impedance (DI) data over at least one cardiac cycle (CC), designated by the timing FOI, along at least one of i) a venous return (VR) vector or ii) a right ventricular function (RVF) vector; and analyzing at least one morphologic characteristic from the DI data based on at least one of i) a VR-DI correlation metric to obtain a VR indicator associated with the CC or ii) a RVF-DI correlation metric to obtain a RVF indicator associated with CC.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 10, 2015
    Assignee: PACESETTER, INC.
    Inventors: Wenbo Hou, Kritika Gupta, Bruce A. Morley, Laurence S. Sloman, Rupinder Bharmi, Xiaoyi Min, Riddhi Shah, Gene A. Bornzin, Edward Karst
  • Patent number: 9185489
    Abstract: A device that may be used as an automatic voiding diary detects urinary and/or fecal voiding events and records voiding information indicative of the voiding events without the need for significant patient interaction. The device includes a microphone that captures internal and/or external sounds that are associated with voiding events and generates an electrical signal based the sounds. The device processes the electrical signal to determine whether the signal is indicative of the occurrence of a voiding event (i.e., the device detects voiding events) by, for example, comparing the electrical signal to a signal template or comparing an amplitude of the signal to a threshold. The device may be a device implanted within the patient or an external device that can be carried or attached to the body or clothing of the patient.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 10, 2015
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 9180301
    Abstract: Stimulation energy can be provided to stimulate synchronous ventricular contractions. Interval information obtained from a cardiac electrical heart signal and a cardiac mechanical heart signal can be used to determine a right ventricular activation time. The interval information can provide a cardiac stimulation indication.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9162066
    Abstract: A first ventricle is stimulated at a stimulation site, a point of time for arrival at the AV node for at least one depolarization wave resulting from the stimulation is estimated and a first activation time interval substantially corresponding to the time interval required for at least one depolarization wave to travel from the stimulation site in the first ventricle to the AV node is computed. A similar process is used to compute a second activation time interval for the other ventricle. Based on these activation time intervals and a difference between the intervals, a pacing therapy can be determined.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 20, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Sven-Erik Hedberg, Nils Holmstrom, Karin Jarverud
  • Patent number: 9162067
    Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial electro-mechanical stability, and responding to the same. One or more signal indicative of electrical functioning of a patient's heart is obtained, as is one or more signal indicative of mechanical functioning of the patient's heart. The patient's myocardial electrical stability is monitored based on the one or more signal indicative of electrical functioning of the patient's heart, and the patient's myocardial mechanical stability is monitored based on the one or more signal indicative of mechanical functioning of the patient's heart. Based on both the myocardial electrical stability and myocardial mechanical stability, the patient's risk of an adverse cardiac event is monitored. Further, when the patient is at risk of an adverse cardiac event, a response is triggered that is specific to both the myocardial electrical stability and the myocardial mechanical stability.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 20, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Taraneh Ghaffari Farazi, Eric Falkenberg, Euljoon Park
  • Patent number: 9138577
    Abstract: An electrode lead of a pacemaker includes at least one lead wire. The at least one lead wire includes at least one conductive core, a first insulating layer coated on an outer surface of the at least one conductive core, at least one carbon nanotube yarn spirally wound on an outer surface of the first insulating layer, and a second insulating layer coated on the surface of the at least one carbon nanotube yarn. One end of the at least one conductive core protrudes from the first insulating layer to form a naked portion. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. A pacemaker includes a pulse generator and the electrode lead electrically connected with the pulse generator.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 22, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Liang Liu, Chen Feng, Li Qian, Yu-Quan Wang, Wen-Mei Zhao
  • Patent number: 9141097
    Abstract: A method of automatically determining process parameters for processing equipment includes processing at least one first substrate in the processing equipment at a first time; and processing at least one second substrate in the processing equipment at a second time. The method includes collecting data on process monitors for the at least one first substrate; and the at least one second substrate. The method includes receiving the data by a multiple-input-multiple-output (MIMO) optimization system. The method includes revising a sensitivity matrix, by a MIMO optimizer, using the data and an adaptive-learning algorithm, wherein the adaptive-learning algorithm revises the sensitivity matrix based on a learning parameter which is related to a rate of change of the processing equipment over time. The method includes determining a set of process parameters for the processing equipment by the MIMO optimizer, wherein the MIMO optimizer uses the revised sensitivity matrix to determine the process parameters.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 22, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Feng Tsai, Chia-Tong Ho, Sunny Wu, Jo Fei Wang, Jong-I Mou
  • Patent number: 9134191
    Abstract: A resistive device which includes at least one strain gauge (12, 14) comprising silicon nanowires, a power supply (16) that has at least one current source (22, 24) able to generate a current (Ibias) for biasing the strain gauge; and acquisition means (18) able to deliver a measurement signal which can be used to determine the variation in the electrical resistance of the gauge is provided. The power supply includes a chopper (26) allowing the biasing current generated by each current source to flow through each gauge only during a fraction of an operating cycle of the device.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 15, 2015
    Assignees: Centre National de la Recherche Scientifique, Universite Du Sud-toulon Var, Universite D'Aix-Marseille
    Inventors: Wenceslas Rahajandraibe, Stéphane Meillere, Edith Kussener, Hervé Barthelemy
  • Patent number: 9126825
    Abstract: An implantable biocompatible component (10) integrating an active element of the type of a sensor for the measurement of a physiologic parameter, a micro-electromechanical system and an integrated electronic circuit. This component (10) has a substrate (12) and a lid (22) in silicon or quartz. The substrate (12) integrates the active element (14) and biocompatible metallic pads (16), electrically connected to the active element. The lid (22) encompasses and peripherally closes the substrate in a hermetic manner, level with the face integrating the active element. This component is void of metallic case for insulation between the active element and outside environment, and of insulative feedthrough for electrical connection to the active element. The substrate and lid can be directly welded to each other through their faces in vis-à-vis, or by interpositioning a sealing ring made of a biocompatible material.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: September 8, 2015
    Assignee: SORIN CRM SAS
    Inventors: Renzo Dal Molin, Alain Ripart
  • Patent number: 9123107
    Abstract: In general, aspects of this disclosure describe example techniques which may be used to identify lead migration or estimate dissemination of electrical stimulation therapy through tissue of a patient. For example, an image processing device may receive a selection of a segment in a first image of patient implanted with one or more leads. The image processing device may reconstruct the selected segment in the first image with a corresponding segment in a second image. With the reconstructed segment, a user or the image processing device may be able to identify lead migration or estimate dissemination of electrical stimulation therapy through tissue of the patient.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 1, 2015
    Assignee: Medtronic, Inc.
    Inventor: Ajinkya M. Joglekar
  • Patent number: 9114263
    Abstract: An implantable medical device has an impedance processor for determining atrial impedance data reflective of the cardiogenic impedance of an atrium of a heart during diastole and/or systole of heart cycle. Ventricular impedance data reflective of the cardiogenic impedance of a ventricle during diastole and/or systole are also determined. The determined impedance data are processed by a representation processor for estimating a diastolic and/or a systolic atrial impedance representation and a diastolic and/or a systolic ventricular impedance representation. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation and/or stenosis, of at least one heart valve based on the estimated atrial and ventricular impedance representations.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: August 25, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Karin Järverud, Andreas Blomovist
  • Patent number: 9108064
    Abstract: An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation andor stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: August 18, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Andreas Blomqvist, Karin Järverud
  • Patent number: 9095257
    Abstract: Embodiments of the present invention relate to implantable systems, and method for use therein, that can detect myocardial ischemic events. In accordance with specific embodiments of the present invention, short-term fluctuations in cardiac intervals that follow premature ventricular contractions (PVCs) are monitored. This allows myocardial ischemic events to be detected based on these monitored fluctuations. The cardiac intervals for which fluctuations are being monitored can be, for example, RR intervals. Alternatively, or additionally, short-term fluctuations in other types of cardiac intervals may be monitored. Such other cardiac intervals include, for example, PR intervals, PP intervals, QT intervals and RT intervals.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 4, 2015
    Assignee: Pacesetter, Inc.
    Inventor: Taraneh Ghaffari Farai
  • Patent number: 9095718
    Abstract: A medical device and associated method for controlling a cardiac pacing therapy sense a first cardiac signal including events corresponding to cardiac electrical events and a second cardiac signal including events corresponding to cardiac hemodynamic events. A processor is enabled to measure a cardiac conduction time interval using the first cardiac signal and control a signal generator to deliver a pacing therapy. A pacing control parameter is adjusted to a plurality of settings during the pacing therapy delivery. A hemodynamic parameter value is measured from the second cardiac signal during application of each of the control parameter settings. The processor identifies an optimal setting from the plurality of settings and solves for a patient-specific equation defining the pacing control parameter as a function of the cardiac conduction time interval.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: August 4, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Paul J DeGroot, Jeffrey M Gillberg, Thomas J Mullen, Aleksandre T Sambelashvili
  • Patent number: 9095717
    Abstract: A method and system are provided to analyze valve related timing and monitor heart failure. The method and system comprise collecting cardiac signals associated with an atrial chamber of interest; collecting dynamic impedance (DI) data along an atria-function focused (AFF) vector to form a DI data set, the DI data set including information corresponding to a mechanical function (MF) of a valve associated with the atrial chamber of interest; identifying, from the cardiac signals, an intra-atrial conduction timing (IACT) associated with the atrial chamber of interest; estimating an MF landmark at which the mechanical function of the valve occurs based on the DI data set; analyzing a timing delay between the MF landmark and the IACT; and adjusting a therapy, based on the timing delay, to encourage atrial contribution to ventricular filling.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: August 4, 2015
    Assignee: PACESETTER, INC.
    Inventors: Xiaoyi Min, Rupinder Bharmi, Wenbo Hou, Edward Karst, Kritika Gupta, Risshi Shah
  • Patent number: 9092735
    Abstract: Certain aspects of the present disclosure relate to a technique for adaptive structural delay plasticity applied in spiking neural networks. With the proposed method of structural delay plasticity, the requirement of modeling multiple synapses with different delays can be avoided. In this case, far fewer potential synapses should be modeled for learning.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: July 28, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Jason Frank Hunzinger, Victor Hokkiu Chan, Jeffrey Alexander Levin
  • Patent number: 9084899
    Abstract: An implantable medical device includes a mechanical activity sensor configured to sense movements produced by contractions of a ventricular cavity and output a mechanical activity signal representative of the contractions. The implantable medical device also includes one or more circuits configured to detect a plurality of spontaneous ventricular depolarizations based on electrical potentials representative of the spontaneous ventricular depolarizations, calculate an escape interval, and provide an antibradycardia ventricular pacing therapy in an absence of a detected spontaneous ventricular event after the escape interval.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 21, 2015
    Assignee: SORIN CRM S.A.S.
    Inventor: Vincent Elodie
  • Patent number: 9049981
    Abstract: A system and method provide heart sound tracking, including an input circuit, configured to receive heart sound information, and a heart sound recognition circuit. The heart sound recognition circuit can be coupled to the input circuit and can be configured to recognize, within a particular heart sound of a particular heart sound waveform, a first intra heart sound energy indication and a corresponding first intra heart sound time indication using the heart sound information from the particular heart sound waveform and the heart sound information from at least one other heart sound waveform. The particular heart sound can include at least a portion of one of S1, S2, S3, and S4. Further, the first intra heart sound energy indication and the corresponding first intra heart sound time indication can correspond to the at least a portion of one of S1, S2, S3, and S4, respectively.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 9, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson