Plural Sensed Conditions Patents (Class 607/18)
  • Patent number: 9743859
    Abstract: A device and method can monitor or trend a patient's respiration rate measurements according to the time of day. The device, which may be implantable or external, collects and classifies respiration rate measurements over time. The trended information about particular classes of respiration rate measurements is then communicated to a remote external device, which in turn provides an indication of heart failure decompensation. Examples of classes of respiration rate measurements include a daily maximum respiration rate value, a daily minimum respiration rate value, a daily maximum respiration rate variability value, a daily minimum respiration rate variability value, and a daily central respiration rate value. These respiration rate measurements can be further classified into daytime or nighttime respiration rate measurements.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: August 29, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron Lewicke, Yi Zhang, John D. Hatlestad
  • Patent number: 9675282
    Abstract: The invention relates to a method and apparatus for determining a respiration of a subject (305) in which, with a single multi-axial accelerometer (310) positioned on a body of the subject (305), accelerometer signals are generated (101) indicative of the acceleration of the subject (305) along different spatial axes, a vector magnitude signal of the acceleration of the subject (305) along the different spatial axes is calculated (102) from the accelerometer signals, a non-respiratory motion contribution to the acceleration along the different spatial axes is identified (103, 203) from the vector magnitude signal, which non-respiratory motion contribution is not caused by the respiration, and a respiration signal indicative of the respiration of the subject is determined (104, 204) by filtering the non-respiratory motion contribution from at least one of the accelerometer signals.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: June 13, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Geert Guy Georges Morren
  • Patent number: 9610020
    Abstract: Systems and associated methods are provided for automatically identifying a problem with sensing heart activity. In use, a plurality of heartbeats is sensed utilizing an implantable medical device. Further, data associated with the heartbeats is collected and stored. To this end, a problem with the sensing of the heartbeats (e.g., oversensing, undersensing, etc.) may be automatically identified and corrected, utilizing the data.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: April 4, 2017
    Assignee: Pacesetter, Inc.
    Inventor: Daniel S. Hecker
  • Patent number: 9566439
    Abstract: The invention is a distributed implantable neuro-stimulation system, comprising an implant controller including control logic to transmit two time-varying power signals, varying between two levels and out of phase with the other, and a command signal modulated onto at least one of the power signals. One or more electrode cells, each having control logic to extract charge from the power signals and recover commands from the command signal. A two-wire bus interconnecting the implant controller and all the electrode cells, to carry one of the time varying signals in each of the two wires, and to carry the command signal.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 14, 2017
    Assignee: SALUDA MEDICAL PTY LIMITED
    Inventors: Peter Single, David Robinson, John Parker, Peter Ayre, Dean Karantonis
  • Patent number: 9549674
    Abstract: An implantable medical device applies an electric signal to at least a portion of a heart in a subject. A resulting electric signal is collected from the heart and is used together with the applied signal for determining a cardiogenic impedance signal. The impedance signal is processed in order to estimate an isovolumetric contraction time, an isovolumetric relaxation time and an ejection time for a heart cycle. These three time parameters are employed for calculating a Tei-index of the heart. The Tei-index can be used as myocardial performance parameter in heart diagnosis and/or cardiac therapy adjustment.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 24, 2017
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Michael Broome, Andreas Blomqvist
  • Patent number: 9504834
    Abstract: Methods of threshold testing and setting a voltage on an artificial pacemaker based on the output of a plethymograph, such as an oximeter, are disclosed herein. This is accomplished by determining blood volume in a limb or area of the body, and its change over time. As voltage is decreased in the pacemaker, a change in blood volume of the limb being measured by the oximeter is determined. This change can be a change in how often the blood volume level rises to its peak level and/or the blood volume level no longer rises substantially. Such changes, or lack thereof, can be based on a backup heart rate or no heart rate at all. Once the threshold voltage is determined where the artificial pacemaker ceases to cause a heartbeat, the voltage of the pacemaker can be set accordingly.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 29, 2016
    Inventors: Vladimir Fridman, Cesare Saponieri
  • Patent number: 9498629
    Abstract: A method of counterpulsation therapy is provided, the method comprising use of a combination of cardiac electrical activity and acoustic signals in such a manner that initially R wave on a cardiogram and then II (aortic) sound are determined, and, after the II sound has been determined, stimulation of muscles by means of electric impulses is initiated. A device for performing the above described method comprises a sensor of the signal of cardiac electrical activity and a sensor of cardiac acoustic signal; a unit for blocking the cardiac electrical activity signal; a unit for blocking the acoustic signal; and a control device coupled with muscle stimulating devices.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: November 22, 2016
    Assignee: MARJI LD.
    Inventors: Leri Lapanashvili, Dmitry Ivanovich Minaev, Vladislav Evgenevich Kuzmin, Mikhael Alexandrovich Bajin
  • Patent number: 9399140
    Abstract: A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Aleksandre T. Sambelashvili, Todd J. Sheldon
  • Patent number: 9387330
    Abstract: Methods and/or devices used in delivering cardiac resynchronization therapy based on a plurality of device parameters (e.g., A-V delay, V-V delay, etc.) are optimized by setting a device parameter based on selection data. The selection data may be acquired by acquiring temporal fiducial points (e.g., heart sounds) associated with at least a part of a systolic portion of at least one cardiac cycle and/or temporal fiducial points associated with at least a part of a diastolic portion of the at least one cardiac cycle for each of a plurality of electrode vector configurations, and extracting measurements from the intracardiac impedance signal acquired for each of a plurality of electrode vector configurations based on the temporal fiducial points. The acquired selection data may be scored and used to optimize the device parameter.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: July 12, 2016
    Assignee: Medtronic, Inc.
    Inventors: Todd M. Zielinski, Yong Kyun Cho, Douglas Hettrick, Xusheng Zhang
  • Patent number: 9327070
    Abstract: This disclosure describes techniques implemented by a medical device, such as an implantable medical device (IMD). The IMD may be configured to detect a posture state of a patient, and deliver posture-responsive therapy. In particular, the IMD not only detects the posture state of a patient, but also detects timing associated with the detected posture state, such as the time of day, the day of the week, or a specific time of day associated with a specific day. In this way, the posture-responsive therapy delivered by the IMD may be dependent not only on the posture state of the patient, but also on the timing associated with the posture state. The same posture state, therefore, may result in different types of therapy to the patient if the same posture occurs at different times of the day.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 3, 2016
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Timothy J. Denison
  • Patent number: 9271675
    Abstract: An orthopedic implant having a three-axis accelerometer is disclosed. The three-axis accelerometer is used to detect micro-motion in the implant. The micro-motion can be due to loosening of the implant. The implant is configured to couple to the muscular-skeletal system. In one embodiment, the implant is configured to couple to bone. An impact force is imparted to the bone or implant. The impact force can be provided via a transducer coupled to the implant. In the example, the impact force is imparted along a single axis. The three-axis accelerometer measures the impact force along each axis. Resultant peaks of the quantitative measurement and the frequencies at which they occur are measured. The peaks and frequencies of the measurements correspond to micro-motion. Typically, the frequency of interest is less than 1 KHz to determine if micro-motion is occurring.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 1, 2016
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Yoong-Joong Kim, Matthew J. Cohen, Chelsea A. Liddell
  • Patent number: 9265954
    Abstract: A method and system of cardiac pacing is disclosed. A baseline rhythm is determined. The baseline rhythm includes a baseline atrial event and a baseline right ventricular RV event from an implanted cardiac lead or a leadless device, a pre-excitation interval determined from the baseline atrial event and the baseline RV event, and a plurality of activation times determined from a plurality of body-surface electrodes. A determination is made as to whether a time interval measured from an atrial event to a RV event is disparate from another time interval measured from the atrial event to an earliest RV activation time of the plurality of activation times. A correction factor is applied to the pre-excitation interval to obtain a corrected pre-excitation interval in response to determining the RV event is disparate from the earliest RV activation time.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: February 23, 2016
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 9254100
    Abstract: An implantable activity detector can detect metabolic stress levels, which can be normalized, such as to identify times of activities such as walking and running or to identify trends such as a decrease in metabolic activity. The data can be derived from different sources such as an accelerometer and pedometer. This data can be compared to independently specifiable thresholds, such as to trigger an alert or responsive therapy, or to display one or more trends. The information can also be combined with other congestive heart failure (CHF) indications. The alert can notify the patient or a caregiver, such as via remote monitoring. Metabolic activity data from one or more of the activity detectors can be used to establish a model of metabolic stress, to which further activity data can be compared for identifying periods of increased or decreased metabolic stress.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: February 9, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kenneth Beck, Ramesh Wariar, Chie Kawahara, Gerrard M. Carlson
  • Patent number: 9241653
    Abstract: An implantable medical device applies an electric signal to at least a portion of a heart in a subject. A resulting electric signal is collected from the heart and is used together with the applied signal for determining a cardiogenic impedance signal. The impedance signal is processed in order to estimate an isovolumetric contraction time, an isovolumetric relaxation time and an ejection time for a heart cycle. These three time parameters are employed for calculating a Tei-index of the heart. The Tei-index can be used as myocardial performance parameter in heart diagnosis and/or cardiac therapy adjustment.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 26, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Michael Broomé, Andreas Blomqvist
  • Patent number: 9220904
    Abstract: A rules engine acquires sensor data from sensors applied to the heart and detects an intrinsic beat of the heart. The rules engine determines whether an electrical waveform should be applied to the heart and, if so, the type of electrical waveform.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: December 29, 2015
    Assignee: MR3 Medical, LLC
    Inventor: Morton M. Mower
  • Patent number: 9211415
    Abstract: A method and a system of phrenic nerve stimulation detection in conjunction with posture sensing is disclosed. In an embodiment, the method may include receiving a trigger for conducting a pace-induced phrenic nerve stimulation (PS) search using the IMD within the patient. On receiving the trigger, the IMD may be used for conducting the PS search. A procedure of conducting the PS search may include measuring a posture of the patient using an implantable posture sensor, searching for PS while the patient is in the measured posture and obtaining a PS result from the PS search for the measured posture. The method may include recording both the PS result and the measured posture in a memory of the IMD.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 15, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Holly Rockweiler, Aaron R. McCabe, Krzysztof Z. Siejko, John D. Hatlestad
  • Patent number: 9186077
    Abstract: A wireless communication device (200) and method (300) customizable power management. The method (300) can include: providing (310) a wireless communication device including an energy storage device; sensing (320) heart rate data of a user; and configuring (330) the wireless communication device's functionality based on the sensed heart rate data. Advantageously, the device (200) and method (300) can provide a real-time attribute of a user, which can be used to configure the functionality of a device and conserve power.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: November 17, 2015
    Assignee: Google Technology Holdings LLC
    Inventor: Jeong J. Ma
  • Patent number: 9149638
    Abstract: A method of controlling pulmonary capillary pressure is disclosed which includes increasing the output of a first ventricle (V1) (e.g., a left ventricle) relative to second ventricle (e.g., right ventricle) by increasing the magnitude of a post extrasystolic potentiation (PESP) therapy effect in the first ventricle relative to the magnitude of a PESP therapy effect produced in the second ventricle. In certain embodiments of the invention, this may be accomplished by adjusting the extra-stimulus interval (ESI) in either or both of the left ventricle and the right ventricle, for example.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: October 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: Dwight H. Warkentin, David E. Euler
  • Patent number: 9113789
    Abstract: Techniques are provided for estimating electrical conduction delays with the heart of a patient based on measured immittance values. In one example, impedance or admittance values are measured within the heart of a patient by a pacemaker or other implantable medical device, then used by the device to estimate cardiac electrical conduction delays. A first set of predetermined conversion factors may be used to convert the measured immittance values into conduction delay values. In some examples, the device then uses the estimated conduction delay values to estimate LAP or other cardiac pressure values. A second set of predetermined conversion factors may be used to convert the estimated conduction delays into pressure values. Techniques are also described for adaptively adjusting pacing parameters based on estimated LAP.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: August 25, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian Jeffrey Wenzel, Dorin Panescu, Mihir Naware, Jeffery Siou
  • Publication number: 20150148859
    Abstract: An active implantable medical device includes digital processor circuits configured to sense right and left atrial depolarizations and deliver left atrial stimulation pulses according to a stimulation protocol. The stimulation protocol includes delivering a left atrial stimulation pulse at an inter-atrial coupling interval. The inter-atrial coupling interval is a coupling interval shorter than the sinus rhythm coupling interval, so as to deliver a premature pulse. The protocol further includes delivering a not premature left-atrial stimulation pulse during an immediately subsequent cardiac cycle, at an inter-atrial coupling interval corresponding to the sinus rhythm coupling interval. The protocol also includes assessing the right atrial coupling interval between the right atrial depolarizations and comparing the right atrial coupling interval to the sinus rhythm coupling interval. And finally, modifying an adjustable controlling parameters if necessary according to the result of the comparison.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 28, 2015
    Inventors: Amel Amblard, Marcel Limousin
  • Patent number: 9042982
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Publication number: 20150142071
    Abstract: Techniques are provided for use with implantable medical devices such as pacemakers for optimizing interventricular (VV) pacing delays for use with cardiac resynchronization therapy (CRT). In one example, ventricular electrical depolarization events are detected within a patient in whom the device is implanted. The onset of isovolumic ventricular mechanical contraction is also detected based on cardiomechanical signals detected by the device, such as cardiogenic impedance (Z) signals, S1 heart sounds or left atrial pressure (LAP) signals. Then, an electromechanical time delay (T_QtoVC) between ventricular electrical depolarization and the onset of isovolumic ventricular mechanical contraction is determined. VV pacing delays are set to minimize the time delay to the onset of isovolumic ventricular mechanical contraction. Various techniques for identifying the onset of isovolumic ventricular contraction based on Z, S1 or LAP or other cardiomechanical signals are described.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventor: Xiaoyi Min
  • Publication number: 20150142069
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) and a leadless pacing device (LPD) are described. In one or more embodiments, a computer-implemented method includes sensing a first electrical signal from a heart of a patient through a SD. The first signal is stored into memory and serves as a baseline rhythm for a patient. Subsequently, a second signal is sensed from the heart through the SD. A cardiac condition can be detected within the sensed second electrical signal through the SD. A determination is made as to whether cardiac resynchronization therapy (CRT) is appropriate to treat the detected cardiac condition. A determination can then be made as to the timing of pacing pulse delivery to cardiac tissue through a leadless pacing device (LPD). The LPD receives communication from the SD requesting the LPD to deliver CRT to the heart.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 21, 2015
    Inventor: Aleksandre T. Sambelashvili
  • Publication number: 20150142070
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous device (e.g. subcutaneous implantable (SD)) is described. In one or more other embodiments, SD is implanted into a patient's heart. Electrical signals are then sensed which includes moderately lengthened QRS duration data from the patient's heart. A determination is made as to whether cardiac resynchronization pacing therapy (CRT pacing) is appropriate based upon the moderately lengthened QRS duration in the sensed electrical signals. The CRT pacing pulses are delivered to the heart using electrodes. In one or more embodiments, the SD can switch between fusion pacing and biventricular pacing based upon data (e.g. moderately lengthened QRS, etc.) sensed from the heart.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 21, 2015
    Inventor: Aleksandre T. Sambelashvili
  • Publication number: 20150126833
    Abstract: Disclosed techniques include monitoring a physiological characteristic of a patient with a sensor that is mounted to an inner wall of a thoracic cavity of the patient, and sending a signal based on the monitored physiological characteristic from the sensor to a remote device.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: David A. Anderson, Noah D. Barka, Erin D. Grassl, Matthew D. Bonner
  • Patent number: 9026207
    Abstract: In a device and a method for providing correlated measures for predicting potential occurrence of atrial fibrillation, an impedance of the patient is measured to obtain impedance information; cardiogenic data is determined from the information; respiratory data is determined from the information; at least one hemodynamic measure is calculated from the cardiogenic data and at least one apnea measure is calculated from the respiratory data; the hemodynamic and apnea measures are correlated such that the correlated measures can be utilized for predicting potential occurrence of atrial fibrillation.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: May 5, 2015
    Assignee: St Jude Medical AB
    Inventor: Andreas Blomqvist
  • Patent number: 9026208
    Abstract: An implantable medical device, comprised of at least one lead configured to be located proximate to a heart, the at least one lead including electrodes, at least a portion of the electrodes configured to sense cardiac activity. A therapy module configured to control delivery of pacing pulses in accordance with a therapy timing and based on the cardiac sensed activity sensed. Cardiac impedance (CI) sensor circuitry configured to be coupled to at least a first combination of the electrodes to sense cardiac impedance (CI), the CI sensor circuitry generating an impedance data stream associated with a corresponding CI sensing vector.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 5, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Bruce A. Morley, Gene A. Bornzin, Kritika Gupta, Rupinder Bharmi, Laurence S. Sloman, Edward Karst, Wenbo Hou, Riddhi Shah
  • Patent number: 9020594
    Abstract: Methods and devices for analyzing posture-induced changes to physiological parameters of a patient (e.g., ejection time, heart rate, etc.) to provide an assessment of one or more conditions of the patient.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: April 28, 2015
    Assignee: Medtronic, Inc.
    Inventors: Giorgio Corbucci, Brian B Lee
  • Patent number: 9014809
    Abstract: An exemplary embodiment includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 21, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 9014805
    Abstract: A device produces at least two distinct temporal components (Vbip, Vuni) from two separate endocardial electrogram (EGM) signals concurrently collected. The capture test determines a non-temporal 2D characteristic (VGM) representative of the cardiac cycle to be analyzed. The VGM is constructed using variations of one of the temporal components (Vuni) according to the other (Vbip). The devices determines the presence or absence of capture by analysis of this characteristic relative to a two dimensional domain.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM S.A.S.
    Inventors: Marie-Anne Euzen, Elodie Vincent
  • Patent number: 9014804
    Abstract: An implantable medical device such as an implantable pulse generator that includes EEG sensing for monitoring and treating neurological conditions, and leadless ECG sensing for monitoring cardiac signals. The device includes a connector block with provisions for cardiac leads which may be used/enabled when needed. If significant co-morbid cardiac events are observed in patients via the leadless ECG monitoring, then cardiac leads may be subsequently connected for therapeutic use.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, Eric J. Panken
  • Publication number: 20150105835
    Abstract: Devices and methods for detecting physiological target event such as events indicative of heart failure (HF) decompensation status are described. An ambulatory medical device (AMD) can detect device site maturation such as in a device encapsulation pocket, and classify the maturation status into one of two or more device site maturation states. The AMD can include an electrical impedance analyzer circuit that can measure a first maturation-insensitive impedance vector and a second maturation-sensitive impedance vector. At least one impedance vector can be selected or a composite impedance vector can be generated in accordance with the classified device site maturation state. The AMD can generate an impedance indicator using the selected or composite impedance vector, and detect a target physiologic event indicative of worsening of HF using the impedance indicator.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 16, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina
  • Publication number: 20150105836
    Abstract: A device includes a signal generator module, a processing module, and a housing. The signal generator module is configured to deliver pacing pulses to an atrium. The processing module is configured to detect a ventricular activation event and determine a length of an interval between the ventricular activation event and a previous atrial event that preceded the ventricular activation event. The processing module is further configured to schedule a time at which to deliver a pacing pulse to the atrium based on the length of the interval and control the signal generator module to deliver the pacing pulse at the scheduled time. The housing is configured for implantation within the atrium. The housing encloses the stimulation generator and the processing module.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Matthew D. BONNER, Saul E. GREENHUT, Todd J. SHELDON, Wade M. DEMMER
  • Patent number: 9002453
    Abstract: Described herein are implantable systems and devices, and methods for use therewith, that can be used to perform arrhythmia discrimination. A plurality of different sensing vectors are used to obtain a plurality of different IEGMs, each of which is indicative of cardiac electrical activity at a different ventricular region. The plurality of different IEGMs can include, e.g., an IEGM indicative of cardiac electrical activity at a first region of the patient's left ventricular (LV) chamber and an IEGM indicative of cardiac electrical activity at a second region of the patient's LV chamber. Additionally, the plurality of different IEGMs can further include an IEGM indicative of cardiac electrical activity at a region of a patient's right ventricular (RV) chamber. For each of the IEGMs, there is a determination of a corresponding localized R-R interval stability metric indicative of the R-R interval stability at the corresponding ventricular region. This can include, e.g.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: April 7, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Allen J. Keel, Kyungmoo Ryu, Stuart Rosenberg
  • Patent number: 8996107
    Abstract: Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: March 31, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Krzysztof Z. Siejko, Marina V. Brockway, Robert J. Sweeney
  • Patent number: 8996108
    Abstract: An implantable cardiac device includes a sensor for sensing patient activity and detecting phrenic nerve activation. A first filter channel attenuates first frequencies of the sensor signal to produce a first filtered output. A second filter channel attenuates second frequencies of the accelerometer signal to produce a second filtered output. Patient activity is evaluated using the first filtered output and phrenic nerve activation caused by cardiac pacing is detected using the second filtered output.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Holly E. Rockweiler, Jacob I. Laughner
  • Patent number: 8983601
    Abstract: Treatment of heart failure in a patient by electrically modulating both the sympathetic and parasympathetic autonomic cardiac nerve fibers that innervate the patient's heart at an extravascular site in the pericardial space of the heart. The extravascular site is any suitable single location inside the chest cavity that carries both sympathetic and parasympathetic cardiac nerves such as the cardiac plexus or the pericardial transverse sinus or any two separate extravascular sites with one site carrying predominantly sympathetic cardiac nerves and the other site carrying predominantly parasympathetic cardiac nerves for electrically modulating the balance of autonomic cardiac nerve control.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 17, 2015
    Assignee: The Cleveland Clinic Foundation
    Inventors: Kiyotaka Fukamachi, Alex Massiello, Mariko Kobayashi, Ray Dessoffy, Eugene Jung, Shubhayu Basu
  • Patent number: 8983604
    Abstract: Techniques are provided for controlling spinal cord stimulation (SCS) or other forms of neurostimulation. Far-field cardiac electrical signals are sensed using a lead of the SCS device and neurostimulation is selectively delivering using a set of adjustable SCS control parameters. Parameters representative of cardiac rhythm are derived from the far-field cardiac electrical signals. The parameters representative of cardiac rhythm are correlated with SCS control parameters to thereby map neurostimulation control settings to cardiac rhythm parameters. The delivery of further neurostimulation is then controlled based on the mapping of neurostimulation control settings to cardiac rhythm parameters to, for example, address any cardiovascular disorders detected based on the far-field cardiac signals. In this manner, a closed loop control system is provided to automatically adjust SCS control parameters to respond to changes in cardiac rhythm such as changes associated with ischemia, arrhythmia or heart failure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Stuart Rosenberg, Rupinder Bharmi, Kyungmoo Ryu, Edward Karst, Fujian Qu, Xiaoyi Min, Yelena Nabutovsky
  • Patent number: 8983603
    Abstract: A heart rate variability or heart rate variation can be identified using sensed and/or paced heart beats. One or more patient metrics, such as a variability index or a variation index, can correspond to the identified heart rate variability or heart rate variation. The patient metrics can be used to identify a need for a particular therapy, such as a rate-responsive pacing therapy. The patient metrics can be used to identify patients at an elevated risk of death. Methods and systems to identify therapy indications or at-risk patients are provided. In an example, a patient risk profile can be adjusted, such as in response to an identified patient heart rate variability or heart rate variation. In an example, a rate-responsive pacing mode can be used to adjust the patient risk profile.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Arjun D. Sharma, Craig Stolen, Kira Q. Stolen, Milan Seth, Paul W. Jones
  • Publication number: 20150073494
    Abstract: Methods, systems and computer program products for cardiac pacing are provided. For pacing using biventricular synchronization in a patient, a first stimulation signal is applied to a first region of a heart of the patient at a first time and a second stimulation signal applied to a second region of the heart of the patient at a second time to provide biventricular synchronization stimulation of the heart. Cardiac function of the patient associated with application of the first and the second stimulation signals is sensed and a timing relationship of the first stimulation signal to the second stimulation signal is adjusted based on the sensed cardiac function.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 12, 2015
    Inventors: Raymond E. Ideker, Gregory P. Walcott
  • Patent number: 8977358
    Abstract: An electrode stimulation delivery system is described having a unit and a network of wireless remote electrodes configured for implantation within a plurality of spaced apart locations in the tissue, e.g. myocardium, of a patient. The control unit is configured to be positioned at or subcutaneous to the patient's skin, and includes a processor, an antenna configured for delivering RF energy in proximity to the plurality of wireless remote electrodes, and programming executable on the processor for wirelessly communicating to the network of wireless remote electrodes via the delivered RF energy to individually control pacing of the plurality of wireless remote electrodes. Each of the plurality of wireless remote electrodes comprises a metamaterial-based biomimetic harvesting antenna comprising a Van Atta array zero-phase transmission lines to receive the RF energy to power activation of the plurality of wireless remote electrodes.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 10, 2015
    Assignees: NDSU Research Foundation, University of North Dakota
    Inventors: Daniel Ewert, Benjamin Braaten, Cody Satterlee, Brian Schwandt, Sheyann Harrison, Christopher Yost, Joshua Wynne
  • Patent number: 8972008
    Abstract: A system and method provide for systolic interval analysis. In an example, an implantable device measures a cardiac impedance signal. A transformation of the cardiac impedance interval is generated. The device also measures a heart sound signal. A time interval between a point on the transformed signal of the cardiac impedance signal and a point on the heart sound signal is calculated.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson, Loell Boyce Moon
  • Publication number: 20150057716
    Abstract: A method and system are provided to analyze valve related timing and monitor heart failure. The method and system comprise collecting cardiac signals associated with an atrial chamber of interest; collecting dynamic impedance (DI) data along an atria-function focused (AFF) vector to form a DI data set, the DI data set including information corresponding to a mechanical function (MF) of a valve associated with the atrial chamber of interest; identifying, from the cardiac signals, an intra-atrial conduction timing (IACT) associated with the atrial chamber of interest; estimating an MF landmark at which the mechanical function of the valve occurs based on the DI data set; analyzing a timing delay between the MF landmark and the IACT; and adjusting a therapy, based on the timing delay, to encourage atrial contribution to ventricular filling.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: PACESETTER, INC.
    Inventors: Xiaoyi Min, Rupinder Bharmi, Wenbo Hou, Edward Karst, Kritika Gupta, Risshi Shah
  • Patent number: 8965504
    Abstract: An implantable sensor circuit can be configured to generate a first sensor signal representative of mechanical activation of a first chamber of a heart of a subject and a second sensor signal representative of mechanical activation of a second chamber of the heart. A chamber synchrony measurement circuit can be configured to generate a measure of synchrony of the mechanical activations of the first heart chamber and the second heart chamber using the first and second sensor signals, a tachyarrhythmia detector circuit, and a control circuit. The control circuit can be configured to receive an indication of a detected episode of tachyarrhythmia, and to initiate, select, or adjust a device-based therapy at least in part using the measure of synchrony of the mechanical activations in response to the tachyarrhythmia detection.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 24, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Dan Li
  • Publication number: 20150051660
    Abstract: The invention relates to improved cardiac pacemakers and methods of use thereof. In particular the cardiac pacemakers are useful for normalizing heart rates over resting heart rates in order to condition the heart to improve overall cardiac output.
    Type: Application
    Filed: March 13, 2013
    Publication date: February 19, 2015
    Applicant: The University of Vermont and State Agricultural College
    Inventor: Markus Meyer
  • Patent number: 8956295
    Abstract: Devices and methods for sleep detection involve the use of an adjustable threshold for detecting sleep onset and termination. A method for detecting sleep includes adjusting a sleep threshold associated with a first sleep-related signal using a second sleep-related signal. The first sleep-related signal is compared to the adjusted threshold and sleep is detected based on the comparison. The sleep-related signals may be derived from implantable or external sensors. Additional sleep-related signals may be used to confirm the sleep condition. A sleep detector device implementing a sleep detection method may be a component of an implantable pulse generator such as a pacemaker or defibrillator.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Quan Ni, Zoe Hajenga, Douglas R. Daum, Jeffrey E. Stahmann, John D. Hatlestad, Kent Lee
  • Publication number: 20150045848
    Abstract: Medical devices and methods for providing breathing therapy (e.g., for treating heart failure, hypertension, etc.) may determine at least the inspiration phase of one or more breathing cycles based on the monitored physiological parameters and control delivery of a plurality of breathing therapy sessions (e.g., each of the breathing therapy sessions may be provided during a defined time period). Further, each of the plurality of breathing therapy sessions may include delivering stimulation after the start of the inspiration phase of each of a plurality of breathing cycles to prolong diaphragm contraction during the breathing cycle.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Shaileshkumar V. Musley, Avram Scheiner
  • Publication number: 20150039044
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Publication number: 20150032171
    Abstract: A medical device system performs a method for determining presence of scar tissue through an implanted lead having an electrode for cardiac pacing and sensing. A sensing module senses heart activity with the electrode to produce a unipolar electrogram (EGM) waveform. A processor receives the unipolar EGM waveform and extracts two or more features representative of heart activity at the electrode. Scar tissue is identified at the site of the first electrode based upon at least two of the extracted features indicating scar tissue.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Publication number: 20150032172
    Abstract: A method and system of cardiac pacing is disclosed. A baseline rhythm is determined. The baseline rhythm includes a baseline atrial event and a baseline right ventricular RV event from an implanted cardiac lead or a leadless device, a pre-excitation interval determined from the baseline atrial event and the baseline RV event, and a plurality of activation times determined from a plurality of body-surface electrodes. A determination is made as to whether a time interval measured from an atrial event to a RV event is disparate from another time interval measured from the atrial event to an earliest RV activation time of the plurality of activation times. A correction factor is applied to the pre-excitation interval to obtain a corrected pre-excitation interval in response to determining the RV event is disparate from the earliest RV activation time.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: Medtronic, Inc.
    Inventor: Subham Ghosh