Treating Mental Or Emotional Disorder Patents (Class 607/45)
  • Patent number: 10512413
    Abstract: A method for identifying and treating a neural pathway associated with chronic pain via nerve stimulation and brain wave monitoring of a mammalian brain includes positioning a probe to stimulate a target nerve, wherein the target nerve is suspected of being a source of chronic pain; delivering a first nerve stimulation from the probe to the target nerve, wherein the first nerve stimulation is sufficient to elicit a chronic pain response in the brain; and monitoring for evoked potential activity in the brain as a result of the first nerve stimulation. The method can also include delivering second and third nerve stimulations to confirm the correct identification of the neural pathway and to treat the chronic pain, respectively. A system and apparatus for performing a procedure to identify and treat a nerve that is the source of chronic pain are also described.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: December 24, 2019
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, Phillip A. Schorr, Joshua D. White
  • Patent number: 10507324
    Abstract: A system for individualizing neuromodulation includes a neurostimulation device having a set of electrodes, and an application executing on a user device. Additionally or alternatively, the system can include any or all of: a sensor system, a head-securing mechanism, a remote server, storage, an accessory device, and any other suitable component. A method for individualizing neuromodulation includes determining a task of interest to a user; determining a user skill level associated with the task; determining a set of goals; determining an individualized neuromodulation program comprising a neurostimulation pattern; and delivering the neurostimulation pattern to the user. Additionally or alternatively, the method can include any or all of: determining user progress; displaying user progress; receiving user feedback; determining and/or adapting neuromodulation program based on user progress and/or user feedback; and any other suitable process.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 17, 2019
    Assignee: Halo Neuro, Inc.
    Inventors: Brett Wingeier, Randall Lin, Daniel Toker
  • Patent number: 10507335
    Abstract: The present disclosure relates to the field of medical technology and in particular to the field of transcranial magnetic stimulation. A coil assembly is presented comprising a housing; a magnetic coil, and an electrode arrangement; wherein the magnetic coil is arranged in the housing and is adapted for generating a magnetic field for transcranial magnetic stimulation, wherein the electrode arrangement is arranged on the housing and adapted for deriving an EEG signal, and wherein the magnetic coil and the electrode arrangement are arranged on top of each other. Further, an electrode arrangement and a system for transcranial magnetic stimulation are provided.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: December 17, 2019
    Assignee: EBERHARD KARLS UNIVERSITAET TUEBINGEN MEDIZINIZCHE FAKULTAET GESCHWISTER-SCHOLL-PLATZ
    Inventors: Christoph Zrenner, Ulf Ziemann
  • Patent number: 10500398
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients. A titration process is used to gradually increase the stimulation intensity to a desired therapeutic level. Between titration sessions one or more parameters, such as, for example, an acclimation interval, may be adjusted based on the patient's response to the stimulation. This personalized titration process can minimize the amount of time required to complete titration so as to begin delivery of the stimulation at therapeutically desirable levels.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 10, 2019
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Bruce H. KenKnight, Badri Amurthur, Scott R. Stubbs
  • Patent number: 10485465
    Abstract: A pulse oximetry device includes a light emission device configured to emit light with a wavelength in a first wavelength interval and light with a wavelength in a second wavelength interval, a first light detector configured to detect light with a wavelength in the first wavelength interval, but not to respond to light with a wavelength in the second wavelength interval, and a second light detector configured to detect light with a wavelength in the first wavelength interval and detect light with a wavelength in the second wavelength interval, wherein the first light detector has a first light reception surface, the second light detector has a second light reception surface, and the first light reception surface and the second light reception surface are arranged in a common plane and are interleaved with one another.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: November 26, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hubert Halbritter, Michael Klein, David O'Brien
  • Patent number: 10470680
    Abstract: Systems and methods are provided for controlling an entity in response to activity in a peripheral nerve comprising a plurality of fascicles. A multicontact electrode assembly is configured to record activity from the peripheral nerve. A processing component includes a sensor mapping component configured to quantify activity associated with a proper subset of the plurality of fascicles, an evaluation component configured to determine an adjustment of the status of the controlled entity from the quantified activity of the proper subset of the plurality of fascicles, and a controller configured to provide a control signal, representing the adjustment of the status of the controlled entity, to the controlled entity.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: November 12, 2019
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Dominique M. Durand, Brian Wodlinger
  • Patent number: 10463860
    Abstract: A method of monitoring neural activity responsive to a stimulus in a brain, the method comprising: applying the stimulus to one or more of at least one electrode implanted in a target neural structure of the brain; detecting a resonant response from the target neural structure evoked by the stimulus at one or more of the at least one electrode in or near the target neural structure of the brain; and determining one or more waveform characteristics of the detected resonant response.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: November 5, 2019
    Assignee: THE BIONICS INSTITUTE OF AUSTRALIA
    Inventors: Nicholas Sinclair, Hugh Mcdermott, James Fallon, Thushara Perera, Arthur Wesley Thevathasan, Kristian Bulluss
  • Patent number: 10463572
    Abstract: The application is directed to a vial adapter for attaching a medicament vial to a medicament delivery device having a reservoir adapted to receive and contain the medicament. The vial adapter can include a housing with two ports (one for attaching the reservoir and the other for attaching to the vial), a hollow needle that pierces septums sealing each of the reservoir and the vial, and a floating part that fixedly holds the hollow needle. Clearance between the floating part and the housing can enable relative movement of the floating part.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 5, 2019
    Assignee: NeuroDerm, Ltd.
    Inventors: Eran Shor, Tsabar Mor, Tamir Ben David, Nir Lilach, Rami Grossfeld, Shai Alfandari, Ram Nadler, Dmitry Golom, Daniel Shaki, Yoav Tikochinsky, Serdar Ozsumer
  • Patent number: 10456581
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods that include a single pass implantable lead configured to be coupled to the implantable medical device and arranged to sense and pace the chambers of a patient's heart. The lead may include a proximal region having a plurality of electrodes, a distal region having at least one electrode, and an intermediate region therebetween. The system can sense and pace the right atrium, the left atrium, the right ventricle, and the left ventricle.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: October 29, 2019
    Assignee: Cardiac Pacemakers, Inc
    Inventors: Lili Liu, Matthew J. Miller, Kyle K. Hoecke, Ronald W. Kunkel
  • Patent number: 10449374
    Abstract: An electrostimulator implant comprises (i) an implant body, the implant being injectable into tissue of a subject along a longitudinal axis of the implant body, (ii) first and second electrodes, disposed on respective first and second portions of the implant body; (iii) circuitry, disposed inside the implant body, and configured to drive the electrodes to apply current to the tissue; and (iv) a mesh. The mesh is configured to serve as an anchor of the implant, is disposed over a third portion of the implant body that is longitudinally between the first and second portions of the implant body, and has a first end and a second end. Each of the ends is fixedly attached to respective first and second sites of the implant body, the respective sites being longitudinally between the first and second electrodes.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 22, 2019
    Assignee: BLUEWIND MEDICAL LTD.
    Inventors: Gur Oron, Eran Benjamin, Bar Eytan, Nir Armoni, Yossi Gross
  • Patent number: 10441207
    Abstract: A configurable system is used to evaluate stimulus sensitivity of a subject. An action channel provides a stimulus to the subject and a reaction channel receives a response from the subject. A signal pathway is connected to the action channel and to the reaction channel. A controller establishes loops within the signal pathway. Loop types include a transduction loop including the action channel and forming a path terminating in the signal pathway, and a channel loop including the action channel and terminating at a reference unit. Other possible loop types include an interface loop including the action channel, the reaction channel and the reference unit having an initial parameter value, and an adaptive loop including the action channel, the reaction channel and the reference unit whose parameter value is adapted based on the response from the subject. A method using the system is also described.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: October 15, 2019
    Assignee: COGNISENS INC.
    Inventors: Jocelyn Faubert, Rafael Doti, Jesus-Eduardo Lugo-Arce
  • Patent number: 10434300
    Abstract: Devices and circuits for reducing sizes of medical devices are disclosed. In one example, an implantable medical device (IMD) may include a housing, multiple electrodes outside of the housing, an energy storage device within the housing, and a circuit within the housing and connected to the energy storage device and the two or more electrodes. In some cases, the circuit may include two or more island sections, with each island section connected to at least one other island section by a ribbon section. Each island section may have two opposing major surfaces. A first island section and a second island section may be stacked within the housing such that one of the two major surfaces of the first island section faces one of the two opposing major surfaces of the second island section.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 8, 2019
    Assignee: Cardiac Pacemaker, Inc.
    Inventors: Keith R. Maile, John M. Edgell, Mathew L. Gilk, Brian L. Schmidt, Benjamin J. Haasl, James E. Blood
  • Patent number: 10434310
    Abstract: A conductive implantable stimulation device for implantation at the head of a subject to treat a neurological disease, comprising a first passive conductive member, wherein the first member is sized and configured for being implanted under the skull bone of the patient, and wherein the first member comprises a conductive interface adapted for extracranial stimulation.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: October 8, 2019
    Assignee: Sooma Ltd.
    Inventors: Tuomas Neuvonen, Jani Virtanen, Mika Nikader
  • Patent number: 10420937
    Abstract: Described is a system for inducing a desired behavioral effect using an electrical current stimulation. A brain monitoring subsystem includes monitoring electrodes for sensing brain activity, and a brain stimulation subsystem includes stimulating electrodes for applying an electrical current stimulation. Multi-scale distributed data is registered into a graphical representation. The system identifies a sub-graph in the graphical representation and maps the sub-graph onto concept features, generating a concept lattice which relates the concept features to a behavioral effect. Finally, an electrical current stimulation to be applied to produce the behavioral effect is determined.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 24, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Praveen K. Pilly, Michael D. Howard, Heiko Hoffmann, Tsai-Ching Lu, Kang-Yu Ni, David W. Payton
  • Patent number: 10413737
    Abstract: A method for electrical stimulation of a patient includes a) implanting at least a portion of an electrical stimulation lead; b) stimulating the patient using the electrical stimulation lead at multiple test stimulation amplitudes; c) observing a response for each of the test stimulation amplitudes; d) selecting a working stimulation amplitude based on the responses from a group consisting of the test stimulation amplitudes and, optionally, a default stimulation amplitude; e) stimulating the patient using the electrical stimulation lead and the working amplitude at multiple test duty cycles; f) observing a response for each of the test duty cycles; g) selecting a working duty cycle based on the responses from a group consisting of the test duty cycles and, optionally, a default duty cycle; and h) stimulating the patient using the electrical stimulation lead, the working amplitude, and the working duty cycle.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Hemant Bokil, Stephen Carcieri, Ljubomir Manola
  • Patent number: 10413738
    Abstract: Systems and methods are disclosed in which an external device such as a consumer mobile device (e.g., smart phone) is used as an external controller to bi-directionally communicate with an Implantable Medical Device (IMD) using a dedicated patient remote control (RC) as an intermediary device to translate communications between the two. The dedicated RC contains a graphical user interface allowing for control and monitoring of the IMD even if the mobile device is not present in the system, which is useful as a back-up should the mobile device experience problems. Use of the dedicated RC as an intermediary device broadens the utility of other computing devices to operate as an external controller for an IMD even if the computing device and IMD do not have compliant communication means.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: September 17, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Habet Ter-Petrosyan, Gaurav Gupta, Sridhar Kothandaraman
  • Patent number: 10416271
    Abstract: Systems and methods for beacon device fleet management are provided. One example system includes a plurality of beacon devices, a plurality of mobile computing devices, a fleet management system, and a fleet owner computing devices. One example method includes receiving, by the fleet management system, a device status request from the fleet owner computing device. The fleet management system determines one or more operational statuses of beacon devices owned by the fleet owner and transmits data indicative of the one or more operational statuses to the fleet owner computing device. The operational statuses can include a current detection status (e.g., online or offline), a location status, a power source status, and/or other operational parameters.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: September 17, 2019
    Assignee: Google LLC
    Inventors: Mark William Weaver, Peter Sasaki, Jonathan Robert Morace, Salvatore Scellato
  • Patent number: 10413235
    Abstract: A closed-loop brain computer interface (BCI) system for treating mental or emotional disorders with responsive brain stimulation is disclosed. The system includes an implanted module including a processor configured to process neural data acquired from one or more electrodes in communication with one or more brain regions of a patient. The implanted module is configured to deliver stimulation to electrodes in contact with the brain regions. An interface is in wireless communication with the implanted module and configured to receive the neural data from the implanted module. A controller processes the patient's brain and body signals to provide patient intentional control over the stimulation applied to the one or more electrodes and to control the stimulation.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: September 17, 2019
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology, University of Washington
    Inventors: Alik S. Widge, Chet Moritz, Darin Dougherty
  • Patent number: 10406364
    Abstract: A method for assessment, optimization and logging of the effects of a therapy for a medical condition, including (a) receiving into a signal processor input signals indicative of the subject's brain activity; (b) characterizing the spatio-temporal behavior of the brain activity using the signals; (c) delivering a therapy to a target tissue of the subject; (d) characterizing the spatio-temporal effect of the therapy on the brain activity; (e) in response to the characterizing, optimizing at least one parameter of the therapy if the brain activity has not been satisfactorily modified and/or has been adversely modified by the therapy; (f) characterizing the spatio-temporal effect of the at least one optimized parameter; and (g) logging to memory the at least one optimized parameter. A computer readable program storage unit encoded with instructions that, when executed by a computer, performs the method.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 10, 2019
    Assignee: Flint Hills Scientific, LLC
    Inventor: Ivan Osorio
  • Patent number: 10406368
    Abstract: An Implantable Pulse Generator (IPG) is disclosed that is capable of sensing a degree to which recruited neurons in a patient's tissue are firing synchronously, and of modifying a stimulation program to promote desynchronicity and to reduce paresthesia. An evoked compound action potential (ECAP) of the recruited neurons is sensed as a measure of synchronicity by at least one non-active electrode. An ECAP algorithm operable in the IPG assesses the shape of the ECAP and determines one or more ECAP shape parameters that indicate whether the recruited neurons are firing synchronously or desynchronously. If the shape parameters indicate significant synchronicity, the ECAP algorithm can adjust the stimulation program to promote desynchronous firing.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: September 10, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley L. Hershey, Changfang Zhu
  • Patent number: 10406361
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 10, 2019
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Augustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 10406363
    Abstract: A method of detecting an improvement in a seizure condition of a patient includes identifying a first EEG synchronization of the seizure condition of the patient; applying a therapy configured to improve the seizure condition of the patient; and identifying a second EEG synchronization of the seizure condition of the patient subsequent to application of the therapy, wherein an improvement of the seizure condition of the patient is demonstrated by a reduced EEG synchronization of the patient such that the second EEG synchronization is less than the first EEG synchronization.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: September 10, 2019
    Assignee: LivaNova USA, Inc.
    Inventor: Shivkumar Sabesan
  • Patent number: 10391309
    Abstract: The present disclosure refers to systems for electrical neurostimulation of a spinal cord of a subject in need of nervous system function support. In one example, a system comprises a signal processing device configured to receive signals from the subject and operate signal-processing algorithms to elaborate stimulation parameter settings; one or more multi-electrode arrays suitable to cover a portion of the spinal cord of the subject; and an Implantable Pulse Generator (IPG) configured to receive the stimulation parameter settings from the signal processing device and simultaneously deliver independent current or voltage pulses to the one or more multiple electrode arrays, wherein the independent current or voltage pulses provide multipolar spatiotemporal stimulation of spinal circuits and/or dorsal roots. Such system advantageously enables effective control of nervous system functions in the subject by stimulating the spinal cord, such as the dorsal roots of the spinal cord, with spatiotemporal selectivity.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 27, 2019
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Jocelyne Bloch, Grégoire Courtine, Nikolaus Wenger, Silvestro Micera, Marco Capogrosso
  • Patent number: 10390766
    Abstract: A system and method for predicting an excitation pattern of a deep brain stimulation (DBS) from monitored bioelectrical signals includes an apparatus having a housing having a signal input and a signal output and an electrical circuit disposed within the housing. The electrical circuit is electrically coupled between the signal input and the signal output and is configured to receive bioelectrical signals corresponding to an excitation signal transmitted by a pulse generator during a DBS. The electrical circuit is also configured to convert the bioelectrical signals into digital logic pulses, predict a future timing pattern of the excitation signal from the digital logic pulses, and generate an output from the future timing pattern, the output comprising a log of time stamps predictive of future active transmission periods of neurological excitation.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: August 27, 2019
    Assignee: General Electric Company
    Inventors: Eric William Fiveland, Ileana Hancu, Jeffrey Ashe
  • Patent number: 10384061
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: August 20, 2019
    Assignee: Electrocore, Inc.
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 10386924
    Abstract: One illustrative system disclosed herein includes a processor configured to receive a sensor signal from a neural interface configured to detect an electrical signal associated with a nervous system. The processor is also configured to determine an interaction in with a virtual object in a virtual environment based on the sensor signal. The processor is also configured to determine a haptic effect based at least in part on the interaction with the virtual object in the virtual environment. The processor is also configured to transmit a haptic signal associated with the haptic effect. The illustrative system further includes a haptic output device configured to receive the haptic signal and output the haptic effect.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: August 20, 2019
    Assignee: Immersion Corporation
    Inventor: Juan Manuel Cruz-Hernadez
  • Patent number: 10384062
    Abstract: Systems, methods, and devices for treating chronic pains effectively are disclosed. The system is based on the use of randomly generated non-pulsed waveform between a frequency of 5 Hz to 2 KHz. The waveforms generated have characteristics which are pre-defined or based on the input and feedback provided by the patient and/or by the clinician, at the same time conforming to certain safety rules and precautions ensuring patient safety. This disclosure also describes a novel approach of implementing a secure memory stick which can be used to exchange data securely between one device and another device where device could be the device mentioned earlier, an off-line server, or a PC.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 20, 2019
    Assignee: Calmare Therapeutics Incorporated
    Inventors: Sin-Min Chang, Santanu Das, Dae H. Han
  • Patent number: 10376707
    Abstract: There is disclosed a method for the treatment of cerebral ischemic stroke in a subject in need thereof comprising the steps of (a) identifying an ischemic area of the brain of the subject; and (b) applying an effective electromagnetic field to the ischemic area of the brain, wherein the electromagnetic field is effective to reduce local edema, to increase neuronal survival and/or reduce neuronal apoptosis.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: August 13, 2019
    Assignee: IGEA S.p.A.
    Inventors: Ruggero Cadossi, Donata Marazzi
  • Patent number: 10376697
    Abstract: Described is a system for automatic adjustment of neurostimulation. The system controls stimulation of specific neural regions through a neural device positioned on a human subject, while simultaneously performing recordings from the neural device using a targeted arrangement of stimulating electrodes and distinct types of recording electrodes and sensors of the neural device. Stimulation of the specific neural regions is adjusted in real-time based on the recordings from the neural device.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 13, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Matthias Ziegler, Jaehoon Choe, Matthew E. Phillips
  • Patent number: 10376695
    Abstract: Devices and methods are disclosed that allow a patient to self-treat a medical condition, such as migraine headache and trigeminal neuralgia and the like, by noninvasive electrical stimulation of nerves of the head, particularly supraorbital, supratrochlear, infraorbital, and mental nerves in the vicinity of their foramen or notch. The system comprises a handheld mobile device, such as a smartphone, that is applied to the surface of the patient's head. One or more electrodes on the mobile device apply electrical impulses transcutaneously through the patient's skin to the targeted nerve to treat the medical condition. The system is designed to address problems that arise particularly during self-treatment, when a medical professional is not present.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: August 13, 2019
    Assignee: Electrocore, Inc.
    Inventors: Joseph P. Errico, Steven Mendez, Bruce J. Simon
  • Patent number: 10369364
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 6, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 10363362
    Abstract: We report a method of treating an epileptic seizure in a patient, comprising: detecting said epileptic seizure, based on body data from said patient; and reducing a flow of blood to a brain of said patient in response to said detected seizure; wherein said reducing is effected by: increasing the parasympathetic input to said patient's heart, such as by electrically stimulating a parasympathetic nervous structure, applying cooling energy to a sympathetic nervous structure, or administering a cholinergic or a sympatho-blocking agent to said patient. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 30, 2019
    Inventor: Ivan Osorio
  • Patent number: 10349902
    Abstract: Methods are described herein for adjusting characteristics of signals used to verify or track the reliability of communication between a remote sensor and a managing device. For example, an exchange rate of signals sent between the remote sensor and managing device may be adjusted to minimize power consumption when the devices are determined to be reliably communicating. In some embodiments, apparatuses and methods herein may further be configured to inform an individual of when a remote sensor approaches a physical boundary, moves out of a communication range, is turned off, becomes damaged, or otherwise has or may become incapable of proper or reliable communication.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: July 16, 2019
    Assignee: Brain Sentinel, Inc.
    Inventor: Michael R. Girouard
  • Patent number: 10342969
    Abstract: An electrical stimulation device is provided. The electrical stimulation device according to one embodiment of the present inventive concept is worn on the head so as to apply electrical stimulation to the brain, and comprises: a frame to be worn on the head; an electrode structure including an electrode part formed of a conductive member and a cover unit formed of an insulating member covering at least a part of the electrode part, and of which one end is connected to the frame; and a patch detachable from the electrode structure and making contact with the head when attached to the electrode structure.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 9, 2019
    Assignee: Y-BRAIN INC.
    Inventor: Kiwon Lee
  • Patent number: 10335547
    Abstract: The present disclosure is directed to a method and apparatus to autonomously stimulate a plurality of nerve fiber groups. The method and apparatus predicts stimulus parameters that can activate 0-100% of the nerve fiber groups selectively according to a patient's characteristics and proportional to therapeutic outcomes, such as determined by experimental data. The method and apparatus may further be configured to input experimental third-party data to obtain a high efficacy from a patient without invasive neurosurgery.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 2, 2019
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Matthew P. Ward, Pedro Irazoqui
  • Patent number: 10335302
    Abstract: The disclosed electrical stimulation system generates interventions to assist patients in complying with a diet. The wearable device includes a microprocessor, electrical stimulator and at least one electrode configured to deliver electrical stimulation to the epidermis, through a range of 0.1 mm to 10 mm or a range of 0.1 mm to 20 mm of the dermis, of a T2 dermatome to a T12 dermatome or meridian of the patient, a C5 to a T1 dermatome across the hand and/or arm, and/or the upper chest regions. The device is adapted to provide electrical stimulation as per stimulation protocols and to communicate wirelessly with a companion control device configured to monitor and record appetite patterns of the patient and generate interventions. The control device is also configured to monitor, record, and modify stimulation parameters of the stimulation protocols.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 2, 2019
    Assignee: Elira, Inc.
    Inventors: Raul E. Perez, Peter I. Hong, Steven Diianni, Luis Jose Malave, Brad Stengel
  • Patent number: 10335593
    Abstract: Devices and methods are disclosed that treat a medical condition, such as migraine headache, by electrically stimulating a nerve noninvasively, which may be a vagus nerve situated within a patient's neck. Preferred embodiments allow a patient to self-treat his or her condition. Disclosed methods assure that the device is being positioned correctly on the neck and that the amplitude and other parameters of the stimulation actually stimulate the vagus nerve with a therapeutic waveform. Those methods comprise measuring properties of the patient's larynx, pupil diameters, blood flow within an eye, electrodermal activity and/or heart rate variability.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: July 2, 2019
    Assignee: Electrocore, Inc.
    Inventors: Bruce J. Simon, Joseph P. Errico
  • Patent number: 10327661
    Abstract: A method for determining an increased risk of death of a patient includes receiving ECG data of the patient generated during a first time period; receiving EEG data of the patient generated during the first time period; composing a feature of the ECG data and a feature of the EEG data over a common time frame and determining a statistical measure of association between the ECG data and the EEG data; and determining whether the degree of association exceeds a predetermined threshold, thereby indicating whether an increased risk is present.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: June 25, 2019
    Assignees: Louisiana Tech Research Corporation, Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Leonidas D. Iasemidis, Ioannis Vlachos, Albert Edward Glasscock
  • Patent number: 10328264
    Abstract: A neurostimulation system delivers neurostimulation to a patient using one or more primary parameters and one or more secondary parameters. The one or more primary parameters are controlled for maintaining efficacy of the neurostimulation. The one or more secondary parameters are adjusted for preventing the patient from developing neural accommodation. In various embodiments, values for the one or more secondary parameters are varied during the delivery of the neurostimulation for prevention of neural accommodation that may result from a constant or periodic pattern of stimulation pulses.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 25, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jason J. Hamann, David J. Ternes, Stephen B. Ruble, Juan Gabriel Hincapie Ordonez
  • Patent number: 10322284
    Abstract: A system and method for treating nausea and vomiting are provided, including one or more electrodes (10, 12) applied on or under the skin, the electrodes being connected to an external current source (34). The electrodes can be implanted under the skin and connect to internal stimulator electronics (22), which can form a magnetic inductive link to the external current source (34). Alternatively, the electrodes can be placed on the skin and directly linked by wires to the external current source. As a further alternative, the vagus nerve can be directly stimulated in the neck, or the esophagus, stomach, duodenum, or intestines can be directly stimulated by magnetic stimulation. The electrodes can stimulate the vagus nerve in the neck to reduce nausea and vomiting, or can be arranged near the chest or abdomen, so as to stimulate the esophagus, stomach, duodenum or intestines. Because the current source is provided outside the body, it is not necessary to implant batteries or another power supply in the body.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: June 18, 2019
    Assignee: The John Hopkins University
    Inventors: Ronald P. Lesser, Robert S. Webber
  • Patent number: 10307087
    Abstract: A method for improving subject's spatial cognition and spatial memory includes presenting spatial information to the person through non-visual means, parcellating the image to enhance understanding of the nature and relationships of the image components to augment image memory, drawing the image, detecting and encoding the errors in the drawing, and providing interactive feedback based on the individual's drawing performance. The methodology includes audio-haptic feedback to present the spatial image information non-visually using an audible signal that varies as a function of the distance of the finger/stylus from the regions of a display that express the image features.
    Type: Grant
    Filed: July 16, 2017
    Date of Patent: June 4, 2019
    Inventors: Lora T. Likova, Zlatko Kristev Minev
  • Patent number: 10293160
    Abstract: Devices, systems and methods are disclosed that allow a patient to self-treat neurodegenerative diseases, such as dementia, Alzheimer's disease, ischemic stroke, post-concussion syndrome, chronic traumatic encephalopathy and the like by electrical noninvasive stimulation of a vagus nerve. The system comprises a handheld stimulator that is applied to the surface of the patient's neck, wherein the stimulator comprises or is joined to a smartphone. A camera of the smartphone may be used to position and reposition the stimulator to a particular location on the patient's neck. The system may also comprise a base station that is used to meter the charging of a rechargeable battery within the stimulator. The base station and stimulator transmit data to one another regarding the status of a stimulation session.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 21, 2019
    Assignee: Electrocore, Inc.
    Inventors: Joseph P. Errico, Steven Mendez, Bruce J. Simon
  • Patent number: 10292660
    Abstract: The method allows controlling the quality of an initial RR series consisting of a plurality of (RRi) samples which are respectively a function of time intervals (?ti) which separate two successive heartbeats. During this method, one resamples the RR series so as to obtain a resampled RR series, and one automatically controls the quality of the RR series by automatically calculating at least the mathematical norm value (NORME), in a sliding window, of the resampled RR series, said mathematical norm value being given by the following formula: NORME = ? i = 1 N ? ( RR i - 1 N ? ? i = 1 N ? ( RR i ) ) 2 where N is the number of RRi samples in said window.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: May 21, 2019
    Assignee: CENTRE HOSPITALIER REGIONAL UNIVERSITAIRE DE LILLE
    Inventors: Régis Logier, Julien De Jonckheere, Mathieu Jeanne
  • Patent number: 10285658
    Abstract: Systems and methods for detecting complex networks in MRI image data in accordance with embodiments of the invention are illustrated. One embodiment includes an image processing system, including a processor, a display device connected to the processor, an image capture device connected to the processor, and a memory connected to the processor, the memory containing an image processing application, wherein the image processing application directs the processor to obtain a time-series sequence of image data from the image capture device, identify complex networks within the time-series sequence of image data, and provide the identified complex networks using the display device.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: May 14, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Leanne Maree Williams
  • Patent number: 10279177
    Abstract: The present disclosure refers to systems for electrical neurostimulation of a spinal cord of a subject in need of nervous system function support. In one example, a system comprises a signal processing device configured to receive signals from the subject and operate signal-processing algorithms to elaborate stimulation parameter settings; one or more multi-electrode arrays suitable to cover a portion of the spinal cord of the subject; and an Implantable Pulse Generator (IPG) configured to receive the stimulation parameter settings from the signal processing device and simultaneously deliver independent current or voltage pulses to the one or more multiple electrode arrays, wherein the independent current or voltage pulses provide multipolar spatiotemporal stimulation of spinal circuits and/or dorsal roots. Such system advantageously enables effective control of nervous system functions in the subject by stimulating the spinal cord, such as the dorsal roots of the spinal cord, with spatiotemporal selectivity.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: May 7, 2019
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Jocelyne Bloch, Grégoire Courtine, Nikolaus Wenger, Silvestro Micera, Marco Capogrosso
  • Patent number: 10265531
    Abstract: Systems and methods for determining a rotational orientation of a lead for use in electrostimulation of a body tissue are disclosed. A system may receive image data of at least a portion of the lead including image data of a marker configured to identify a rotational orientation of the lead. The system may receive at least one template of the lead having a specified rotational orientation. Each template may include a reference data cube and a reference marker direction vector. The system may generate a target data cube of the marker using the image data of the marker, and register the reference data cube to the target data cube to produce a transformation operator. The system may estimate the rotational orientation of the lead using the reference marker direction vector and the determined transformation operator.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: April 23, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Hemant Bokil
  • Patent number: 10258799
    Abstract: An electrical stimulation system for use with a plurality of electrodes implanted within a tissue region comprises a neurostimulator configured for delivering electrical stimulation energy to the plurality of electrodes in accordance with a set of stimulation parameters, thereby injecting a charge into the tissue region, a control device configured for receiving user input to modify the set of stimulation parameters, and controller/processor circuitry configured for, in response to the user input computing a charge injection metric value as a function of a physical electrode parameter and an electrical source parameter for a first set of the electrodes, wherein the electrode set comprises at least two electrodes, comparing the computed charge injection metric value to a safety threshold value, and performing a corrective action based on the comparison.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: April 16, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Gustav Karl Steinke, Michael A. Moffitt
  • Patent number: 10252056
    Abstract: A method and apparatus for preventing or terminating seizures, by stimulating a brain with at least two implanted electrodes, each implanted in a different one of at least two regions of the brain, with a frequency to emulate and/or disrupt neuronal synchrony. Upon detecting a potential or actual seizure occurrence, the frequency is electrically applied to the brain upon the detection to preempt or terminate the potential or actual seizure occurrence.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: April 9, 2019
    Inventor: David J. Mogul
  • Patent number: 10252074
    Abstract: Transcutaneous electrical and magnetic nerve stimulation devices are disclosed, along with methods of averting imminent medical attacks using energy that is delivered noninvasively by the devices. The attacks comprise asthma attack, epileptic seizure, attacks of migraine headache, transient ischemic attack or stroke, onset of atrial fibrillation, myocardial infarction, onset of ventricular fibrillation or tachycardia, panic attack, and attacks of acute depression. The imminence of an attack is forecasted using grey-box or black-box models as used in control theory. A vagus nerve in the neck of a patient can be stimulated noninvasively to avert the attack.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: April 9, 2019
    Assignee: Electrocore, LLC
    Inventors: Bruce Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 10252053
    Abstract: A technology is described for an electronic nerve stimulation system. The electronic nerve stimulation system can include a stimulation device operable to generate a high-frequency alternating current. The electronic nerve stimulation system can include one or more wearable electrodes operable to apply the high-frequency alternating current from the stimulation device to peripheral nerves to provide an electrical stimulation of neuronal tissue to treat pain. The one or more wearable electrodes can interface with the stimulation device via a connection system.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 9, 2019
    Assignee: University of Utah Research Foundation
    Inventors: David Page, Christopher Duncan, David Kluger, Zachary Kagan, Gregory Clark