By Reflected Wave Patents (Class 73/620)
  • Publication number: 20150096380
    Abstract: A computer with a proper program generates a phased array sequence of signals. In a pulser with delays, the signals are fed through a multiplexor into multiple water wedges that are attached to a valve being tested. For a sequential operation of the valves from the open to the closed position, ultrasonic signals are transmitted through the fluid contained in the valve and reflected back through piezo-electric crystals to the multiplexor. By summation and merger of the signals, an image can be developed of the operation of the valve to determine if the valve is operating properly. By comparing the signals received with a known standard for that type valve, proper operation, or lack thereof, of the valve under test can be determined.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 9, 2015
    Applicant: IHI Southwest Technologies,Inc.
    Inventors: Jesse R. Delgado, Hector Diaz
  • Patent number: 8978477
    Abstract: A device for conducting an ultrasonic inspection of an object of interest comprises a base member. In addition, the device comprises a track coupled to the base member. Further, the device comprises a carriage moveably coupled to the track. Still further, the device comprises a drive system coupled to the carriage and configured to move the carriage linearly along the track. Moreover, the device comprises an ultrasonic probe coupled to the carriage.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 17, 2015
    Assignee: BP Corporation North America Inc.
    Inventor: John James Nyholt
  • Publication number: 20150053013
    Abstract: A scanning apparatus comprising a receiver circuit and a transmitter circuit, both circuits being flexible such that they are capable of conforming to the surface contours of an object as a surface of the apparatus is pressed against it and an adaptive backing positioned behind the transmitter and receiver circuits in the scanning apparatus and configured to, as the scanning apparatus is pressed against the object, conform to the flexible circuits.
    Type: Application
    Filed: November 4, 2013
    Publication date: February 26, 2015
    Inventors: Tore Baarstad, Eskil Skoglund, Arnt-Børre Salberg, Johan Skjelstad
  • Patent number: 8943892
    Abstract: A computer-controlled robotic platform with a collapsible lifting arm that positions a non-destructive inspection (NDI) sensor for scanning inside tunnel regions of a composite structure such as an integrally stiffened wing box. The lifting arm of a modified scissor lift mechanism can be collapsed to a very low height to pass through narrow sections of the integrally stiffened wing box, and also extended by more than a factor of three to reach the maximum height of the wing box tunnels. The system performs a vertical position sensing and control process that uses inverse kinematics to enable position control using data from a standard rotational encoder on the motor to determine vertical position. The system produces simulated encoder pulses that represent unit vertical displacements of a distal portion of a modified scissor lift mechanism using a forward kinematics equation in which the rotation angle of a lead screw is an input variable.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Jeffry J. Garvey, James C. Kennedy, James J. Troy
  • Patent number: 8904873
    Abstract: Computers with proper programs generate signals in phased array sequence. In pulsers with delays, signals are fed through a multiplexor into multiple water wedges that are attached to a valve being tested. For a sequential operation of the valves from the open to the closed position, ultrasonic signals are transmitted through fluid contained in the valve and reflected back through piezo-electric crystals to the multiplexor. By summation and merger of the signals, an image can be developed of the operation of the valve to determine if the valve is operating properly. By using multiple water wedges and pass visualization software, the operator can see exactly how the valve is functioning, which information can be stored for inspections or maintenance.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: December 9, 2014
    Assignee: IHI Southwest Technologies, Inc.
    Inventors: Jesse R. Delgado, Hector Diaz
  • Publication number: 20140305218
    Abstract: A method of detecting a state of a coated gel coated on an ultrasound probe includes coating a gel on the ultrasound probe, scanning and generating a scanned image, dividing the scanned image into a strong echo area and a weak echo area, and detecting signal variation in the strong echo area of the scanned image to determine the state of the coated gel coated on the ultrasound probe.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 16, 2014
    Applicants: QISDA CORPORATION, QISDA (SUZHOU) CO., Ltd.
    Inventor: Tang-Chen Chang
  • Patent number: 8844360
    Abstract: A method for checking a mechanical integrity of at least two stabilizing elements includes providing the at least two stabilizing elements that mechanically interconnect blade airfoils of rotor blades of a turbine in a circumferential direction of the turbine in an installed state of the turbine. The at least two stabilizing elements are adjacent to one another and inter-engage to form an engagement section having a material volume of the at least two stabilizing elements in the engagement section. The material volume of the at least two stabilizing elements is scanned, in an automated manner using ultrasound, so as to determine whether cracks are present. The scanning is performed from an outside of the at least two stabilizing elements.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: September 30, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: James Knowles, Peter Schott, Pascal Maibach
  • Patent number: 8839672
    Abstract: Methods of combined ultrasound and photoacoustic imaging are provided. In some embodiments, the methods may be used to determine the location or positioning of a metal object in a sample. In other embodiments, the methods may be used to determine the composition of a sample surrounding a metal object. Other methods are also provided.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: September 23, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Stanislav Emelianov, Jimmy Su, Bo Wang, Andrei Karpiouk, Yun-Sheng Chen, Wolfgang Frey, Richard Bouchard, Kimberly Homan
  • Publication number: 20140260628
    Abstract: A method of nondestructively providing a volumetric examination of a bolt through a recess in the bolt head where the recess may have a varying or unknown surface geometry. The method first performs a phased array ultrasonic scan of the bolt's socket surface geometry. The results of the first scan are employed to set the focal laws of a second scan to perform the volumetric examination.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Westinghouse Electric Company LLC
    Inventors: Russell S. Devlin, Patrick M. Minogue, John P. Lareau
  • Patent number: 8830116
    Abstract: A radar wave sensing apparatus including a rotation element, a nanosecond pulse near-field sensor and a control unit is provided. The nanosecond pulse near-field sensor emits an incident radar wave and receives a reflection radar wave of the incident radar wave hitting on a surface of the rotation element to obtain a repetition frequency variation of the reflection radar wave corresponding to the incident radar wave. The control unit calculates a vibration of the rotation element according to the repetition frequency variation.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kuang-I Chang, Sheng-Hang Wang, Yu-Jen Su, Mu-Yu Tsai, Jyun-Long Chen
  • Publication number: 20140216160
    Abstract: The present invention relates to a device for the non-destructive testing of a test object by means of ultrasound. The device comprises a control unit provided for driving a phased array ultrasonic test probe and a display. The control unit is configured to operate the phased array test probe in the pulse echo operation and to control the insonification angle ? of the phased array test probe into the test object. The pulse echo from the test object received by the phased array test probe is analyzed by the control unit, wherein the control unit generates an A-scan or/and a B-scan of a received pulse echo on the display. The invention further relates to a method for operating such a device and a method for the non-destructive inspection of a test object by means of ultrasound in accordance with the TCG method, using a phased array ultrasonic test probe.
    Type: Application
    Filed: July 4, 2012
    Publication date: August 7, 2014
    Applicant: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventor: Peter Renzel
  • Patent number: 8784318
    Abstract: Embodiments of the present invention provide an ultrasound scanner equipped with an image data processing unit that can perform adaptive parameter optimization during image formation and processing. In one embodiment, an ultrasound system comprises a channel data memory to store channel data obtained by digitizing ultrasound image data produced by an image scan; an image data processor configured to process the stored channel data in the memory to reconstruct an ultrasound image for each of a plurality of trial values of at least one parameter to be optimized; and a parameter optimization unit configured to evaluate an image quality of the reconstructed ultrasound image for each trial value of the at least one parameter, and to determine the optimized value of the at least one parameter based on the evaluated image quality.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 22, 2014
    Assignee: Zonare Medical Systems, Inc.
    Inventors: David J. Napolitano, Ching-Hua Chou, Ting-Lan Ji, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y. L. Mo, Robert W. Steins
  • Patent number: 8746070
    Abstract: A method and apparatus for phased array ultrasound testing of piping that complies with present-day codes but allows more thorough flaw detection capability. A tapered wedge with a concave face is calibrated by submerging the wedge under sonic coupling fluid, thereby allowing sonic coupling of the concave wedge face to a flat reference plate with minimal error. The flaw detector is configured to display A-scan and S-scan data concurrently and to sweep between 30-70 degrees. A-scan data corresponding with conventional preferred inspection incidence angle is selected, and reject levels are set to 0% to meet current inspection standards. S-scan data allows for detection of flaws that might otherwise be undetectable using only A-scan data. A palette adjustment feature remaps the colors assigned to lower intensity return values so that they are not displayed on the S-scan, thereby de-cluttering sectorial data without filtering A-scan data.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Tejas Testing & Inspection, Inc.
    Inventors: William Carol Tippit, Jr., C. Michael Lewis
  • Patent number: 8715188
    Abstract: Real-time scanning and display of images is synchronized for ultrasound imaging. The scanning rate requirements for obtaining a frame of ultrasound data are determined. The video rate for imaging is adjusted as a function of the scanning rate.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 6, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Todd D. Willsie, William M. Derby, Jr.
  • Patent number: 8707787
    Abstract: A method and apparatus for detecting an inconsistency in an object. Signals sent on a plurality of paths in the object are received at a plurality of transducer units associated with the object. Time delays are identified for a number of modes in the signals received at the plurality of transducer units. A determination is made as to whether a time delay in the time delays for the number of modes in the signals has a difference from a number of other time delays for the number of modes that is greater than a desired amount.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 29, 2014
    Assignee: The Boeing Company
    Inventors: Hoon Sohn, Chul Min Yeum, Jeong-Beom Ihn
  • Patent number: 8684934
    Abstract: Embodiments of adaptively performing clutter filtering are disclosed. In one embodiment, by way of non-limiting example, an ultrasound system comprises: an ultrasound data acquisition unit configured to transmit and receive ultrasound signals to and from a target object to output a plurality of ultrasound data corresponding to each pixel of a color Doppler mode image; and a processing unit in communication with the ultrasound data acquisition unit and being configured to calculate a power difference value corresponding to each of the pixels based on the plurality of ultrasound data, determine whether the power difference value is equal to or larger than a first threshold value, and if the power difference value is equal to or larger than the first threshold value, then perform first clutter filtering upon the plurality of ultrasound data, or if the power difference value is less than the first threshold value, then perform second clutter filtering upon the plurality of ultrasound data.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Samsung Medison Co., Ltd.
    Inventor: Tae Yun Kim
  • Publication number: 20140060194
    Abstract: An ultrasonic transducer holder with a floating head is disclosed. This transducer holder allows the waterpath of the ultrasonic signal to be maintained over a contoured surface. Maintaining a constant waterpath between a transducer and the piece being inspected allows for inspection of surfaces that normally would not be capable of inspection by prior ultrasonic transducer holders.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: United Technologies Corporation
    Inventor: Karl M. Gruca
  • Patent number: 8656782
    Abstract: A method for the non-destructive material testing of a test object at least solid in some regions by subjecting the test object to ultrasonic waves and capturing the ultrasonic waves reflected within the test object. The method includes the steps, computer-supported dividing of the test object into a prescribed number of volume elements, subjecting the test object to ultrasound on a plurality of surface elements while probing the surface or at least one surface segment of the test object, capturing the sound waves reflected at the volume element while probing the plurality of surface elements on the surface or at least the surface segment of the test object, and in-phase addition of the sound waves reflected at the same volume elements and captured at various surface elements of the surface of the test object. Angle-dependent amplitude distribution is used in the sound field of the test head.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rainer Boehm, Matthias Goldammer, Werner Heinrich
  • Patent number: 8624589
    Abstract: An ultrasonic probe that uses the magnetostrictive effect to generate and detect a surface-coupled guided wave for the purpose of inspecting a thick-walled structure for surface defects. A transmitter sensor and a receiver sensor are especially designed to generate and detect short wavelengths that will couple to only one surface of the plate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Southwest Research Institute
    Inventors: Alan R. Puchot, Charles E. Duffer, Sang Y. Kim, Adam C. Cobb, Pavan K. Shukla
  • Patent number: 8601876
    Abstract: The invention may be embodied as a fingerprint scanner having an ultrasonic wave detector, a platen, an ultrasonic wave generator located between the detector and the platen. The invention may be embodied as a method of scanning a finger. One such method includes providing a platen, a detector and a generator, the generator being placed between the platen and the detector. A finger may be provided on the platen, and an ultrasound wave pulse may be sent from the generator toward the finger. The wave pulse may be reflected from the finger, and received at the detector. The received wave pulse may be used to produce an image of the finger.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 10, 2013
    Assignee: Qualcomm Incorporated
    Inventors: John K. Schneider, Jack C. Kitchens, James T. Baker
  • Patent number: 8596126
    Abstract: A method and apparatus for collecting ultrasonic test data from a railway wheel with an ultrasonic testing apparatus is described. The railway wheel is supported by two drive rollers, each having an indentation which engages with and rotates the wheel. An indexing transducer moves across the rotating wheel, collecting ultrasonic test data while a fixed transducer correlates a reference position on the wheel to the collected test data. To maintain the accuracy of the reference position to the collected test data, it is desirable to maintain the rotational stability of the wheel, minimizing any dynamic instability caused by dimensional tolerances in the wheel. To mitigate instabilities resulting from dimensional tolerances, the indentation of the drive rollers, which engage and drive the flange of the wheel, is adjustable by the flexing design of the drive rollers to maintain frictional contact between the wheel and the drive roller.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Amsted Rail Company, Inc.
    Inventors: John R. Oliver, John D. Oliver
  • Patent number: 8596125
    Abstract: A method and apparatus for collecting ultrasonic test data from a railway wheel with an ultrasonic testing apparatus is described. The railway wheel is supported by two drive rollers, each having an indentation which engages with and rotates the wheel. An indexing transducer moves across the rotating wheel, collecting ultrasonic test data while a fixed transducer correlates a reference position on the wheel to the collected test data. To maintain the accuracy of the reference position to the collected test data, it is desirable to maintain the rotational stability of the wheel, minimizing any dynamic instability caused by dimensional tolerances in the wheel. To mitigate instabilities resulting from dimensional tolerances, the indentation of the drive rollers, which engage and drive the flange of the wheel, are variably spaced using a resilient member to maintain frictional contact between the wheel and the drive roller.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Amsted Rail Company, Inc.
    Inventors: John R Oliver, John D. Oliver
  • Publication number: 20130312526
    Abstract: With a detector in which detection elements are placed in a spherical shape, a uniform resolution area is narrow. An acoustic-wave acquisition apparatus of the present invention is equipped with a detector including a plurality of detection elements that receive acoustic waves from a subject, the receiving surfaces of at least some of the detection elements being at different angles. The apparatus includes a scanning unit configured to move at least one of the subject and the detector to change the relative position of the subject and a highest-resolution area determined depending on the placement of the detection elements.
    Type: Application
    Filed: February 6, 2012
    Publication date: November 28, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takuji Oishi
  • Patent number: 8578779
    Abstract: An ultrasound scanner (100) which has a plurality of ultrasound transducers (104) directed normal to a scanning surface (106) to scan a workpiece (114), the scanner (100) comprising a couplant filled latex rubber sheath (106) shaped to the surface of a workpiece (114).
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: November 12, 2013
    Assignee: Airbus Operations Limited
    Inventor: Andrew Bond-Thorley
  • Patent number: 8570622
    Abstract: A method of monitoring a sequence of documents passing along a transport path is described. The method including: operating a radiation transmitter with a control signal at a first, working, level to cause radiation at a first intensity to impinge on one side of a document as it passes an inspection position in the transport path; receiving at a radiation receiver, radiation from the transmitter that has passed through the document, the radiation receiver generating an output signal with a level related to the intensity of the received radiation; and monitoring the output signal to detect the presence and/or a characteristic of the document.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: October 29, 2013
    Assignee: De la Rue International Limited
    Inventors: Cyril Pellaton, Marco Bart, Giuseppe Acunto, Michael Enz
  • Patent number: 8496588
    Abstract: Embodiments of the present invention are directed to methods of rapidly obtaining ultrasonic images of the eye using a set of procedural options that can be automated by a positioning mechanism that can be controlled by software.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: July 30, 2013
    Assignee: Arcscan, Inc.
    Inventors: George J. Eilers, J. David Stienmier, Wes Weber, Eric Osmann, Randy Rasmussen, Paul McGregor, Olga Medvedeva
  • Patent number: 8459120
    Abstract: A method and apparatus for ultrasonic inspection of one or more parts, in which one or more parts to be inspected are transferred from a parts carrier to a scan nest that is located in the scanning station. The parts are restrained in the scan nest and then scanned. A pick and place mechanism is used to transfer the parts to be inspected between the parts carrier the scan nest. The inspection path may be altered if a missing part is detected. In one embodiment, a first gas flow port located on the pick and place mechanism or on the transducer holder is used to blow ultrasonic coupling fluid from the front surface of the parts in the scan nest after they have been scanned. In a further embodiment, two or more scan nests are used for parallel operation.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: June 11, 2013
    Assignee: Sonix, Inc.
    Inventors: Paul Ivan John Keeton, Sushma Kalavagunta
  • Patent number: 8453508
    Abstract: A computer with a proper program generates a phased array sequence of signals. In a pulser with delays, the signals are fed through a multiplexor into a water wedge that is attached to a valve being tested. For a sequential operation of the valves from the open to the closed position, ultrasonic signals are transmitted through the fluid contained in the valve and reflected back through piezo-electric crystals to the multiplexor. By summation and merger of the signals, an image can be developed of the operation of the valve to determine if the valve is operating properly. By use of the water wedge, the top plate of the valve appears to disappear because the water wedge has the same refractive angle as the fluid contained in the valve.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 4, 2013
    Assignee: IHI Southwest Technologies, Inc.
    Inventors: Jesse R. Delgado, Hector Diaz
  • Patent number: 8381593
    Abstract: With a certain pipeline, either underground or deposited on a sea/lake bottom, the formation of critical faults is determined and localized, which arise in the walls of the pipeline, or the growth of an already localized fault is monitored, through a method which detects, by acoustic sensors regularly distributed along the pipeline, the ultrasounds diffused along the walls of the pipeline itself upon the formation of a critical fault, or when a controlled fault increases, and processing, by a remote processor, the digital signals associated with the sound waves to identify the position or evaluate the development of a critical fault.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 26, 2013
    Assignee: ENI S.p.A.
    Inventors: Gianpietro De Lorenzo, Giuseppe Giunta, Alfredo Montini
  • Publication number: 20120285249
    Abstract: A device for conducting an ultrasonic inspection of an object of interest comprises a base member. In addition, the device comprises a track coupled to the base member. Further, the device comprises a carriage moveably coupled to the track. Still further, the device comprises a drive system coupled to the carriage and configured to move the carriage linearly along the track. Moreover, the device comprises an ultrasonic probe coupled to the carriage.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 15, 2012
    Applicant: BP CORPORATION NORTH AMERICA INC.
    Inventor: John James Nyholt
  • Publication number: 20120255360
    Abstract: A method and apparatus for phased array ultrasound testing of piping that complies with present-day codes but allows more thorough flaw detection capability. A tapered wedge with a concave face is calibrated by submerging the wedge under sonic coupling fluid, thereby allowing sonic coupling of the concave wedge face to a flat reference plate with minimal error. The flaw detector is configured to display A-scan and S-scan data concurrently and to sweep between 30-70 degrees. A-scan data corresponding with conventional preferred inspection incidence angle is selected, and reject levels are set to 0% to meet current inspection standards. S-scan data allows for detection of flaws that might otherwise be undetectable using only A-scan data. A palette adjustment feature remaps the colors assigned to lower intensity return values so that they are not displayed on the S-scan, thereby de-cluttering sectorial data without filtering A-scan data.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Inventors: WILLIAM CAROL TIPPIT, JR., C. MICHAEL LEWIS
  • Patent number: 8276444
    Abstract: A method for ascertaining and monitoring fill level of a medium in a container a field device using a travel time, measuring method, wherein transmission signals are transmitted and reflection signals received. The received reflection signals are registered as echo signals in an echo function, wherein masking curve, evaluation curves and/or echo parameters of the echo signals in the echo function are ascertained or predetermined, as well as stored in a first measuring cycle. By a static echo search algorithm, through the masking curve, the evaluation curve, the echo parameters, position and/or amplitude of at least one wanted echo signal are/is ascertained, wherein, a dynamic echo search algorithm, a continuous echo tracking of positional changes and/or amplitude changes of individual echo signals and/or the wanted echo signal in the echo function is performed.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: October 2, 2012
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Alexey Malinovskiy, Edgar Schmitt, Dietmar Spanke
  • Patent number: 8240211
    Abstract: An ultrasonic probe for optical detection of ultrasonic waves includes a membrane integrated into the probe for contact with a body, the membrane being excited to vibration by reflected ultrasonic waves, leading to a change in optical path length of a beam of light directed at the membrane, which change is determined interferometrically.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 14, 2012
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Uwe D. Zeitner, Sicco I. Schets, Eliseo V. Sobrino
  • Patent number: 8225667
    Abstract: A self propelled scanning device is disclosed. The device includes a self propelled chassis that is locomotive across a surface to be scanned, a translator attached to the chassis, and a carriage attached to the translator and adapted to receive a scanner. The translator selectively moves the carriage in at least one dimension across the surface to be scanned.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 24, 2012
    Assignee: Veracity Technology Solutions, LLC
    Inventors: Jay Hanan, Walter Matulewicz
  • Patent number: 8215173
    Abstract: An ultrasonic testing method to identify a stuck joint between two workpieces utilizing an ultrasonic probe to transmit ultrasonic (US) beams into the joint area and capture the associated US reflections. The method transmits two separate US beams fired in very close proximity to one another. The probe then captures a plurality of US reflections. The method looks for subtle variations in a high gain A-scan presentation of a high gain reflected beam, while using a low gain US beam to identify the particular region on the high gain A-scan presentation in which to look for signs of a stuck joint. Subtle variations within a particular region of the high gain A-scan presentation identify stuck joints. The method is applicable to metals and nonmetals and is not limited to fusion welding, but may also be used with solid state welds, brazed and soldered joints, and adhesively joined workpieces.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: July 10, 2012
    Inventors: Roger Spencer, Margarit Lozev, Ta-Chieh Huang
  • Patent number: 8210042
    Abstract: A spiral wound module assembly comprising: a permeate collection tube, at least one membrane envelope wound about the permeate collection tube, an outer module housing, and at least one acoustic transducer located adjacent to the permeate collection tube. Several embodiments are disclosed including a stand-alone probe adapted for insertion into the permeate collection tube. In several other embodiments, one or more transducers are secured to the inner surface of the permeate collection tube.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 3, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: William E. Mickols, Michael S. Koreltz, David J. Moll, Donald B. Streeter
  • Patent number: 8205500
    Abstract: An ultrasound inspection system is provided for inspecting an object. The inspection system includes an ultrasound probe configured to scan the object and acquire a plurality of ultrasound scan data. The inspection system further includes a processor coupled to the ultrasound probe and configured to apply a transfer function to the ultrasound scan data to compensate for distortion of a plurality of ultrasound signals through the object and thereby generate a plurality of compensated ultrasound scan data, and to process the compensated ultrasonic scan data to characterize a feature in the object.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 26, 2012
    Assignee: General Electric Company
    Inventors: Yanyan Wu, Edward James Nieters, Thomas James Batzinger, Nicholas Joseph Kray, James Norman Barshinger, Jian Li, Waseem Ibrahim Faidi, Prabhjot Singh, Francis Howard Little, Michael Everett Keller, Timothy Jesse Sheets
  • Patent number: 8196471
    Abstract: The present invention relates to an ultrasonic probe for producing a real-time three dimensional live action image (a four dimensional image), which has a long lifetime, and an improved image quality, can prevent malfunction.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 12, 2012
    Assignee: Prosonic Co., Ltd.
    Inventors: Jin Ho Han, Dong Hyun Kim, In Seong Song
  • Publication number: 20120111118
    Abstract: A method and apparatus for ultrasonic inspection of one or more parts, in which one or more parts to be inspected are transferred from a parts carrier to a scan nest that is located in the scanning station. The parts are restrained in the scan nest and then scanned. A pick and place mechanism is used to transfer the parts to be inspected between the parts carrier the scan nest. The inspection path may be altered if a missing part is detected. In one embodiment, a first gas flow port located on the pick and place mechanism or on the transducer holder is used to blow ultrasonic coupling fluid from the front surface of the parts in the scan nest after they have been scanned. In a further embodiment, two or more scan nests are used for parallel operation.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Applicant: SONIX, INC.
    Inventors: Paul Ivan John Keeton, Sushma Kalavagunta
  • Patent number: 8166822
    Abstract: The embodiments contemplate methods and devices for communicating an acoustic emission via an array of transducers and wirelessly communicating data via a transceiver. The transceiver may be in communication with the array of transducers. The embodiments also contemplate providing power for the acoustic emission via a power source and processing the data at a relatively remote location with respect to the power source. In addition, the embodiments contemplate providing an indication at a relatively remote location with respect to the power source. The indication may provide, at least in part, numerical information regarding the acoustic emission.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 1, 2012
    Assignee: Penrith Corporation
    Inventors: Joseph A. Urbano, Kevin S. Randall, Jodi Schwartz Klessel, Michael G. Cannon
  • Publication number: 20120090395
    Abstract: A system and method for compensating ultrasonic sensors mounted on a vehicle for speed of sound variations. The ultrasonic sensor is operatively coupled to a power train control module having a pressure sensor that continuously monitors atmospheric pressure and a controller configured for computing a compensated speed of sound using the monitored atmospheric pressure. The ultrasonic sensor sends an ultrasonic wave and determines the time lag in receiving the reflected ultrasonic wave from an object. Subsequently, the ultrasonic sensor generates a signal corresponding to the relative distance between the vehicle and the object using the compensated speed of sound and the time lag.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: ERICK MICHAEL LAVOIE
  • Patent number: 8156812
    Abstract: Method for non-destructive inspection of defects in a surface of a pipeline or storage tank. The method includes carrying out a first way of non-destructive inspection for determining a first defect pattern and carrying out a second way of non-destructive inspection for determining a second defect pattern. The method includes identifying at least one defect of the first defect pattern and at least one defect of the second defect pattern which represent one and the same defect, and comparing the dimensions and optionally also the positions of the identified defects so as to obtain a difference in dimensions and optionally also in the positions. The method also includes obtaining a plurality of such differences and obtaining at least one parameter representing said differences, and correcting the dimensions and optionally also the positions of defects of the first defect pattern by using the at least one parameter.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 17, 2012
    Assignee: Röntgen Technische Dienst B.V.
    Inventors: Munendra S. Tomar, Martin Fingerhut, Deli Yu
  • Publication number: 20120055252
    Abstract: A method for the non-destructive material testing of a test object at least solid in some regions by subjecting the test object to ultrasonic waves and capturing the ultrasonic waves reflected within the test object. The method includes the steps, computer-supported dividing of the test object into a prescribed number of volume elements, subjecting the test object to ultrasound on a plurality of surface elements while probing the surface or at least one surface segment of the test object, capturing the sound waves reflected at the volume element while probing the plurality of surface elements on the surface or at least the surface segment of the test object, and in-phase addition of the sound waves reflected at the same volume elements and captured at various surface elements of the surface of the test object. Angle-dependent amplitude distribution is used in the sound field of the test head.
    Type: Application
    Filed: April 4, 2008
    Publication date: March 8, 2012
    Inventors: Rainer Boehm, Matthias Goldammer, Werner Heinrich
  • Patent number: 8095328
    Abstract: This present specification provides, amongst other things, an electro-optical monitoring system for obtaining a once-per-revolution signal based on the surface reflection of a rotating device that mandates non-contacting sensor input in potentially hostile environments. The system can use optical and electronic sections to illuminate and detect surface reflections from the rotating surface using existing mounting locations on the periphery of the machine to be measured. The electronic portion is configured to determine a unique mark as the once-per-revolution marker or allow an attending operator to assign a specific marker based on the observed reflected pattern. The optical portion consists of a light source, receiver, and optics that allow for focused and directed light paths.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: January 10, 2012
    Assignee: Cognitive Vision Inc.
    Inventors: John Gordon Thomas, Peter James Neild, Raymond Joseph Schumacher
  • Patent number: 8079263
    Abstract: The disclosed embodiments include a method, system, and device for conducting ultrasound interrogation of a medium. The novel method includes transmitting a non-beamformed or beamformed ultrasound wave into the medium, receiving more than one echoed ultrasound wave from the medium, and converting the received echoed ultrasound wave into digital data. The novel method may further transmit the digital data. In some embodiments, the transmitting may be wireless. The novel device may include transducer elements, an analog-to-digital converter in communication with the transducer elements, and a transmitter in communication with the analog-to-digital converter. The transducers may operate to convert a first electrical energy into an ultrasound wave. The first electrical energy may or may not be beamformed. The transducers also may convert an echoed ultrasound wave into a second electrical energy.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: December 20, 2011
    Assignee: Penrith Corporation
    Inventors: Kevin S. Randall, Jodi Schwartz Klessel, Anthony P. Lannutti, Joseph A. Urbano, Raymond F. Weymer, Jr.
  • Patent number: 7997138
    Abstract: A method for predicting the performance of tubular goods includes using a computer readable three-dimensional representation of tubular good which includes computer readable measurements of discrete segments of the wall of said tubular acquired by ultrasonic detection means, along with associated data representing the position of discrete segment and optionally ovality data to predict the effect of stress conditions, including tensile, bending, collapse, burst and aging forces upon said tubular and optionally analyzing sequential inspection of the same tubular good over a period of time predict when failure is likely to occur, and to avoid failure while maximizing the use of the tubular good.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 16, 2011
    Inventors: George M. Sfeir, Jeffrey S. Banks, Dennis L. Rogers
  • Patent number: 7987721
    Abstract: The invention relates to a method and a measuring and evaluation device for determining defects in a turbine blade and to a fixing device for fixing a probe to a turbine blade surface.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: August 2, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Clossen-von Lanken Schulz, Michael Opheys
  • Patent number: 7984650
    Abstract: A scanner device for performing nondestructive testing of a tube includes an ultrasonic probe, a waveguide (wedge) secured relative to the probe, and an encoder secured relative to the probe. The waveguide has a surface contoured in relation to a radius of a tube to be inspected, and the encoder provides a signal indicative of a location of the probe relative to the tube as the probe, waveguide, and encoder are moved in a direction of a longitudinal axis of the tube. In one example, the tube is part of a waterwall, and the surface of the waveguide extends substantially from a web on one side of the tube to a web on the opposite side of the tube. The waveguide may be removably secured relative to the probe such that the waveguide can be replaced with a waveguide having a different surface contour in relation to a different radius of a different tube to be inspected.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: July 26, 2011
    Assignee: Alstom Technology Ltd
    Inventor: Jacques L. Brignac
  • Patent number: 7984651
    Abstract: The disclosed embodiments include a method, system, and device for conducting ultrasound interrogation of a medium. The novel method includes transmitting a non-beamformed or beamformed ultrasound wave into the medium, receiving more than one echoed ultrasound wave from the medium, and converting the received echoed ultrasound wave into digital data. The novel method may further transmit the digital data. In some embodiments, the transmitting may be wireless. The novel device may include transducer elements, an analog-to-digital converter in communication with the transducer elements, and a transmitter in communication with the analog-to-digital converter. The transducers may operate to convert a first electrical energy into an ultrasound wave. The first electrical energy may or may not be beamformed. The transducers also may convert an echoed ultrasound wave into a second electrical energy.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: July 26, 2011
    Assignee: Penrith Corporation
    Inventors: Kevin S. Randall, Jodi Schwartz Klessel, Anthony P. Lannutti, Joseph A. Urbano
  • Patent number: 7946177
    Abstract: A method of detecting a deviation angle in a single-crystal metal structure is disclosed. The single-crystal metal structure has a crystallographic orientation, a length, a first side, a second side, and a first axis extending through the structure. The method comprises determining the length of the single-crystal metal structure along the first axis, transmitting a signal through the single-crystal metal structure from the first side, the signal oriented to propagate along the first axis, receiving the signal, determining a time-of-flight for the signal to traverse the length from the first side to the second side, determining a speed of the signal based on the time-of-flight and the length, and comparing the speed of the signal to a reference speed to detect the deviation angle.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: May 24, 2011
    Assignee: Honeywell International Inc.
    Inventors: Harry Lester Kington, Surendra Singh, Mark C. Morris