Abstract: A shift track selection rod and a shifting element are provided which can be connected to one another without additional fastening elements. A system consists of the shift track selection rod and the shifting element. A transmission actuator includes the system. A transmission includes the system or the transmission actuator.
Abstract: A selector mechanism includes a selector interface having a detent member. An artificial feel positioner defines a plurality of artificial feel positions that correspond to selectable positions of the selector interface. The plurality of artificial feel positions are connected via a screw channel that helically extends along the artificial feel positioner. A motor rotationally operates the artificial feel positioner to automatically operate the detent member through the screw channel to move the detent member and the selector interface to a desired position of the detent member and the selector interface.
Type:
Grant
Filed:
December 3, 2020
Date of Patent:
April 30, 2024
Assignee:
GHSP, Inc.
Inventors:
Jeffrey Lee Bays, Phillip Torrey Merrill, II
Abstract: A force transmission transmits forces received by three levers to an input gimbal plate having three support points. The input gimbal play may in turn transmit the force to a wrist assembly coupled to a surgical tool. The three axes of rotation for the three levers are parallel. Two of the levers may have half-cylinder surfaces at an end of the lever to receive a support point of the input gimbal plate. Two of the levers may be supported with one degree of rotational freedom orthogonal to the axis of rotation of the fulcrum. A spring may draw the second and third levers toward one another. Two levers may have stops that bear against the support points. The force transmission may include a parallelogram linkage that includes a rocker link pivotally coupled to the first lever and having a flat surface that supports the first gimbal support point.
Type:
Grant
Filed:
February 24, 2023
Date of Patent:
April 30, 2024
Assignee:
Intuitive Surgical Operations, Inc.
Inventors:
Thomas G. Cooper, S. Christopher Anderson
Abstract: Provided is a method of monitoring the structural integrity of a supporting structure of a wind turbine, which method includes the steps of determining a fore-aft tower oscillation frequency; determining a side-to-side tower oscillation frequency; computing a working structural indicator value from the fore-aft tower oscillation frequency and the side-to-side tower oscillation frequency; comparing the working structural indicator value to a reference working structural indicator value; and issuing an alarm if the difference between the working structural indicator value and the reference structural indicator value exceeds a predefined threshold. Also provided is a system for monitoring the structural integrity of a supporting structure of a wind turbine, a wind turbine, and a computer program product for carrying out the steps of the inventive method.
Abstract: In some implementations, a controller may cause a gearbox coupled to a rotor to shift between a first gear ratio and a second gear ratio one or more times. The controller may obtain a first set of position data that identifies respective first positions of a gear selector of the gearbox for each shift to the first gear ratio, and a second set of position data that identifies respective second positions of the gear selector of the gearbox for each shift to the second gear ratio. The controller may determine a first calibrated position of the gear selector for a shift to the first gear ratio based on the first set of position data and a second calibrated position of the gear selector for a shift to the second gear ratio based on the second set of position data.
Type:
Grant
Filed:
June 7, 2021
Date of Patent:
February 7, 2023
Assignee:
Caterpillar Paving Products Inc.
Inventors:
Ryan Adam Enot, Nathaniel Doy, Brian Joe Schlenker
Abstract: An L-shaped bracket (151) is fixed to a top end portion of a rack shaft (141) of a selecting actuator (133) of a transmission actuator unit (131) through a rotatable joint (152). An actuator housing (161) of a shifting actuator (134) is supported on a mounting surface (151a) of the L-shaped bracket (151) so as to be attachable to and detachable from the mounting surface (151a) through a lock mechanism (154) (a lock pin (155) and a lock hole (162a)). The shifting actuator (134) can be mounted with the shifting actuator (134) being reversed 180 degrees.
Abstract: A double-shockproof spring mechanism, a cam ejection mechanism and a single-side guide rail ejection bin, which relates to the technical field of pet snack device components. The double-shockproof spring comprises a guide rod and a first elastic element, a slider and a second elastic element which are sleeved on the guide rod in sequence, wherein the slider is slidable along the guide rod under the action of the first elastic element and the second elastic element; the cam ejection mechanism comprises a power device, an ejection cam, a pushing plate and a double-shockproof spring mechanism; and the single-side guide rail ejection bin comprises an ejection bin body and a cam ejection mechanism mounted on the ejection bin body; the single-side guide rail ejection bin of the present invention not only can project pet snacks, but also project periodically and continuously.
Abstract: A large manipulator including an extendable folding boom. The extendable boom includes a turntable that is rotatable about a vertical axis and boom segments pivotable at folding joints about folding axes in relation to an adjacent boom segment or the turntable via respective drive assemblies. The extendable boom further includes rotary angle sensors configured to detect folding angles between adjacent boom segments or between one of the boom segments and the adjacent turntable. The extendable boom further includes an inclination sensor arranged at a last of the boom segments forming a boom tip and a computing unit configured to establish an elastic deformation of the extendable folding boom based on the detected folding angles and the inclination of the last boom segment.
Abstract: A vehicle power output control method, apparatus and system are provided. The method includes: collecting an image of a road surface on which a vehicle drives currently, and recognizing, according to the image of the road surface, the type of the road surface on which the vehicle drives currently; starting, according to the current type of the road surface, a terrain mode corresponding to an all-terrain adaptive mode; determining, in the terrain mode, a power output strategy corresponding to the current terrain mode; and adjusting an output torque of an engine according to a power output curve corresponding to the current power output strategy, the power output curve being a function curve using a stepping depth of an accelerator pedal as a variable and the output torque of the engine as an output. The method facilitates outputting an adaptive power by an engine when a vehicle drives on different road surfaces.
Abstract: A two-speed transmission for towed agricultural equipment activated through power take-off of a towing machine comprising an input shaft. A pinion arranged on the input shaft entering into a transmission box activated by the input shaft through a hypoid tooth and/or conical coupling; a crown gear fixed onto an intermediate shaft arranged orthogonal to the input shaft having two different dimension gears. One of the two gears with a clutch is connected to the intermediate shaft, the gears of which being coupled with a gear on an output shaft. The connection of the intermediate shaft/gear of the output shaft without clutch one of the gears has a free wheel connection with the respective shaft. The output shaft is arranged in the same plane as the input shaft and the output shaft is connected at its two ends outside the transmission box with a shredding head.
Abstract: A manual transmission includes a housing having a longitudinal axis and an aperture, and a shift lever assembly comprising a shift lever having a pivot ball. At least three shift lever sockets are coaxially disposed along the longitudinal axis and within the aperture, with each of the at least three shift lever sockets being configured to receive the pivot ball therein when the shift lever is disposed at a corresponding, different discrete longitudinal position along an axis parallel to the longitudinal axis of the housing. A first shift lever assembly comprises a cover plate and a shift tower supporting the shift lever, wherein the shift tower is substantially centered within a periphery of the cover plate. A second shift lever assembly has a shift tower offset from a center of the periphery of the cover plate.
Abstract: A seat drive device includes a first operation restricting portion provided to a first transmission member and restricting a second operation member from being operated to move from an original position to an adjustment position in a state where a first operation member has been operated to move from an original position to an adjustment position and the first transmission member has been operated to move in response thereto, and a second operation restricting portion provided to a second transmission member and restricting the first operation member from being operated to move from the original position to the adjustment position in a state where the second operation member has been operated to move from the original position to the adjustment position and the second transmission member has been operated to move in response thereto.
Abstract: A sequential shift gearbox converter assembly to convert a H-pattern gearbox to a sequentially shifted gearbox, the converter assembly including a shifting lever mounted relative to a converter housing, a drive arm mounted for movement driven by the shifting lever, a first shaped cam for rotation driven by the drive arm, a first gear for movement caused by movement of the first shaped cam, a second gear for movement caused by movement of the first gear, a second shaped cam mounted for movement when the second gear is moved, a reciprocating shifter member moved according to movement of the second shaped cam, a reciprocating shifter member moved according to movement of the second shaped cam to in turn move an elongate shifter rod of a gearbox transversely and a shifter rod rotating arm having a first portion biased into contact with the first shaped cam and a second portion to rotate the elongate shifter rod when urged to by the shape of the first cam during rotation thereof.
Abstract: A lever device includes a housing and a lever unit pivotally coupled to the housing. The lever unit includes a lever shaft and a pivot shaft that extends in a direction intersecting the lever shaft. The pivot shaft functions as a pivot axis of the lever unit when the lever is pivoted in a first direction. The housing includes a retainer that accommodates the pivot shaft. The pivot shaft includes first and second guides. The first guide slides on the retainer when the lever unit is pivoted in the first direction to permit movement of the lever unit. The second guide that slides on the retainer when the lever unit is operated in a second direction to permit movement of the lever unit.
Abstract: The invention relates to a gearshifting device (1), which is intended for a transmission and comprises a selector lever (2) that can be moved in such a manner that different shift positions (P, R, N, D, S, M+, M?) can be selected in at least two gearshift gates (3, 4) and that it is possible to shift between one of the gearshift gates (3, 4) and the at least one other gearshift gate (4, 3), and comprises at least one lock (5), which is used to block the traversing path of the selector lever (2) with respect to one of the gearshift gates (3, 4), in order to shift from one of the shift positions (P, R, N, D, S) into another of the shift positions (P, R, N, D, S).
Abstract: A control device includes an elongated mechanical transmission member (10; 110) interposed between the gearbox and a control member (100) for transmitting to the gearbox the commands imparted through the control member, in such a manner that the gear engaged by means of the gearbox is linked to the linear position of the transmission member (10; 110). The device is provided with a position sensor (26; 126) including a movable reference element (28; 128), the movement of which is univocally determined by the movement of a rigid end portion (14; 114) of the transmission member (10; 110), and a stationary detection element (30) for detecting the position of the reference element (28; 128).
Type:
Grant
Filed:
December 24, 2013
Date of Patent:
September 13, 2016
Assignee:
SILATECH S.r.l.
Inventors:
Guido Panizza, Kamal Mourad, Edoardo Mongarli
Abstract: A manual transmission for vehicles minimizes rotational inertia and improves rattle as a consequence of preventing unnecessary idling of a first speed gear and a reverse speed gear by maintaining a first input gear to be a free gear state at all shift-speeds except a first forward speed and a reverse speed.
Type:
Grant
Filed:
July 28, 2014
Date of Patent:
March 1, 2016
Assignee:
HYUNDAI MOTOR COMPANY
Inventors:
Wan Soo Oh, Jae Woong Hwang, Haeng Woo Park
Abstract: This manual transmission includes a connection changeover mechanism which changes the state of connection between the output shafts of the motor generator and the transmission in accordance with a gear stage established by a driver's shift lever operation. When a gear stage for low speed travel is established, a power transmission system is established between the output shafts of the motor generator and the transmission, and the motor speed reduction ratio is set to a first speed reduction ratio. When a gear stage for intermediate speed travel is established, a power transmission system is established between the output shafts of the motor generator and the transmission, and the motor speed reduction ratio is set to a second speed reduction ratio. When a gear stage for high speed travel is established, no power transmission system is established between the output shafts.
Abstract: A transmission assembly for operably coupling an input member to an output member includes a first cycloidal gear stage having a first gear ratio and a second cycloidal gear stage having a second gear ratio different than the first gear ratio. The transmission assembly also includes a shifting mechanism for selectively driving the output member with one of the first cycloidal gear stage and the second cycloidal gear stage.
Type:
Grant
Filed:
November 22, 2013
Date of Patent:
December 22, 2015
Assignee:
Techtronic Power Tools Technology Limited
Inventors:
Addison C. Kierspe, Kyle D. Turner, Kirton W. Neipp, Leonid D. Kapanzhi, William C. Buck
Abstract: A latching shifter with override feature is interfaced with a shift-by-wire transmission, wherein the latching of the shifter with respect to a gear cam is autonomously synchronized to a gear selected by the electronics of the transmission whenever the shifter is physically at another gear via autonomous actuation of a gear synchronization cam having an inclined cam follower guide surface. The incline urges the cam follower under its inherent biasing into the gear notch corresponding to the gear selected by the electronics of the transmission.
Abstract: A transmission is provided having an input member, an output member, four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes actuatable in combinations of two to establish a plurality of forward gear ratios and one reverse gear ratio. One of the torque transmitting devices includes a friction clutch and a binary clutch which have a spring-ball structure disposed therebetween.
Type:
Grant
Filed:
March 26, 2013
Date of Patent:
July 7, 2015
Assignee:
GM Global Technology Operations, LLC
Inventors:
Edward W. Mellet, James M. Hart, Daryl A. Wilton
Abstract: In a shift lever device, a first engagement portion or a second engagement portion of a shift lever is inserted into a first stopping hole or a second stopping hole of a strength gate when the shift lever is turned along a manual transmission hole, thereby stopping the shift lever from turning towards an automatic transmission hole side. In the shift lever, the first engagement portion and the second engagement portion are disposed at the vehicle front side and the vehicle rear side of a support body. An increase in size of the shift lever in the vehicle left-right direction due to the first engagement portion and the second engagement portion can accordingly be suppressed, and the turning rage of the shift lever in the vehicle left-right direction can be made smaller, thereby enabling a reduction in size of the shift lever device in the vehicle left-right direction.
Abstract: A non-contact sensor includes a substrate having a groove, two pattern coils arranged on opposite sides of the groove, a detected object connected to the shift lever and moved in cooperation with the shift lever along the groove, and a signal processing circuit that calculates a movement amount of the shift lever based on an output value provided from the pattern coils.
Abstract: A remote shifter apparatus for use in a manual transmission equipped vehicle includes a base, a length adjustable shift stick, a transmission shift lever engaging fastener and a linkage directly coupling the stick to the fastener to translate shift stick movement to the transmission lever. The shift stick is free to rotate laterally and longitudinally relative to the vehicle drive axis and about a ball joint to cause the transmission lever to be moved through its full range of motion for each gear. A mechanism is provided for enabling adjustment of the length of the shift stick to accommodate selective variations in throw length. The ball joint frictional relationship between shift stick and base is also selectively adjustable to provide a customizable shift feel to improve feedback to the driver.
Type:
Grant
Filed:
August 13, 2012
Date of Patent:
April 21, 2015
Inventors:
Colin J. Corey, William W. Washburn, Craig J. Corey
Abstract: A support structure for a shift lever includes a rotation shaft coupled to the shift lever, a base plate including a support that pivotally supports the rotation shaft to tiltably support the shift lever, a restriction member coupled to the base plate, and a fixing portion that fixes the restriction member to the base plate. The base plate includes a guide that guides the coupling of the restriction member to the base plate. The rotation shaft includes a main protrusion, which protrudes from an end surface of the rotation shaft in an axial direction, and an auxiliary protrusion, which protrudes in the axial direction from the end surface by a smaller protrusion amount than the main protrusion. The restriction member is fixed in contact with the main protrusion so that the restriction member cooperates with the support to restrict movement of the rotation shaft in the axial direction.
Abstract: Regardless of the shift range of the ācurrent shift stageā while the shift lever is at the home position, the shift range is necessarily shifted to N range if the operator presses the first button. Thus, the operator can shift the shift range from N range to R range or D range (N?R, N?D) if, while maintaining the pressed state of the first button, the operator moves the shift lever from the home position, which is at the center of the three shift positions, to A position or B position corresponding to indication R or indication D.
Abstract: Provided is an electronic circuit unit to be mounted within a casing of an automatic transmission for a vehicle. An electronic circuit body including circuit-side terminals protruding in an outward direction from a main-body, connectors to be connected to the electronic circuit body, a cover, and a base member having a placing face on which the cover, the electronic circuit body and the connectors are placed. The cover is provided with a main-body covering part, fitting-portion covering parts and which cover a fitting-portion of the circuit-side terminals and fitting parts of the wire-side terminals from a side opposing to the placing face, and a restricting part for regulating the detachment of the connectors from the fitting position to the detached position.
Abstract: Systems and methods for operating and interfacing to a transmission of a vehicle are presented. In one example, a human machine interface allows a driver to assign gear ratios or simulated gear ratios to gear position slots of a shifter. The assignment of gear ratios to gear position slots of a shifter may allow a driver to experience the feeling of driving a manually shifted transmission without having to operate a clutch.
Type:
Application
Filed:
August 28, 2013
Publication date:
March 5, 2015
Applicant:
Ford Global Technologies, LLC
Inventors:
Yuji Fujii, Marvin Paul Kraska, Jeffrey Allen Doering, Alex O`Connor Gibson, Joseph F. Kucharski, Gregory Michael Pietron, Eric Hongtei Tseng
Abstract: A transfer case having a shift mechanism. The shift mechanism may include a shift rail, a range shift assembly, a mode shift assembly, and a sector cam. The sector cam may control movement of the range shift assembly and the mode shift assembly when the sector cam is rotated.
Type:
Application
Filed:
September 3, 2013
Publication date:
March 5, 2015
Applicant:
ArvinMeritor Technology, LLC
Inventors:
Todd R. Ekonen, Matthew Starna, Laura Klemm, Edward Eshelman
Abstract: Utility vehicle transmission controls include a common pivot shaft extending transversely across at least part of the operator station. The common pivot shaft has an integral collar. A shift lever has a sleeve pivotably mounted on the common pivot shaft with a portion of the sleeve extending over the integral collar. A differential lock lever has a lower end with a sleeve pivotably mounted on the common pivot shaft with a portion extending over the integral collar adjacent the shift pivot so that the shift lever and differential lock lever independently pivot.
Type:
Grant
Filed:
April 20, 2011
Date of Patent:
January 27, 2015
Assignee:
Deere & Company
Inventors:
Brian David Seegert, William Thomas Ladwig, Stephan R. Hayden
Abstract: A rotating structure of a weight for a manual transmission includes a shift lever connected to a control shaft mounted in a control housing of the manual transmission and binding a shift stage selected by a select lever, a first gear part inserted into the control shaft to be operated together with the shift lever and having gears formed on its outer peripheral surface, a weight provided at one end of the shift lever and increasing rotational inertial force of the shift lever, and a second gear part connected to the weight and having gears formed on its outer peripheral surface to be engaged with the first gear part.
Abstract: A handheld power tool is provided with a shiftable gear that has at least two gear steps which are meant to be selected via a user control element disposed adjustably on the housing, in which the user control element actuates a transmission member that acts upon an adjustable gear component, and the user control element is intended to be adjusted between at least two detent positions that correspond to the gear steps of the gear. The transmission member is intended to be adjusted into the detent positions, which can be transmitted to the user control element via the coupling between the user control element and the transmission member.
Abstract: A control device for controlling a vehicle drive unit including an input member drivingly connected to an engine; an output member drivingly connected to a wheel; and a transmission device that includes engagement elements, that switches between shift speeds by control of engagement and disengagement of engagement elements, and that transmits a rotational driving force of the input member to the output member at a speed changed at a speed ratio of each of the shift speeds. The control device includes a control unit that controls the transmission device to achieve a one-way transmission speed in a running idle state in which a vehicle is running while the rotational driving force of the input member is not transmitted to the output member and a rotational speed of the engine is controlled to a predetermined idle speed.
Abstract: A sensor device having at least one sensor element, such as a Hall sensor element, and at least one magnet element that can move in relation to the sensor element. The sensor element has a number of differently magnetized regions. The sensor element is configured to issue a sensor signal, which represents a condition defined by a magnetization of a region of the magnet element located in the measurement range of the sensor element. The sensor element determines the condition by means of one of at least three pre-defined sensor signal values.
Abstract: A gear selector assembly for selecting a gear position of a transmission includes an internal mode switch having detent lever, a plurality of magnetic field sensors, a control module, a first power supply and a second power supply. The detent lever has a plurality of detents and a magnetized track, where the magnetized track includes a plurality of magnetized elements that are indicative a particular gear selector position. The magnetic field sensors are associated with each of the magnetized elements for sensing changes in a magnetic field of the magnetized track. The control module is in communication with each of the field sensors. Each of the field sensors sends an output current to the control module and the value of the output current is variable. The value of the output current is indicative of at least one of the following: the direction of the magnetic field from the corresponding magnetic track, a short circuit, and an open circuit.
Type:
Grant
Filed:
June 7, 2010
Date of Patent:
November 25, 2014
Assignee:
GM Global Technology Operations, LLC
Inventors:
Peter E. Wu, Richard E. Robinette, Mark A. Vernacchia, Jack P. Koski
Abstract: A power switching device for vehicle has at least first and second power switching mechanisms, a shared operating mechanism, and a housing accommodating the power switching mechanisms and the shard operating mechanism, the housing being integrally formed with a boss portion having a waiting mechanism, wherein the waiting mechanism includes drive and driven cylindrical shafts, and a coil spring connecting between the cylindrical shafts, both of the cylindrical shafts and the coil spring are arranged in a same axis, and are supported on an inner peripheral surface of the boss portion through drive and driven side needle roller bearings respectively, the coil spring is arranged inside the cylindrical shafts.
Abstract: The position sensor includes a shift lever used to select one of five ranges P, R, N, D, and B, fixed contacts corresponding to the ranges P, R, N, D, and B, and movable contacts configured to be electrically connected to the fixed contacts. The fixed contacts include regular fixed contacts, first backup fixed contacts, and second backup fixed contacts. The first and second backup fixed contacts have their lengths in the moving direction of the movable contacts configured to be longer than the length of the regular fixed contact that corresponds to the first and second backup fixed contacts.
Abstract: A method of operating a powertrain may include providing an automatic transmission disposed between a drive unit and an axle drive. One input shaft of the automatic transmission is connected by means of an operable clutch to the drive unit and an output shaft of the automatic transmission is connected to the axle drive. A transmission-side, mobile auxiliary drive is configured to couple with a transmission-side connection. The transmission-side connection point for the auxiliary drive is decoupled from the axle drive and, at least partially from the drive unit. The rotational rate of the transmission-side connection point for the auxiliary drive and the auxiliary drive are synchronized, whereby the auxiliary drive is coupled to the connection point. The transmission-side connection point for the auxiliary drive, and thereby the auxiliary drive, is coupled to the drive unit as well as the axle drive.
Abstract: A device for operating functions of a motor vehicle has an operator control element which serves to control a transmission of the motor vehicle. A switching element for activating and/or releasing a parking brake of the motor vehicle is arranged on the operator control element.
Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously and infinitely variable transmissions (IVT). In one embodiment, a variator is adapted to receive a control system that cooperates with a shift nut to actuate a ratio change in an IVT. In another embodiment, a neutral lock-out mechanism is adapted to cooperate with the variator to, among other things, disengage an output shaft from a variator. Various inventive mechanical couplings, such as an output engagement mechanism, are provided to facilitate a change in the ratio of an IVT for maintaining a powered zero operating condition. In one embodiment, the output engagement mechanism selectively couples an output member of the variator to a ratio adjuster of the variator. Embodiments of a ratio adjuster cooperate with other components of the IVT to support operation and/or functionality of the IVT. Among other things, user control interfaces for an IVT are disclosed.
Type:
Grant
Filed:
September 12, 2013
Date of Patent:
July 29, 2014
Assignee:
Fallbrook Intellectual Property Company LLC
Abstract: An operating shift apparatus for a transmission may improve shift feeling using variable rotational inertia according to rotation. The operating shift apparatus for a transmission may include a control shaft is disposed on a transmission case, a select lever which is connected to the control shaft and selects a shift gear, a shift lever which is connected to the control shaft and engages the selected shift gear and a weight disposed to the shift lever for enhancing rotational inertia of the shift lever, wherein the shift lever and the weight are independently formed.
Abstract: When an operation lever is operated to either a speed changing path or a neutral path, a second link mechanism establishes no operative coupling between the operation lever and a parking brake mechanism. When the operation lever is operated from the neutral path to a linking path, the second link mechanism establishes operative coupling between the operation lever and the parking brake mechanism. Further, when the operation lever is operated to a braking path, the parking brake mechanism is activated. When the lever is operated to a locking path, a locking mechanism is activated.
Abstract: A gear selector apparatus for a transmission having a first gear and a second gear selectively engageable to a shaft through a synchronizer. The gear selector apparatus includes a hydraulic actuator, a gear selection fork engaged with the actuator, a guide bar fixed for common movement to the gear selection fork, a detent mechanism disposed in contact with a first edge of the guide bar, a position sensor disposed in contact with a second edge of the guide bar, a first and a second pressure control valve in communication with the hydraulic actuator, a controller in electrical communication with the position sensor and the first and second pressure control valve. The controller includes a control logic sequence.
Type:
Grant
Filed:
June 15, 2010
Date of Patent:
June 17, 2014
Assignee:
GM Global Technology Operations, LLC
Inventors:
Shushan Bai, Vijay A. Neelakantan, Paul G. Otanez
Abstract: A system for controlling a transmission of a vehicle based on input from a shifter includes first, second, third, and fourth position sensors and a position determination module. The shifter includes a shift lever. The first and second position sensors sense first and second positions of the shift lever, respectively, with respect to first and second axes, respectively, wherein the first and second axes are orthogonal to one another. The third and fourth position sensors sense third and fourth positions of the shift lever, respectively, with respect to third and fourth axes, respectively, wherein the third and fourth axes are orthogonal to one another. In addition, the first and second axes are non-orthogonal to the third and fourth axes. The position determination module determines a position of the shift lever based on the first, second, third, and fourth positions.
Abstract: The present invention provides a gear absolute position sensor assembly (GAPS) that senses the current absolute, position of the shift lever of a manual transmission. The sensor assembly provides data to an associated electronic controller such as an engine control module (ECM) regarding the current position of the shift lever, such as an engaged gear. The sensor assembly preferably comprises at least one Hall effect or other type of magnetic field (proximity) sensors in combination with an application specific integrated circuit (ASIC) which is supplied with data from the sensors, decodes the output of the sensors and provides an output identifying a specific engaged gear or neutral for use by vehicle or engine management electronics. The sensors are mounted proximate the shift linkage at a location where they can sense both rotation and translation.
Type:
Grant
Filed:
July 18, 2013
Date of Patent:
June 10, 2014
Assignee:
GM Global Technology Operations, LLC
Inventors:
Christopher G. Benson, William L. Cousins, Bradford W. Bur, Kevin O'Connor, Mark Pickhard, Steven R. Stuve
Abstract: A gear shifting device for shifting gears of a transmission includes: at least one guide rail each extending in a longitudinal axis; a plurality of shift effecting members configured to move a plurality of corresponding sliding sleeves coupled to the guide rail for shifting gears, the shift effecting members each having a terminal end portion with a finger receiving opening formed therein, the finger receiving opening extending in a direction generally parallel to the longitudinal axis of the guide rail; and a shift shaft extending in a direction generally parallel to the longitudinal axis of the guide rail, the shift shaft having a shift finger coupled thereto. The shift shaft is rotatable to pivotally position the shift finger at locations aligned with the finger receiving openings of the shift effecting members, and is also displaceable in the longitudinal direction in the finger receiving openings to move the shift effecting members to effect a gear shifting operation.
Abstract: The present invention provides a gear absolute position sensor assembly (GAPS) that senses the current absolute, position of the shift lever of a manual transmission. The sensor assembly provides data to an associated electronic controller such as an engine control module (ECM) regarding the current position of the shift lever, such as an engaged gear. The sensor assembly preferably comprises two Hall effect or other type of magnetic field (proximity) sensors in combination with an application specific integrated circuit (ASIC) which is supplied with data from the sensors, decodes the output of the sensors and provides an output identifying a specific engaged gear or neutral for use by vehicle or engine management electronics. The sensors are mounted proximate the shift linkage at a location where they can sense both rotation and translation.
Type:
Grant
Filed:
October 28, 2011
Date of Patent:
June 3, 2014
Assignee:
GM Global Technology Operations, LLC
Inventors:
Christopher G. Benson, William L. Cousins, Bradford W. Bur
Abstract: During reversal of drive of a vehicle, particularly a work machine with a hydrodynamic torque converter and a bypass clutch, the bypass clutch is first disengaged, during the reversal process. Next, a previously engaged first driving direction clutch, driving the vehicle in the first driving direction, is disengaged and a second driving direction clutch, for driving the vehicle in the second driving direction, is engaged so that a speed of the vehicle, in the first driving direction, is reduced and a speed of the vehicle, in the second driving direction, is subsequently accelerated, whereby the drive motor is operated at a higher rotational speed during the reversal process.
Abstract: A mechanism for actuating a shifting element. A first shifting element half of a brake is axially fixedly connected to a drive machine output shaft, which, when rotational movement of the output shaft equals the disengaging movement of the shifting element, is rotationally fixed to the output shaft. In the event of an engaging force, opposite the disengaging movement of the shifting element, an axial force acts on the output shaft, such that the first shifting element half frictionally engages with an axially and rotationally fixed second shifting element half. In the event of a disengaging force that acts in the disengaging direction of the shifting element, an axial force acts on the motor output shaft such that the first shifting element half of the brake is moved out of frictional engagement with the second shifting element half.
Abstract: In a shift lever device, a first-link is held at a permitting-position due to a release button being operated. Therefore, when a shift lever is operated from a āPā shift position, when a second-link is pushed toward a vehicle right side by the shift lever, even if a magnet is not energized, the second-link is rotated in a state where sliding of the first-link toward a vehicle right is impeded. Operation of the shift lever from the āPā shift position is thereby forcibly permitted. Here, the first-link is disposed at the permitting-position that is an initial-position, and, due to the release button being operated, the first-link is held at the permitting-position. Therefore, there is no need to move the first-link by operation of the release button, and the operation load and operation stroke of the release button can be made to be small.