Base Metal One Or More Of Iron Group, Copper(cu), Or Noble Metal Patents (Class 75/246)
  • Patent number: 8287805
    Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: October 16, 2012
    Assignee: Alfa Laval Corporate AB
    Inventor: Per Sjödin
  • Patent number: 8287615
    Abstract: A high-strength composition iron powder is prepared by mixing an iron base powder with 0.5 to 3.0 mass % of an Fe—Mn powder having a particle diameter of 45 ?m or less and a Mn content in the range of 60 to 90 mass %, 1.0 to 3.0 mass % of a Cu powder, 0.3 to 1.0 mass % of a graphite powder, and 0.4 to 1.2 mass % of a powder lubricant for die-forming while adjusting the ratio of the amount of Mn contained in the Fe—Mn powder to the amount of the Cu powder in the range of 0.1 to 1. The high-strength composition iron powder is press-formed and sintered at a temperature equal to or higher than the melting point of Cu to produce a high-strength sintered part having a tensile strength of 580 MPa or higher without using expensive alloying elements such as Ni and Mo.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 16, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Masaaki Sato, Satoshi Furuta, Takahiro Kudo, Takehiro Tsuchida
  • Patent number: 8283046
    Abstract: A ferrous sintered multilayer roll-formed bushing having a ferrous sintered sliding material layer which is sinter-bonded to a back metal steel, wherein the ferrous sintered sliding material layer is produced in such a manner that a Fe—C—Cu—Sn based sintered sliding material mixed powder containing at least carbon of 0.40 to 15 wt %, Cu of 13 to 40 wt % and Sn of 0.5 to 10 wt % is preliminarily sinter-bonded to said back metal steel and then finally sinter-bonded by a liquid-phase sintering at high temperatures higher than 1000° C. after bending into a roll.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 9, 2012
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 8282701
    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 9, 2012
    Assignee: CRS Holdings, Inc.
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
  • Patent number: 8277533
    Abstract: A most preferred composition for the mixture, prior to sintering into an article (ideally a valve seat insert), is as follows: 35% hard phase, 65% matrix (excepting incidental impurities), the hard phase component being 2.2% C, 29.1% Cr, 4.9% Co, 5.3% Ni, 20.2% W with the balance being Fe and allowing less than 2% for one or more machinability aids and solid lubricants, and the matrix component being one of a high chrome steel powder (e.g. 18% Cr, 1% Ni, 2.5% Mo, balance Fe), a low alloy steel powder (3% Cu, 1% C, balance Fe; 3% Cr, 0.5% Mo, 1% C, balance Fe; 4% Ni, 1.5% Cu, 0.5% Mo, 1% C, balance Fe; 4% Ni, 2% Cu, 1.4% Mo, 1% C, balance Fe), or a tool steel powder (5% Mo, 6% W, 4% Cr, 2% V, 1% C, balance Fe), or a low-alloy steel powder as above but which issued in conjunction with a copper infiltration process during sintering.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: October 2, 2012
    Assignee: Federal-Mogul Sintered Products Limited
    Inventors: Leslie John Farthing, Paritosh Maulik
  • Patent number: 8257462
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 4, 2012
    Assignee: Federal-Mogul Corporation
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Publication number: 20120201712
    Abstract: A water atomized stainless steel powder which comprises by weight-%: 10.5-30.0 Cr 0.5-9.0 Ni 0.01-2.0 Mn 0.01-3.0 Sn 0.1-3.0 Si 0.01-0.4 N optionally max 7.0 Mo optionally max 7.0 Cu optionally max 3.0 Nb optionally max 6.0 V balance iron and max 0.5 of unavoidable impurities.
    Type: Application
    Filed: October 14, 2010
    Publication date: August 9, 2012
    Applicant: HOGANAS AKTIEBOLAG (PUBL)
    Inventor: Denis Oshchepkov
  • Patent number: 8231702
    Abstract: An annealed prealloyed water atomised iron-based powder is provided which is suitable for the production of pressed and sintered components having high wear resistance. The iron-based powder comprises 15-30% by weight of Cr, 0.5-5% by weight of each of at least one of Mo, W and V, and 0.5-2%, preferably 0.7-2% and most preferably 1-2% by weight of C. The powder has a matrix comprising less than 10% by weight of Cr, and comprises large chromium carbides. A method for production of the iron-based powder also is provided.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: July 31, 2012
    Assignee: Hoganas AB (Publ)
    Inventors: Ola Bergman, Paul Dudfield Nurthen
  • Patent number: 8221517
    Abstract: A macroscopic composite sintered powder metal article including a first region including cemented hard particles, for example, cemented carbide. The article includes a second region including one of a metal and a metallic alloy selected from the group consisting of a steel, nickel, a nickel alloy, titanium, a titanium alloy, molybdenum, a molybdenum alloy, cobalt, a cobalt alloy, tungsten, and a tungsten alloy. The first region is metallurgically bonded to the second region, and the second region has a thickness of greater than 100 microns. A method of making a macroscopic composite sintered powder metal article is also disclosed, herein. The method includes co-press and sintering a first metal powder including hard particles and a powder binder and a second metal powder including the metal or metal alloy.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 17, 2012
    Assignee: TDY Industries, LLC
    Inventors: Prakash K. Mirchandani, Morris E. Chandler, Eric W. Olsen
  • Patent number: 8216338
    Abstract: Disclosed is a composition for a bush-type bearing, a bush-type bearing manufactured using the composition, and a method of manufacturing the bush-type bearing. The bearing has excellent friction characteristics with a shaft made of iron (Fe) based material, and thus is able to increase the lubrication cycle of a lubricant. Further, the bearing has excellent hardness, and thus is able to prevent plastic deformation under high contact pressure.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: July 10, 2012
    Assignee: Doosan Infracore Co., Ltd.
    Inventors: Dong-Seob Shim, Chung-Rea Lee
  • Publication number: 20120167714
    Abstract: Systems and methods for processing sludge from a fume scrubbing system that scrubs fumes from a steelmaking converter in a manner that separates/isolates a significant portion of the metallic iron particles in the sludge and prepares these particles for convenient handling. In an exemplary system, the system includes separating equipment that isolates metallic iron particles in the sludge and forming equipment that forms the isolated particles into briquettes that have relatively high mechanical resistance that allow the briquettes to maintain their integrity during handling and storage. The high-metallic-iron-content briquettes can be recycled in the steelmaking process, for example, as charging material for a basic oxygen converter or an electric arc furnace. Water used in the system can be recycled and reused within the system, thereby making the system environmentally friendly.
    Type: Application
    Filed: January 4, 2011
    Publication date: July 5, 2012
    Inventors: Guilherme Santana Lopes Gomes, Victor Loureiro Dos Santos
  • Patent number: 8197574
    Abstract: A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 12, 2012
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Robert L. Terpstra
  • Publication number: 20120114516
    Abstract: A method for manufacturing a shaped body, comprising creating a mixture of a metal powder and binding agent, compacting the mixture to form a green compact, heating the green compact to a debinding start temperature T1, debinding the green compact by controlled heating of the green compact from start temperature T1 to end temperature T2 at a heat-up rate R1, presintering the debindered green compact to the presinter end temperature TVS at a heat-up rate RHVS, cooling the green compact from the presinter end temperature TVS at a cool-down rate RKVS, whereby at least the heat-up rate RHVS, the presinter end temperature TVS, and the cool-down rate RKVS are tuned relative to each other in such a way that the presintered green compact forming a blank has a surface porosity of 16% to 22% after presintering, and machining and sintering of the blank to form the shaped body.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 10, 2012
    Applicant: DEGUDENT GMBH
    Inventors: Jörg HACHENBERG, Rudi STEINKE, Markus VOLLMANN, Irmgard WISSEL, Gerhard ZELLMANN, Elmar HOCK, Stefan FECHER, Lothar VOLKL
  • Patent number: 8172956
    Abstract: A sintered soft magnetic powder molded body having a composition containing Fe, 44 to 50% by mass of Ni and 2 to 6% by mass of Si, or a composition containing Fe and 2 to 6% by mass of Si, wherein the Si is unevenly distributed among particles, is provided.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: May 8, 2012
    Assignee: Mitsubishi Steel Mfg. Co., Ltd.
    Inventors: Kenichi Unoki, Shoichi Yamasaki, Yuji Soda, Masakatsu Fukuda
  • Publication number: 20120082587
    Abstract: A water-atomised iron-based steel powder is provided which comprises by weight-%: 0.45-1.50 Ni, 0.30-0.55 Mo, less than 0.3 Mn, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, and the balance being iron, and where Ni and Mo have been alloyed by a diffusion alloying process.
    Type: Application
    Filed: May 21, 2010
    Publication date: April 5, 2012
    Applicant: HOGANAS AB (PUBL)
    Inventors: Yang Yu, Norimitsu Hirose
  • Patent number: 8133297
    Abstract: The invention relates to novel pre-alloyed metal powders a method for production and use thereof.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: March 13, 2012
    Assignee: H.C. Starck GmbH
    Inventors: Bernd Mende, Gerhard Gille, Ines Lamprecht
  • Publication number: 20120048063
    Abstract: High compressibility iron powder that is suitably used for parts with excellent magnetic characteristics or high density sintered parts and that has good productivity is provided from pure iron powder which includes, as impurities in percent by mass, C: 0.005% or less, Si: more than 0.01% and 0.03% or less, Mn: 0.03% or more and 0.07% or less, P: 0.01% or less, S: 0.01% or less, O: 0.10% or less, and N: 0.001% or less, and whose particle includes four or less crystal grains on average and has a micro Vickers hardness (Hv) of 80 or less on average. The circularity of the iron powder is preferably 0.7 or more.
    Type: Application
    Filed: January 30, 2007
    Publication date: March 1, 2012
    Applicant: JFE STEEL CORPORATION a corporation of Japan
    Inventors: Toshio Maetani, Satoshi Uenosono, Aya Uenosono, Masateru Ueta
  • Publication number: 20120032764
    Abstract: In order to make a sintered R-T-B-M magnet so that R2T14B phases that include a lot of Dy in the surface region of the main phase are distributed over the entire magnet, a region including a heavy rare-earth element RH at a high concentration is formed continuously beforehand at an interface between the crystals of an R2T14B compound that is the main phase of the sintered R-T-B-M magnet and the other phases.
    Type: Application
    Filed: March 29, 2010
    Publication date: February 9, 2012
    Applicant: HITACHI METALS, LTD.
    Inventor: Futoshi Kuniyoshi
  • Patent number: 8110020
    Abstract: An annealed pre-alloyed water atomised iron-based powder suitable for the production of pressed and sintered components having high wear resistance is provided. The iron-based powder comprises 10-below 18% by weight of Cr, 0.5-5% by weight of each of at least one of Mo, W, V and Nb, and 0.5-2%, preferably 0.7-2% and most preferably 1-2% by weight of C. The powder has a matrix comprising less than 10% by weight of Cr, and comprises large M23C6-type carbides in combination with M7C3-type carbides. A method for production of the iron-based powder, a method for producing a pressed and sintered component having high wear resistance, and a component having high wear resistance are provided.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: February 7, 2012
    Assignee: Höganäs AB (PUBL)
    Inventors: Ola Bergman, Paul Dudfield Nurthen
  • Publication number: 20110314965
    Abstract: There is provided a metal powder for powder metallurgy including Zr and Si in a manner such that following conditions of (A) and (B) are satisfied, wherein a remainder thereof includes at least one element selected from the group consisting of Fe, Co and Ni, (A) the mass ratio of a content of Zr to a content of Si is 0.03 to 0.3, and (B) the content of Si is 0.35 to 1.5% by mass.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 29, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Hidefumi NAKAMURA
  • Publication number: 20110317949
    Abstract: A sintered metal bearing is obtained by compression-molding of a raw-material powder containing at least a Cu powder, an SUS powder, and a pure Fe powder and thereafter sintering a compression-molded body at a predetermined temperature.
    Type: Application
    Filed: March 2, 2010
    Publication date: December 29, 2011
    Applicant: NTN CORPORATION
    Inventors: Fuyuki Ito, Kazuo Okamura, Kenji Hibi
  • Publication number: 20110286874
    Abstract: A method of sintering a 17-4PH alloy powder and a sintered 17-4PH sintered part are disclosed. The part is formed by selective laser sintering a 17-4PH alloy powder and binder mixture to form a green part that is sintered to form a part having a substantially pure martensitic structure. The metal powder includes boron. The sintered part may be further processed by shot peening to improve crack resistance.
    Type: Application
    Filed: August 5, 2011
    Publication date: November 24, 2011
    Applicant: THE BOEING COMPANY
    Inventors: Steven C. LOW, Jerry G. CLARK, Neal W. MUYLAERT, Richard J. NORD, Blair E. THOMPSON, Bryan E. AKE, Reid W. WILLIAMS
  • Patent number: 8057750
    Abstract: A process of producing magnetite with a high purity of greater than 90% magnetite, more typically greater than 98% magnetite, by reducing powdered hematite into magnetite under maximum temperatures of about 700 to 1300° C. against a counter-current of or concurrent with methane or natural gas in a heating device. The amount of methane used to reduce the hematite may be about 0.18 and 1.8 standard cubic feet of methane per pound of hematite. A product of high purity methane produced from the process is also provided, where the magnetite is below 1 ?M in diameter and has a magnetic saturation greater than 90.0 emu/g. Corresponding apparatus using an improved feeder system for powdered hematite is provided.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: November 15, 2011
    Assignee: Pittsburgh Iron Oxide, LLC
    Inventors: Dale L. Nickels, Thomas E. Weyand, Michael E. Sawayda
  • Publication number: 20110274577
    Abstract: The present invention is directed to improved compaction techniques for use in powder metallurgical applications using lower temperatures and pressures than are traditionally used in the field.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 10, 2011
    Applicant: HOEGANAES CORPORATION
    Inventor: Kalathur S. Narasimhan
  • Publication number: 20110256015
    Abstract: A method for the manufacture of a metal part, the method including the steps: a) compacting agglomerated spherical metal powder to a preform, b) debinding and sintering the preform to a part at a temperature not exceeding 1275° C., c) performing one of the following steps: i) compacting the part to a density of more than 95% of the theoretical density, or ii) compacting the part to a density of less than 95% of the theoretical density and sintering the part at a temperature not exceeding 1275° C. to a density of more than 95% of the theoretical density, and d) subjecting the part to hot isostatic pressing at a temperature not exceeding 1200° C. The method provides an industrial process to produce fully dense parts from alloys which normally cannot be produced and still give good impact properties, which is vital for many applications where there alloys are used.
    Type: Application
    Filed: January 8, 2010
    Publication date: October 20, 2011
    Inventor: Christer ?slund
  • Patent number: 8038761
    Abstract: There is provided an iron-based sintered material resistant to the metal fatigue developing from the voids therein functioning as the initial points and improved in the strength and machinability thereof. An iron-based sintered material, including a mixed structure of martensite, bainite, and pearlite and multiple voids formed in the mixed structure, wherein the ratio of martensite and bainite in the mixed structure is 70% or more; the ratio of martensite and/or bainite in the mixed structure forming the void surface is 90% or more; and the density of the iron-based sintered material is 7.4 g/cm3 or more.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 18, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hitoshi Tanino, Kimihiko Ando, Shinya Omura, Toshitake Miyake, Mikio Kondoh, Nobuhiko Matsumoto
  • Publication number: 20110250463
    Abstract: Nickel based alloy intended for use at high temperatures wherein it comprises in percent by weight (wt-%) C 0.05-0.2 Si max 1.5 Mn max 0.5 Cr 15-20 Al 4-6 Fe 15-25 Co max 10 N 0.03-0.15 O max 0.5 one or more elements selected from the group consisting of Ta, Zr, Hf, Ti and Nb 0.25-2.2 one or more elements selected from the group consisting of REM max 0.5 balance Ni and normally occurring impurities.
    Type: Application
    Filed: November 6, 2009
    Publication date: October 13, 2011
    Applicant: Sandvik Intellectual Property AB
    Inventors: Thomas Helander, Mats Lundberg, Bo Jönsson
  • Publication number: 20110239823
    Abstract: The present invention is directed to electrically conductive compacted metal parts fabricated using powder metallurgy methods. The iron-based powders of the invention are coated with magnetic or pre-magnetic materials.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 6, 2011
    Applicant: HOEGANAES CORPORATION
    Inventors: Kalathur S. Narasimhan, Francis G. Hanejko
  • Publication number: 20110212339
    Abstract: The metallurgical composition includes a main particulate metallic material, for example iron or nickel, and at least one alloy element for hardening the main metallic material, which form a structural matrix; a particulate solid lubricant, such as graphite, hexagonal boron nitride or mixture thereof; and a particulate alloy element which is capable of forming, during the sintering of the composition conformed by compaction or by injection molding, a liquid phase, agglomerating the solid lubricant in discrete particles. The composition may include an alloy component to stabilize the alpha-iron matrix phase, during the sintering, in order to prevent the graphite solid lubricant from being solubilized in the iron. The invention further refers to a self-lubricating sintered product, obtained from the composition, and to the process for obtaining said product.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 1, 2011
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Cristiano Binder, Gisele Hammes, Moises Luiz Parucker, Waldyr Ristow Junior
  • Patent number: 7998230
    Abstract: A multi-metal powder, in particular for producing diamond tools comprises iron copper, cobalt and molybdenum whose contents are expressed in the following mass percentages: Fe+Cu+Co+Mo=98 mass %, the rest being oxygen and production impurities, wherein 15%=Cu=35%, 0.03=Mo/(Co+Fe+Mo)=0.10, —Fe/Co=2. A sintered compact is obtained by hot compaction of said multi-metal powder, for example, in the form of a diamond cutting tool.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 16, 2011
    Assignee: Eurotungstene Poudres
    Inventors: Maxime Bonneau, Jean-François Lartigue, Thierry Commeau, Christian Huet
  • Patent number: 7998238
    Abstract: A sintered sliding member comprises a back metal (21a) and a ferrous sintered sliding body (20) which is sintering-bonded to the back metal (21a). The ferrous sintered sliding body (20) has martensite phase having a solid soluble carbon concentration of 0.15 to 0.5 wt % and contains carbide in a content of 5 to 50% by volume. The sintered sliding member is excellent in abrasion resistance, seizing resistance and heat crack resistance.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 16, 2011
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Kazuo Okamura
  • Patent number: 7967922
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7968207
    Abstract: The invention relates to a method of producing and joining superalloy balls by means of brazing and to objects produced with such joints. According to one aspect of the invention, an alloy powder covered with a brazing solder is bonded to a spherical core and subsequently transformed into a continuous alloy layer by means of brazing.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 28, 2011
    Assignee: ONERA (Office National d'Etudes et de Recherches Aerospatiales)
    Inventors: Myriam Douin, Marie-Pierre Bacos, Alexandra Boyer, Aurélie Gregoire, Pierre Josso, Sébastien Mercier, Ariel Moriel, Jason Nadler, Serge Naveos, Catherine Rio
  • Publication number: 20110112204
    Abstract: Iron—comprising heterogeneous catalyst and a process for producing it, which comprises the following steps: I. thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles, II. treatment of carbonyl iron powder obtained in step I with hydrogen, resulting in the metallic spherical primary particles at least partially agglomerating, III. contacting of the agglomerates (=secondary particles) with iron pentacarbonyl, IV. thermal decomposition of the iron pentacarbonyl applied in step III to give at least predominantly pore- and void-free secondary particles. Process for preparing olefins by reaction of carbon monoxide with hydrogen in the presence of a catalyst, with the abovementioned iron-comprising heterogeneous catalyst being used as catalyst.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 12, 2011
    Applicant: BASF SE
    Inventors: JOCHEN STEINER, Kerem Bay, Ralf Böhling, Ekkehard Schwab
  • Patent number: 7922836
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7921778
    Abstract: A single phase metal alloy usually for forming a shaped charge liner for a penetrating jet or explosively formed penetrator forming warhead consists essentially of from a trace to 90%, by weight, of cobalt, from 10% to 50% by weight, of tungsten, and the balance nickel and inevitable impurities. One preferred composition is, by weight, from 16% to 22%, cobalt, from 35% to 40% tungsten and the balance is nickel and inevitable impurities. The alloy is worked and recrystallized and then formed into a desired product. In addition to a shaped charge liner, other useful products include a fragmentation warhead, a warhead casing, ammunition, radiation shielding and weighting.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: April 12, 2011
    Assignee: Aerojet - General Corporation
    Inventor: Michael T. Stawovy
  • Patent number: 7918915
    Abstract: The present invention relates to a wear resistant iron-based powder, suitable for the production of pressed and sintered components, comprising 10-20% by weight of Cr, 0.5-5% by weight of Mo and 1-2% by weight of C. The powder is characterised in that it includes pre-alloyed water atomized iron-based powder particles and chromium carbide particles diffusion bonded onto said pre-alloyed powder particles. The invention also relates to a method of producing this powder.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 5, 2011
    Assignee: Höganäs AB
    Inventors: Ola Bergman, Paul Nurthen
  • Patent number: 7909906
    Abstract: A cold work steel has the following chemical composition in weight-%: 1.25-1.75% (C+N), however at least 0.5% C 0.1-1.5% Si 0.1-1.5% Mn 4.0-5.5% Cr 2.5-4.5% (Mo+W/2), however max. 0.5% W 3.0-4.5% (V+Nb/2), however max. 0.5% Nb max 0.3% S balance iron and unavoidable impurities, and a microstructure which in the hardened and tempered condition of the steel contains 6-13 vol-% of vanadium-rich MX-carbides, -nitrides and/or carbonitrides which are evenly distributed in the matrix of the steel, where X is carbon and/or nitrogen, at least 90 vol-% of said carbides, nitrides and/or carbonitrides having an equivalent diameter, Deq, which is smaller than 3.0 ?m; and totally max. 1 vol-% of other, possibly existing carbides, nitrides or carbonitrides.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: March 22, 2011
    Assignee: Uddeholms AB
    Inventors: Odd Sandberg, Lennart Jönson, Magnus Tidesten
  • Patent number: 7883588
    Abstract: In a Cu—Bi based sintered alloy, to which hard particles, such as Fe3P, are added, the main constituent components of the microstructure are a Cu matrix, Bi phase and the hard particles. In the sintering method of the present invention, the flow of the Bi phase is suppressed to as low level as possible. The novel structure is that the contact between the Bi phase and hard particles is kept to a low ratio. A lead-free bearing used for a fuel injection pump according to the present invention contains from 1 to 30 mass % of Bi and from 0.1 to 10 mass % of hard particles having from 10 to 50 ?m of the average particle diameter, the balance being Cu and unavoidable impurities. The properties of the main component phases are utilized at a high level such that the sliding properties are equivalent to those of a Pb containing Cu-based sintered alloy.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: February 8, 2011
    Assignees: Taiho Kogyo Co., Ltd., Denso Corporation
    Inventors: Hiromi Yokota, Daisuke Yoshitome, Hiroaki Hayakawa, Naruhiko Inayoshi, Youichi Murakami, Masashi Suzuki, Takahiro Nozu
  • Patent number: 7867315
    Abstract: The invention provides a hard-particle powder for sintered body, which contains, by mass %, 2% to 3.5% of Si, 6% to 10% of Cr, 20% to 35% of Mo, 0.01% to 0.5% of REM, and the remainder being Co and unavoidable impurities. The invention further provides a sintered body obtained through a mixing step of mixing the above-mentioned hard-particle powder for sintered body with a pure iron powder and a graphite powder to obtain a powder mixture, a forming step of compacting the powder mixture to obtain a compact, and a sintering step of sintering the compact. The hard-particle powder according to the invention has the effect of giving a sintered body having improved wear resistance without substantially impairing powder characteristics and sintering characteristics. Additionally, the sintered body according to the invention has the effect of having excellent wear resistance.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 11, 2011
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Tomomi Yamamoto, Seiji Kurata
  • Patent number: 7858023
    Abstract: A method for producing a rare earth sintered magnet uses granules having an excellent fluidity to improve the dimensional accuracy and production of a compact formed of the granules without significant property losses. The granules are formed by adding an organic liquid to primary alloy particles having a predetermined composition to produce granules having the primary alloy particles adhered together by the organic liquid. Preferably, from 1.5 to 15.0% by weight of the organic liquid is added to the primary alloy particles.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: December 28, 2010
    Assignee: TDK Corporation
    Inventors: Yasushi Enokido, Fumitaka Baba, Chikara Ishizaka, Takeshi Masuda
  • Publication number: 20100310405
    Abstract: A ferrous sintered alloy includes a sintered raw-material powder that is made of an Fe—Cr—Mo-system powder, a carbon-system powder and an Mn—Si-system powder before sintering. The ferrous sintered alloy exhibits a density of 7.4 g/cm3 or more, and has a metallic structure that includes martensite and bainite. In the metallic structure, the martensite accounts for an area proportion of 40% or less when the entirety of the metallic structure is taken as 100% by area. Moreover, the martensite exhibits a particle diameter of 20 ?m or less. The ferrous sintered alloy is good in terms of machinability.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio KONDOH, Toshitake MIYAKE, Kimihiko ANDO, Hideo HANZAWA, Nobuhiko MATSUMOTO
  • Publication number: 20100297462
    Abstract: In one embodiment, the present invention may be a method of forming a porous and/or dense article from metal powder (12), including adding to a mold a first feedstock comprising an agglomerated metal powder (12) and an agglomeration agent, forming said first feedstock into a green state dense article (22); and removing said agglomeration agent. Furthermore, the present invention may include a second feedstock including an agglomerated metal powder (12), a space filling material and an agglomeration agent which may be formed into a green state porous article (21). The present invention also includes a dense and/or porous article (22 and 21) manufactured by various methods, as well as methods for creating the dense and porous feedstocks. Moreover, the present invention may include an article which may be a medical implant.
    Type: Application
    Filed: November 13, 2007
    Publication date: November 25, 2010
    Applicant: HOWMEDICA OSTEONICS CORP.
    Inventors: John Lapszynski, Robert W. Klein, Michael A. DeLuise
  • Publication number: 20100278681
    Abstract: A water atomised prealloyed iron-based steel powder is provided which comprises by weight-%: 0.2-1.5 Cr, 0.05-0.4 V, 0.09-0.6 Mn, less than 0.1 Mo, less than 0.1 Ni, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, the balance being iron.
    Type: Application
    Filed: December 18, 2008
    Publication date: November 4, 2010
    Applicant: Hoganas AB
    Inventors: Sven Bengtsson, Anna Larsson
  • Patent number: 7811354
    Abstract: A liner (18) for a shaped charge (10) that utilizes a high performance powered metal mixture to achieve improved penetration depths during the perforation of a wellbore is disclosed. The high performance powdered metal mixture includes powdered tungsten and powdered metal binder. The powered metal binder may be selected from the group consisting of tantalum, molybdenum, lead, cooper and combination thereof. This mixture is compressively formed into a substantially conically shaped liner (18).
    Type: Grant
    Filed: May 31, 2009
    Date of Patent: October 12, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David J. Leidel, James Phillip Lawson
  • Publication number: 20100233500
    Abstract: A cold-forming steel article which comprises an alloy that comprises carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten and optionally, niobium in certain concentrations, as well as up to about 0.4 wt. % of accompanying elements, remainder iron and contaminants. The article is formed by atomization of a melt and hot isostatic pressing of the resultant powder. The article exhibits a hardness of at least about 60 HRC and a toughness in terms of impact strength of higher than about 50 J. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 16, 2010
    Applicant: BOEHLER EDELSTAHL GMBH & CO KG
    Inventors: Gerhard JESNER, Devrim CALISKANOGLU
  • Patent number: 7794520
    Abstract: A discontinuously reinforced metal matrix composite wherein the reinforcing material is a particulate binary intermetallic compound is described along with methods for preparing the same. The binary intermetallic compound includes the same type of metal as is the principal matrix metal in combination with one other metal. The particle size of the particulate binary intermetallic compound may be less than about 20 ?m and may be between about 1 ?m and about 10 ?m. The intermetallic particles may be present in the discontinuously reinforced metal matrix composites in an amount ranging from about 10% to about 70% by volume. The discontinuous reinforced metal matrix composites of the invention may be used in structures requiring greater strength and stiffness than can be provided by matrix metal alone. The materials of the invention may be used for vehicle parts, structural materials, and the like.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: September 14, 2010
    Assignee: Touchstone Research Laboratory, Ltd.
    Inventors: Gollapudi S. Murty, Brian E. Joseph
  • Publication number: 20100212455
    Abstract: An iron-based soft magnetic powder for dust core having a high magnetic flux density, maintaining high electric insulation even after annealing, and more excellent in the mechanical strength in which a coating film having a phosphate conversion coating film is formed on the surface thereof and the peak height for the absorption of hydroxyl groups formed at 3700 cm?1 to 2500 cm?1 is 0.04 or more being indicated by absorbance when the coating film is analyzed by infrared diffuse reflectance spectroscopy.
    Type: Application
    Filed: December 29, 2009
    Publication date: August 26, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Takeshi OHWAKI, Hiroyuki Mitani, Hirofumi Hojo, Kasumi Yanagisawa, Nobuaki Akagi
  • Patent number: 7780869
    Abstract: An efficient oxygen scavenging composition for use in film forming polymers is disclosed wherein the oxygen scavenging composition comprises an oxidizable metal particle, such as elemental iron; a water hydrolysable Lewis acid, such as aluminum chloride; and an acidifying electrolyte such as sodium or potassium bisulfate.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: August 24, 2010
    Assignee: M&G USA Corporation
    Inventors: Kevin L. Rollick, Guliz Arf Elliott
  • Patent number: 7781018
    Abstract: This invention discloses a method of making an oxygen scavenging particle comprised of an activating component and an oxidizable component wherein one component is deposited upon the other component from a vapor phase and is particularly useful when the activating component is a protic solvent hydrolysable halogen compound and the oxygen scavenging particle is a reduced metal.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 24, 2010
    Assignee: M&G USA Corporation
    Inventor: Kevin L. Rollick