Fullerenes (i.e., Graphene-based Structures, Such As Nanohorns, Nanococoons, Nanoscrolls, Etc.) Or Fullerene-like Structures (e.g., Ws2 Or Mos2 Chalcogenide Nanotubes, Planar C3n4, Etc.) Patents (Class 977/734)
  • Patent number: 8940453
    Abstract: An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kyung-jung Kwon, Kang-hee Lee, Dae-jong Yoo, Jong-won Lee
  • Patent number: 8940444
    Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: January 27, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Thomas Gennett, David S. Ginley, Wade Braunecker, Chunmei Ban, Zbyslaw Owczarczyk
  • Patent number: 8940244
    Abstract: The present invention relates to hierarchical structured nanotubes, to a method for preparing the same and to an application for the same, wherein the nanotubes include a plurality of connecting nanotubes for constituting a three-dimensional multi-dendrite morphology; and the method includes the following steps: (A) providing a polymer template including a plurality of organic nanowires; (B) forming an inorganic layer on the surface of the organic nanowires in the polymer template; and (C) performing a heat treatment on the polymer template having the inorganic layer on the surface so that partial atoms of the organic nanowires enter the inorganic layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 27, 2015
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Po-Hsun Chen, Jeng Liang Kuo, Tsong-Pyng Perng
  • Patent number: 8936681
    Abstract: A method for making an epitaxial structure is provided. The method includes the following steps. A substrate is provided. The substrate has an epitaxial growth surface for growing epitaxial layer. A carbon nanotube layer is placed on the epitaxial growth surface. An epitaxial layer is epitaxially grown on the epitaxial growth surface. The carbon nanotube layer is removed. The carbon nanotube layer can be removed by heating.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 20, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8932904
    Abstract: A semiconductor device including a graphene layer and a method of manufacturing the same are disclosed. A method in which graphene is grown on a catalyst metal by a chemical vapor deposition or the like is known. However, the graphene cannot be used as a channel, since the graphene is in contact with the catalyst metal, which is conductive. There is disclosed a method in which a catalyst film (2) is formed over a substrate (1), a graphene layer (3) is grown originating from the catalyst film (2), an electrode (4) in contact with the graphene layer (3) is formed, and the catalyst film (2) is removed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 13, 2015
    Assignee: Fujitsu Limited
    Inventors: Daiyu Kondo, Shintaro Sato
  • Patent number: 8932941
    Abstract: The method of manufacturing a graphene device includes forming an insulating material layer on a substrate, forming first and second metal pads on the insulating material layer spaced apart from each other, forming a graphene layer having a portion defined as an active area between the first and second metal pads on the insulating material layer, forming third and fourth metal pads on the graphene layer spaced apart from each other with the active area therebetween, the third and fourth metal pads extending above the first metal pad and the second metal pad, respectively, forming a first protection layer to cover all the first and second metal pads, the graphene layer, and the third and fourth metal pads, and etching an entire surface of the first protection layer until only a residual layer made of a material for forming the first protection layer remains on the active area.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 13, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joo-ho Lee, Tae-han Jeon, Yong-sung Kim, Chang-seung Lee, Yong-seok Jung
  • Publication number: 20150010714
    Abstract: A method of preparing graphene on a SiC substrate includes bombarding a surface of the SiC substrate with ions and annealing a volume of the SiC substrate at the bombarded surface to promote agglomeration of carbon at the bombarded surface to form one or more layers of graphene at that surface. The ions can be Si, C, or other ions such as Au. The annealing can be carried out using a thermal source of heating or by irradiation with at least one laser beam or other high energy beam.
    Type: Application
    Filed: August 23, 2012
    Publication date: January 8, 2015
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Bill R. Appleton, Brent Paul Gila, Sefaattin Tongay, Maxime G. Lemaitre
  • Patent number: 8926853
    Abstract: Aspects of the invention are directed to a method of forming graphene structures. Initially, a cluster of particles is received. The cluster of particles comprises a plurality of particles with each particle in the plurality of particles contacting one or more other particles in the plurality of particles. Subsequently, one or more layers are deposited on the cluster of particles with the one or more layers comprising graphene. The plurality of particles are then etched away without substantially etching the deposited one or more layers. Lastly, the remaining one or more layers are dried. The resultant graphene structures are particularly resistant to the negative effects of aggregation and compaction.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 6, 2015
    Inventors: Xin Zhao, Yu-Ming Lin
  • Patent number: 8925736
    Abstract: The disclosed subject matter provides a filter that is modified by a polymer-carbon based nanomaterial nanocomposite intended to significantly enhance the performance of filtration, separation, and remediation of a broad variety of chemicals, heavy metal ions, organic matters, and living organisms. Polymeric materials, such as but not limited to poly-N-vinyl carbazole (PVK), are combined with (1) graphene (G) and/or graphene-like materials based nanomaterials and (2) graphene oxide (GO) chemically modified with a chelating agent such as but not limited to EDTA. The nanocomposite is homogenously deposited on the surface of the membrane.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: January 6, 2015
    Assignee: University of Houston
    Inventors: Debora F. Rodrigues, Rigoberto C. Advincula, Fritz Claydon, Catherine M. Santos, Maria Celeste R. Tria
  • Patent number: 8920739
    Abstract: Disclosed is a system or method of increased efficiency in carbon nanomaterial synthesis. In one embodiment, a system or method of automated collection of deposited carbon nanomaterial is disclosed. According to one or more embodiments, a method of automated collection of deposited nanomaterial may comprise using cleaner blades to clean the wall of a deposition chamber and the surface of a central body where carbon nanomaterial has been deposited. The method of automated carbon nanomaterial collection may be used in connection with a method of carbon nanomaterial synthesis, to create a more efficient synthesis process.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 30, 2014
    Assignee: King Abddulaziz City for Science and Technology
    Inventors: Turki Saud Mohammed Al-Saud, Mohammed A. Bin Hussain, Siarhei Alexandrovich Zhdanok, Andrei Vladimirovich Krauklis, Petr Petrovich Samtsou, Anatolij Ivanovich Loznikov
  • Publication number: 20140376156
    Abstract: An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Applicant: Elwha LLC
    Inventors: Alistair K. Chan, Geoffrey F. Deane, Roderick A. Hyde, Jeffrey A. Bowers, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Lowell L. Wood,, Jr.
  • Publication number: 20140364712
    Abstract: Devices and methods relate to inducing or promoting hemostasis. The hemostasis device may include a support layer having a first surface and an opposing second surface. The device may include a layer, the layer disposed on the first surface. The layer may include a target surface configured to contact a target site. The layer may include a monolayer of about 100% graphene or may include laser-reduced graphene oxide. The device may include a sensor configured to measure a level of hemostasis of the target site. The methods relate to a method of manufacturing a hemostatic device including a monolayer of graphene or a layer of laser-reduced graphene oxide.
    Type: Application
    Filed: March 4, 2013
    Publication date: December 11, 2014
    Applicant: EMORY UNIVERSITY
    Inventors: Wilbur A. Lam, Anton Sidorov, Zhigang JIang
  • Patent number: 8907320
    Abstract: An ultraviolet (UV) light-emitting diode including an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, a p-type semiconductor layer disposed on the active layer and formed of p-type AlGaN, and a p-type graphene layer disposed on the p-type semiconductor layer and formed of graphene doped with a p-type dopant. The UV light-emitting diode has improved light emission efficiency by lowering contact resistance with the p-type semiconductor layer and maximizing UV transmittance.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Won Hwang, Geun-Woo Ko, Sung-Hyun Sim, Jung-Sub Kim, Hun-Jae Chung, Cheol-Soo Sone
  • Patent number: 8907323
    Abstract: A thermoelectric element comprises a substrate with a patterned discontinuous fullerene thin film. A method of applying a patterned discontinuous fullerene thin film to a substrate comprises applying a mask to the substrate, the mask defining a conductive electric network, applying a fullerene material to the masked substrate to deposit a patterned discontinuous fullerene thin film, applying a selected bond breaking force to the network to disassociate fullerene carbon to fullerene carbon bonds without disassociating fullerene carbon to substrate bonds to form a patterned discontinuous fullerene thin film substantially a single fullerene molecule in thickness.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: December 9, 2014
    Inventor: Philip D. Freedman
  • Patent number: 8907080
    Abstract: Provided is a complex comprising a hydrophobic cluster compound and a ?-1,3-1,6-D-glucan having a degree of branching (a ratio of ?-1,6 linkages to ?-1,3 linkages) of 50 to 100%.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: December 9, 2014
    Assignees: Daiso Co., Ltd., Osaka City University, Osaka Prefecture University Public Corporation, Kyoto Prefectural Public University Corporation, National University Corporation Nara Institute of Science and Technology
    Inventors: Toshio Suzuki, Hideaki Ueda, Takeshi Nagasaki, Mitsunori Kirihata, Munenori Numata, Atsushi Ikeda
  • Publication number: 20140353554
    Abstract: An oligophenylene monomer of general formula (I) wherein R1 and R2 are independently of each other H, halogene, —OH, —NH2, —CN, —NO2 or a linear or branched, saturated or unsaturated C1-C40 hydrocarbon residue, which can be substituted 1- to 5-fold with halogene (F, Cl, Br, I), —OH, —NH2, —CN and/or —NO2, and wherein one or more CH2-groups can be replaced by —O— or —S—, or an optionally substituted aryl, alkylaryl or alkoxyaryl residue; and m represents 0, 1 or 2.
    Type: Application
    Filed: December 17, 2012
    Publication date: December 4, 2014
    Applicants: BASF SE, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Matthias Georg Schwab, Akimitsu Narita, Xinliang Feng, Klaus Muellen
  • Publication number: 20140356277
    Abstract: Methods for converting graphite oxide into graphene by exposure to electromagnetic radiation are described. As an example, graphene oxide may be rapidly converted into graphene upon exposure to converged sunlight.
    Type: Application
    Filed: August 14, 2014
    Publication date: December 4, 2014
    Inventors: Ramaprabhu SUNDARA, Eswaraiah VARRLA, Jyothirmayee Aravind SASIDHARANNAIR SASIKALADEVI
  • Patent number: 8894887
    Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 25, 2014
    Assignees: Solvay USA, Inc., Nano-C, Inc.
    Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Victor Vejins, Lawrence T. Scott, Thomas A. Lada, II
  • Patent number: 8890171
    Abstract: A method of fabricating a single-layer graphene on a silicon carbide (SiC) wafer includes forming a plurality of graphene layers on the SiC wafer such that the plurality of graphene layers are on a buffer layer of the SiC wafer, the buffer layer being formed of carbon; removing the plurality of graphene layers from the buffer layer; and converting the buffer layer to a single-layer graphene.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-sung Woo, Seon-mi Yoon, Hyeon-jin Shin, Dong-wook Lee, Jae-young Choi
  • Patent number: 8890767
    Abstract: Provided are an active metamaterial device operating at a high speed and a manufacturing method thereof. The active metamaterial device includes a first dielectric layer, a lower electrode disposed on the first dielectric layer, a second dielectric layer disposed on the lower electrode, metamaterial patterns disposed on the second dielectric layer, a couple layer disposed on the metamaterial patterns and the second dielectric layer, a third dielectric layer disposed on the couple layer, and an upper electrode disposed on the third dielectric layer.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: November 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Choon Gi Choi, Muhan Choi, Sung-Yool Choi
  • Publication number: 20140332728
    Abstract: The objective of the present teaching is to provide a porous material including carbon nanohorns. The porous material includes carbon nanohorns and has a predetermined three-dimensional shape.
    Type: Application
    Filed: October 19, 2012
    Publication date: November 13, 2014
    Applicant: ENVIRONMENT ENERGY NANO TECHNICAL RESEARCH INSTITUTE
    Inventors: Tadashi Goino, Tsuzuki Kitamura
  • Patent number: 8883124
    Abstract: Fullerenes, when irradiated with electromagnetic radiation, generate acoustic waves. A photoacoustic tomography method using a material comprising fullerenes is disclosed that includes irradiating the material with a radiation beam such as a laser. The resultant photoacoustic effect produced by the material is detected by at least one detector. A photoacoustic tomography system using a material comprising fullerenes is also described.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 11, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman, Stephen Grobmyer, Iwakuma Nobutaka, Qiang Wang, Qizhi Zhang, Huabei Jiang, Parvesh Sharma, Amit Kumar Singh
  • Patent number: 8882872
    Abstract: A method of forming polycrystalline diamond includes forming metal nanoparticles having a carbon coating from an organometallic material; combining a diamond material with the metal nanoparticles having the carbon coating; and processing the diamond material and the metal nanoparticles having the carbon coating to form the polycrystalline diamond. Processing includes catalyzing formation of the polycrystalline diamond by the metal nanoparticles; and forming interparticle bonds that bridge the diamond material by carbon from the carbon coating.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: November 11, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Michael H. Johnson, Anthony A. DiGiovanni, Dan E. Scott
  • Publication number: 20140329076
    Abstract: The purpose of showing the present description is to provide a dense material containing carbon nanohorns. For this purpose, the present description shows the dense material containing carbon nanohorns and having a predetermined three-dimensional shape.
    Type: Application
    Filed: October 19, 2012
    Publication date: November 6, 2014
    Applicant: ENVIRONMENT ENERGY NANO TECHNICAL RESEARCH INSTITUTE
    Inventors: Tadashi Goino, Tsuzuki Kitamura
  • Patent number: 8876944
    Abstract: A system for separating fluids of a fluid mixture including a filter element operatively arranged for enabling a first component of a fluid mixture to flow therethrough while impeding flow of at least one other fluid component of the fluid mixture. An additive is configured to improve a first affinity of the filter element for the first component relative to a second affinity of the filter element for the at least one other fluid component of the fluid mixture. A method of separating fluids is also included.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: November 4, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Jiaxiang Ren, David P. Gerrard, John C. Welch, James E. Goodson
  • Patent number: 8878233
    Abstract: Provided are a compound semiconductor device and a manufacturing method thereof. A substrate and a graphene oxide layer are provided on the substrate. A first compound semiconductor layer is provided on the graphene oxide layer. The first compound semiconductor layer is selectively grown from the substrate exposed by the graphene oxide.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 4, 2014
    Assignee: LG Siltron Inc.
    Inventors: Sung-Jin An, Dong-Gun Lee, Seok-Han Kim
  • Publication number: 20140319685
    Abstract: Hybrid metal-graphene interconnect structures and methods of forming the same. The structure may include a first end metal, a second end metal, a conductive line including one or more graphene portions extending from the first end metal to the second end metal, and one or more line barrier layers partially surrounding each of the one or more graphene portions. The conductive line may further include one or more intermediate metals separating each of the one or more graphene portions. Methods of forming said interconnect structures may include forming a plurality of metals including a first end metal and a second end metal in a dielectric layer, forming one or more line trenches between each of the plurality of metals, forming a line barrier layer in each of the one or more line trenches, and filling the one or more line trenches with graphene.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Naftali E. Lustig, Andrew H. Simon
  • Publication number: 20140315023
    Abstract: The present invention relates to a segmented graphene nanoribbon, comprising at least two different graphene segments covalently linked to each other, each graphene segment having a monodisperse segment width, wherein the segment width of at least one of said graphene segments is 4 nm or less and to a method for preparing it by polymerizing at least one polycyclic aromatic monomer compound and/or at least one oligo phenylene aromatic hydrocarbon monomer compound to form at least one polymer and by at least partially cyclodehydrogenating the one or more polymer.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 23, 2014
    Applicants: BASF SE, EMPA MATERIALS SCIENCE AND TECHNOLOGY
    Inventors: Roman Fasel, Pascal Ruffieux, Klaus Muellen, Stephan Blankenburg, Jinming Cai, Xinliang Feng, Carlo Pignedoli, Daniele Passerone
  • Patent number: 8865346
    Abstract: A cathode electrode of a lithium ion battery includes a cathode current collector and a cathode material layer. The cathode material layer is located on a surface of the cathode current collector. The cathode material layer includes a cathode active material. The cathode active material includes sulfur grafted poly(pyridinopyridine). The sulfur grafted poly(pyridinopyridine) includes a poly(pyridinopyridine) matrix and sulfur dispersed in the poly(pyridinopyridine) matrix. The cathode current collector includes a polymer substrate and a graphene layer located on a surface of the polymer substrate adjacent to the cathode material layer. A lithium ion battery using the cathode electrode is also disclosed.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 21, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiang-Ming He, Li Wang, Jian-Jun Li, Jian Gao
  • Patent number: 8865577
    Abstract: A method for making epitaxial structure is provided. The method includes providing a substrate having an epitaxial growth surface, growing a buffer layer on the epitaxial growth surface; placing a graphene layer on the buffer layer; epitaxially growing an epitaxial layer on the buffer layer; and removing the substrate. The graphene layer includes a number of apertures to expose a part of the buffer layer. The epitaxial layer is grown from the exposed part of the buffer layer and through the apertures.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 21, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20140308522
    Abstract: The present invention relates to a nano-graphite plate structure with N graphene layers stacked together, where N is 30 to 300. The nanometer nano-graphite structure has a tap density of 0.1 g/cm3 to 0.01 cm3, a thickness of 10 nm to 100 nm, and a lateral dimension of 1 ?m to 100 ?m. The ratio of the lateral dimension to the thickness is between 10 and 10,000. The oxygen content is less than 3 wt %, and the carbon content is larger than 95 wt %. The nano-graphite plate structure has both the excellent features of the graphene and the original advantages of easy processability of the natural graphite so as to be broadly used in various application fields.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Enerage Inc.
    Inventors: Mark Y. WU, Cheng-Yu HSIEH, Geng-Wei LIN, Ping-Yun YEH
  • Publication number: 20140306335
    Abstract: An electronic device including a printed circuit board (PCB) including a thermal conduction plane and at least one heat generating component mounted on the PCB and connected to the thermal conduction plane. A frame is connected to the PCB so as to define a first thermally conductive path between at least a portion of the frame and the at least one heat generating component. The electronic device further includes at least one thermally conductive layer between the frame and the at least one heat generating component so as to define a second thermally conductive path between at least a portion of the frame and the at least one heat generating component.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 16, 2014
    Applicant: Western Digital Technologies, Inc.
    Inventors: RICHARD A. MATAYA, TEGAN CAMPBELL
  • Patent number: 8859402
    Abstract: A method for making epitaxial structure is provided. The method includes providing a substrate having an epitaxial growth surface, patterning the epitaxial growth surface; placing a graphene layer on the patterned epitaxial growth surface, and epitaxially growing an epitaxial layer on the epitaxial growth surface. The graphene layer includes a number of apertures to expose a part of the patterned epitaxial growth surface. The epitaxial layer is grown from the exposed part of the patterned epitaxial growth surface and through the aperture.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 14, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20140302296
    Abstract: Inks for the formation of transparent conductive films are described that comprise an aqueous or alcohol based solvent, carbon nanotubes as well as suitable dopants. Suitable dopants generally comprise halogenated ionic dopants. In some embodiment, the inks comprise sulfonated dispersants that can effectively provide additional doping to improve electrical conductivity as well as stabilize the inks with respect to settling and/or improve the fluid properties of the inks for certain processing approaches. The inks can be processed into films with desirable levels of electrical conductivity and optical transparency.
    Type: Application
    Filed: September 24, 2012
    Publication date: October 9, 2014
    Applicant: C3NANO INC.
    Inventors: Melburne C. LeMieux, Ajay Virkar, Yung-Yu Huang
  • Patent number: 8853061
    Abstract: A method for forming a graphite-based device on a substrate having a plurality of zones is provided where the substrate is carbon doped in zones. Each such zone comprises a plurality of dopant profiles. One or more graphene stacks are generated in the doped zones. A graphene stack so generated comprises a non-planar graphene layer characterized by a bending angle, curvature, characteristic dimension, graphene orientation, graphene type, or combinations thereof. A method for forming a graphite-based device on a substrate is provided, the substrate comprising a graphene foundation material and a plurality of zones. The substrate is patterned to form features in the zones. One feature comprises a non-planar surface or at least two adjacent surfaces that are not coplanar. One or more graphene stacks are concurrently generated, at least one of which comprises a non-planar graphene layer overlaying the non-planar surface or the at least two adjacent surfaces.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: October 7, 2014
    Assignee: Solan, LLC
    Inventor: Mark Alan Davis
  • Patent number: 8853347
    Abstract: An organic semiconductor compound may include a structural unit represented by the aforementioned Chemical Formula 1 and an organic thin film and an electronic device may include the organic semiconductor compound.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong il Park, Bang Lin Lee, Jong Won Chung
  • Patent number: 8840803
    Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 23, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner
  • Patent number: 8840954
    Abstract: Provided is a transparent carbon nanotube (CNT) electrode comprising a net-like (i.e., net-shaped) CNT thin film and a method for preparing the same. More specifically, a transparent CNT electrode comprises a transparent substrate and a net-shaped CNT thin film formed on the transparent substrate, and a method for preparing a transparent CNT electrode, comprising forming a thin film using particulate materials and CNTs, and then removing the particulate materials to form a net-shaped CNT thin film. The transparent CNT electrode exhibits excellent electrical conductivity while maintaining high light transmittance. Therefore, the transparent CNT electrode can be widely used to fabricate a variety of electronic devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays, and touch screen panels, that have need of electrodes possessing both light transmission properties and conductive properties.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Kee Yi, Seon Mi Yoon, Jae Young Choi, O Ok Park, Mun Ho Kim, Hong Kyoon Choi
  • Patent number: 8841650
    Abstract: An electronic structure modulation transistor having two gates separated from a channel by corresponding dielectric layers, wherein the channel is formed of a material having an electronic structure that is modified by an electric field across the channel.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 23, 2014
    Assignee: Cornell University
    Inventor: Hassan Raza
  • Publication number: 20140266374
    Abstract: Disclosed is a fractional order capacitor comprising a dielectric nanocomposite layer of thickness t, comprising a first side, and a second side opposite the first side, a first electrode layer coupled to the first side of the dielectric nanocomposite layer, a second electrode layer coupled to the second side of the dielectric nanocomposite layer, a complex impedance phase angle dependent on at least a material weight percentage of filler material in a dielectric nanocomposite layer.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Mahmoud N. Almadhoun, Amro Elshurafa, Khaled Salama, Husam Alshareef
  • Publication number: 20140273361
    Abstract: Methods of fabricating patterned substrates, including patterned graphene substrates, using etch masks formed from self-assembled block copolymer films are provided. Some embodiments of the methods are based on block copolymer (BCP) lithography in combination with graphoepitaxy. Some embodiments of the methods are based on BCP lithography techniques that utilize hybrid organic/inorganic etch masks derived from BCP templates. Also provided are field effect transistors incorporating graphene nanoribbon arrays as the conducting channel and methods for fabricating such transistors.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Michael S. Arnold, Padma Gopalan, Nathaniel S. Safron, Myungwoong Kim, Jonathan Woosun Choi
  • Patent number: 8835126
    Abstract: Tritiated planar carbon forms and their production are provided. Methods are provided for the stoichiometrically controlled labeling of planar carbon forms capitalizing on normal flaws of carboxylic acids ubiquitously present in commercial preparations of these planar carbon forms. Alternative methods include generation of a metallated intermediate whereby a metal is substituted for hydrogen on the carbon backbone of a planar carbon form. The metalized intermediate is then reacted with a tritium donor to covalently label the planar carbon form. The tritiated planar carbon forms produced are useful, for example, for determination of a biological property or environmental fate of planar carbon forms.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 16, 2014
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventor: Crist N. Filer
  • Patent number: 8835686
    Abstract: A method, an apparatus and an article of manufacture for attracting charged nanoparticles using a graphene nanomesh. The method includes creating a graphene nanomesh by generating multiple holes in graphene, wherein each of the multiple holes is of a size appropriate to a targeted charged nanoparticle, selectively passivating the multiple holes of the graphene nanomesh to form a charged ring in the graphene nanomesh by treating the graphene nanomesh with chemistry yielding a trap with an opposite charge to that of the targeted nanoparticle, and electrostatically attracting the target charged nanoparticle to the oppositely charged ring to facilitate docking of the charged nanoparticle to the graphene nanomesh.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna
  • Patent number: 8834967
    Abstract: A method of reducing the diameter of pores formed in a graphene sheet includes forming at least one pore having a first diameter in the graphene sheet such that the at least one pore is surrounded by passivated edges of the graphene sheet. The method further includes chemically reacting the passivated edges with a chemical compound. The method further includes forming a molecular brush at the passivated edges in response to the chemical reaction to define a second diameter that is less than the initial diameter of the at least one pore.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ahmed A. Maarouf, Glenn J. Martyna
  • Patent number: 8837110
    Abstract: An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 16, 2014
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Geoffrey F. Deane, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Lowell L. Wood, Jr., Roderick A. Hyde
  • Patent number: 8835899
    Abstract: A graphene electronic device and a method of fabricating the graphene electronic device are provided. The graphene electronic device may include a graphene channel layer formed on a hydrophobic polymer layer, and a passivation layer formed on the graphene channel layer. The hydrophobic polymer layer may prevent or reduce adsorption of impurities to transferred graphene, and a passivation layer may also prevent or reduce adsorption of impurities to a heat-treated graphene channel layer.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-jun Yang, Sun-ae Seo, Sung-hoon Lee, Hyun-jong Chung, Jin-seong Heo
  • Publication number: 20140251434
    Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 11, 2014
    Applicants: Plextronics, Inc., Nano-C, Inc.
    Inventors: Darin W. LAIRD, Reza STEGAMAT, Henning RICHTER, Viktor VEJINS, Lawrence T. SCOTT, Thomas A. LADA, II
  • Patent number: 8830653
    Abstract: An apparatus having reduced phononic coupling between a graphene monolayer and a substrate is provided. The apparatus includes an aerogel substrate and a monolayer of graphene coupled to the aerogel substrate.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: September 9, 2014
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, Alistair K. Chan, Geoffrey F. Deane, Roderick A. Hyde, Nathan Kundtz, Nathan P. Myhrvold, David R. Smith, Lowell L. Wood, Jr.
  • Patent number: 8828211
    Abstract: The invention features the use of graphene, a one atom thick planar sheet of bonded carbon atoms, in the formation of artificial lipid membranes. The invention also features the use of these membranes to detect the properties of polymers (e.g., the sequence of a nucleic acid) and identify transmembrane protein-interacting compounds.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: September 9, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Slaven Garaj, Daniel Branton
  • Patent number: 8828276
    Abstract: According to one embodiment, metal nanoparticle dispersion includes organic solvent, and metal-containing particles dispersed in the organic solvent. The metal-containing particles include first metal nanoparticles and second metal nanoparticles. Each of the first metal nanoparticles has a high-molecular compound on at least part of a surface thereof. Each of the second metal nanoparticles has a low-molecular compound on at least part of a surface thereof. A total amount of the low-molecular compound on all of the second nanoparticles includes an amount of a primary amine as the low-molecular compound.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 9, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Tec Kabushiki Kaisha
    Inventor: Yasuyuki Hotta