Energy Storage/generating Using Nanostructure (e.g., Fuel Cell, Battery, Etc.) Patents (Class 977/948)
  • Publication number: 20110305975
    Abstract: A catalytic particulate solution is provided for a micro fuel cell. The solution includes a suspension of catalytic nanoparticles in a solvent and a polymerizable oligomer. Also presented is a method for depositing such a catalytic particulate solution that includes a step of depositing the particulate solution onto a substrate, during which the oligomer polymerization is primed, for example, using UV lighting.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 15, 2011
    Applicants: Commissariat A L'Engergie Atomique et Aux Energies Alternatives, STMICROELECTRONICS (TOURS) SAS
    Inventors: Antoine Latour, Sylvain Nizou
  • Publication number: 20110304964
    Abstract: Electrical devices having a plurality of stacked electrode layers are described. At least one of the electrode layers contains continuous fibers that are infused with carbon nanotubes. The continuous fibers can be disposed upon an electrically conductive base plate. The electrical devices can further contain an electrolyte contacting each electrode layer and a layer of separator material disposed between each electrode layer, in which case the electrical devices can form a supercapacitor. Such supercapacitors can have a capacitance of at least about 1 Farad/gram of continuous fibers. The capacitance can be increased by coating at least a portion of the infused carbon nanotubes with a material such as, for example, a conducting polymer, a main group metal compound, and/or a transition metal compound. Methods for producing the electrical devices are also described.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 15, 2011
    Applicant: Applied NanoStructured Solutions, LLC
    Inventors: Corey Adam FLEISCHER, Lawrence P. HETZEL, Tushar K. SHAH, Mandel Durwood FLOYD, Gregory F. PENSERO, William Patrick BURGESS, Joseph J. SEDLAK, Han Liu
  • Publication number: 20110304953
    Abstract: An asymmetric electrochemical capacitor including an anode, a cathode, and an electrolyte between the anode and the cathode. The anode includes manganese dioxide (MnO2) nanowires and single-walled carbon nanotubes. The cathode includes indium oxide (In2O3) nanowires and single-walled carbon nanotubes. The asymmetrical electrochemical capacitor can be fabricated by forming a first film including manganese dioxide nanowires and single-walled carbon nanotubes, forming a second film including indium oxide nanowires and single-walled carbon nanotubes, and providing an electrolyte between the first film and the second film such that the electrolyte is in contact with the first film and the second film.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 15, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Po-Chiang Chen, Jing Xu, Haitian Chen
  • Publication number: 20110304955
    Abstract: An electrochemical capacitor includes a first electrode including a first flexible substrate, a second electrode including a second flexible substrate, and an electrolyte. The first electrode includes a first layer of single-walled carbon nanotubes inkjetted on the first flexible substrate and a layer of first nanowires disposed on the first layer of single-walled carbon nanotubes. The second electrode includes a second layer of single-walled carbon nanotubes inkjetted on the second flexible substrate and a layer of second nanowires disposed on the second layer of single-walled carbon nanotubes. The electrolyte is sandwiched between the layer of first nanowires and the layer of second nanowires to form the electrochemical capacitor. A flexible energy storage device includes a first flexible substrate, a second flexible substrate, and one or more electrochemical capacitors formed between the first flexible substrate and the second flexible substrate. The flexible energy storage device can be wearable.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 15, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Po-Chiang Chen, Jing Qiu, Haitian Chen
  • Publication number: 20110303269
    Abstract: A method of fabricating a transparent electrode for use in a quantum dot sensitized solar cell, and a quantum dot sensitized solar cell fabricated according to the method are provided.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 15, 2011
    Applicant: Korea Institute of Science & Technology
    Inventors: Jaehoon KIM, Byoung Koun MIN, Jae-Duck KIM, Jong Min PARK, Wonho JANG
  • Publication number: 20110297218
    Abstract: A photovoltaic device and related methods. The device has a structured material positioned between an electron collecting electrode and a hole collecting electrode. An electron transporting/hole blocking material is positioned between the electron collecting electrode and the structured material. In a specific embodiment, negatively charged carriers generated by optical absorption by the structured material are preferentially separated into the electron transporting/hole blocking material. In a specific embodiment, the structured material has an optical absorption coefficient of at least 103 cm?1 for light comprised of wavelengths within the range of about 400 nm to about 700 nm.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Publication number: 20110297202
    Abstract: A thermoelectric material including: a nanostructure; a discontinuous area disposed in the nanostructure, and an uneven portion disposed on the nano structure.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 8, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-kyung LEE, Byoung-lyong CHOI, Jun-ho LEE, Dong-mok WHANG, Jong-woon LEE
  • Publication number: 20110297212
    Abstract: Disclosed is a laminated film having: (a) a substrate; and (b) a bonding layer of ethylene polymer on one major surface of the substrate wherein the bonding layer is placed directly on the substrate or there is a (c) primer layer between the substrate and bonding layer. Also disclosed is a solar module made of such a laminated polymer film.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 8, 2011
    Applicant: E.I Du Pont De Nemours and Company
    Inventors: Qiuju Wu, Ruofei Zhao, Shijie Ren, Bo Xu
  • Publication number: 20110290311
    Abstract: The present invention provides a solar cell from which an electric current can be taken out by transferring carriers while obtaining phonon bottleneck effects of quantum dots. The invention is a solar cell comprising: a first material layer comprising a wetting layer and quantum dots formed in the wetting layer; a second material layer where the first material layer is formed on the surface; a negative electrode; and a positive electrode, the negative electrode or the positive electrode being connected with the wetting layer, wherein when the negative electrode and the wetting layer are connected, these are connected so that electrons existing in the wetting layer can travel to the negative electrode, and when the positive electrode and the wetting layer are connected, these are connected so that holes existing in the wetting layer can travel to the positive electrode.
    Type: Application
    Filed: February 9, 2009
    Publication date: December 1, 2011
    Inventor: Yoshiki Fukada
  • Publication number: 20110290310
    Abstract: A solar cell capable of restricting carrier loss and yields higher energy conversion efficiency than was conventionally possible and a method of producing a solar cell enabling formation of a light absorbing layer containing quantum dots through a low-temperature process using a coating or printing method requiring no vacuum equipment or complicated apparatuses. The solar cell includes a light absorbing layer containing quantum dots in a matrix layer, and the light absorbing layer is connected to an N-type semiconductor layer on one side and to a P-type semiconductor layer on the other side. In the light absorbing layer, the quantum dots are made of nanocrystalline semiconductor and arranged 3-dimensionally uniformly enough and spaced regularly so that a plurality of wave functions lie on one another between adjacent quantum dots to form intermediate bands. The matrix layer is formed of amorphous IGZO.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Teruhiko KURAMACHI, Makoto Kikuchi, Takeshi Hama, Atsushi Tanaka, Youichi Hosoya
  • Publication number: 20110294044
    Abstract: Novel materials comprising a solid support, linker arms and metal-organic complexes, and their use for the electrocatalytic production and oxidation of H2. Such materials can be used for the production of electrodes in the field of electronics, and notably electrodes for fuel cells, electrolysers and photoelectrocatalytical (PEC) devices.
    Type: Application
    Filed: October 20, 2009
    Publication date: December 1, 2011
    Inventors: Vincent Artero, Marc Fontecave, Serge Palacin, Alan Le Goff, Bruno Jousselme
  • Publication number: 20110294013
    Abstract: In various embodiments, exfoliated carbon nanotubes are described in the present disclosure. The carbon nanotubes maintain their exfoliated state, even when not dispersed in a medium such as a polymer or a liquid solution. Methods for making the exfoliated carbon nanotubes include suspending carbon nanotubes in a solution containing a nanocrystalline material, precipitating exfoliated carbon nanotubes from the solution and isolating the exfoliated carbon nanotubes. Nanocrystalline materials may include nanorods, hydroxyapatite and various hydroxyapatite derivatives. In some embodiments, methods for making exfoliated carbon nanotubes include preparing a solution of carbon nanotubes in an acid and filtering the solution through a filter to collect exfoliated carbon nanotubes on the filter. In some embodiments, a concentration of carbon nanotubes in the acid is below the percolation threshold.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 1, 2011
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8067259
    Abstract: Embodiments of the invention provide methods of forming photovoltaic or thermoelectric materials, including photovoltaic or thermoelectric films. In one embodiment, the invention provides a method of forming a photovoltaic material, the method comprising: depositing an inorganic capped nanoparticle solution onto a substrate; and heating the substrate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: November 29, 2011
    Assignee: Evident Technologies
    Inventors: Daniel Landry, Susanthri Perera
  • Patent number: 8067758
    Abstract: The present (or current) nuclear shielding is bulky and difficult to handle due to the reduced stopping power of the neutral radiations (X, gamma, n) in materials. It is proven that these radiations are reflecting at grazing incidence angles on special substrates called super-mirrors that contain nano-layers of various materials. The usage of nano-structures in an ordered manner or of nano-tubes may create inside the nano-structure the super-mirror reflection conditions and makes these nano-structures act like wave-guide for this neutral radiation driving it and turning at angles greater than 90 degrees requiring a total thickness a few microns only. The usage of ferro or piezo electric nano-structures generates a “shield” structure that has the wave-guides inside with the path dependent on a control voltage.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 29, 2011
    Inventors: Liviu Popa-Simil, Claudiu Iulian Muntele
  • Publication number: 20110284068
    Abstract: The disclosed subject matter provides a method and structure for obtaining ultra-low surface recombination velocities from highly efficient surface passivation in crystalline silicon substrate-based solar cells by utilizing a bi-layer passivation scheme which also works as an efficient ARC. The bi-layer passivation consists of a first thin layer of wet chemical oxide or a thin hydrogenated amorphous silicon layer. A second layer of amorphous hydrogenated silicon nitride film is deposited on top of the wet chemical oxide or amorphous silicon film. This deposition is then followed by annealing to further enhance the surface passivation.
    Type: Application
    Filed: April 23, 2011
    Publication date: November 24, 2011
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Karl-Josef Kramer, Anand Deshpande, Rafael Ricolcol, Sean M. Seutter
  • Publication number: 20110287241
    Abstract: Graphene tapes made by forming a film comprising graphene sheets and at least one polymeric binder and heating the film to decompose the polymer. The tapes may be used as electrodes.
    Type: Application
    Filed: November 18, 2010
    Publication date: November 24, 2011
    Applicants: VORBECK MATERIALS CORP., THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Sibel Korkut, David L. Milius, Joseph D. Roy-Mayhew, Daniel M. Dabbs, Ilhan A. Aksay
  • Publication number: 20110287318
    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, Constantin I. Stefan, Song Han
  • Publication number: 20110284063
    Abstract: A dye-sensitized solar cell (DSSC) is provided. The DSSC anode includes a first electron-collecting layer deposited on a substrate and a first electron-transporting layer deposited on the first electron-collecting layer, the first electron-transporting layer containing light-absorbing dye. The DSSC anode also includes a second nanoporous electron-collecting layer deposited on the first electron-transporting layer; and a second electron-transporting layer deposited on the second porous electron-collecting layer, the second electron-transporting layer containing light-absorbing dye. Methods of fabricating the DSSC anode are also provided.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Inventors: Miao Yu, Wei Zhang, John L. Falconer, Richard D. Noble
  • Publication number: 20110281176
    Abstract: An electrode material is created by forming a thin coating or small deposits of metal oxide as an intercalation host on a carbon powder. The carbon powder performs a role in the synthesis of the oxide coating, in providing a three-dimensional, electronically conductive substrate supporting the metal oxide, and as an energy storage contribution material through ion adsorption or intercalation. The metal oxide includes one or more metal oxides. The electrode material, a process for producing said electrode material, an electrochemical capacitor and an electrochemical secondary (rechargeable) battery using said electrode material is disclosed.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 17, 2011
    Inventor: Fraser W. SEYMOUR
  • Publication number: 20110277829
    Abstract: A solar cell with spaced apart groupings of self-assembled quantum dot layers interposed with barrier layers. Such groupings allow improved control over the growth front quality of the solar cell, the crystalline structure of the solar cell, and on the performance metrics of the solar cell.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 17, 2011
    Applicant: CYRIUM TECHNOLOGIES INCORPORATED
    Inventors: Simon FAFARD, Bruno J. RIEL
  • Publication number: 20110281174
    Abstract: An electrode material is created by forming a thin conformal coating of metal oxide on a highly porous monolithic carbon structure. The highly porous carbon structure performs a role in the synthesis of the oxide coating and in providing a three-dimensional, electronically conductive substrate supporting the thin coating of metal oxide. The metal oxide includes one or more metal oxides. The electrode material, a process for producing said electrode material, an electrochemical capacitor and an electrochemical secondary (rechargeable) battery using said electrode material is disclosed.
    Type: Application
    Filed: July 25, 2011
    Publication date: November 17, 2011
    Inventor: Fraser W. SEYMOUR
  • Publication number: 20110277827
    Abstract: Systems and methods for fabrication of nanostructured solar cells having arrays of nanostructures are described, including nanostructured solar cells having a repeating pattern of pyramid nanostructures, providing for low cost thin-film solar cells with improved PCE.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 17, 2011
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, MOLECULAR IMPRINTS, INC.
    Inventors: Shuqiang Yang, Michael N. Miller, Mohamed M. Hilali, Fen Wan, Gerard M. Schmid, Liang Wang, Sidlgata V. Sreenivasan, Frank Y. Xu
  • Publication number: 20110281205
    Abstract: Provided are a CNT-mesoporous silica composite, a CNT-mesoporous carbon composite, a supported catalyst using the CNT-mesoporous carbon composite as a support, and a fuel cell using the supported catalyst as the anode, cathode, or both anode and cathode. The CNT-mesoporous carbon composite is prepared using the CNT-mesoporous silica composite. The CNT-mesoporous carbon composite has a high electrical conductivity due to the CNTs contained therein, and thus, when the CNT-mesoporous carbon composite is used in an electrode of a fuel cell, the fuel cell has a remarkably improved performance relative to the conventional catalyst support which does not contain CNTs.
    Type: Application
    Filed: November 11, 2010
    Publication date: November 17, 2011
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Chan-ho PAK, Hyuk CHANG, Dae-jong YOO, Ji-man KIM
  • Publication number: 20110277838
    Abstract: The present invention provides a photovoltaic device. In an exemplary embodiment, the photovoltaic device includes a substrate having a thin film disposed thereon, where the thin film includes alloyed ternary nanocrystals. The present invention provides also provides a method of making ternary compound nanocrystals. In an exemplary embodiment, the method includes (1) degassing a solution of PbO, oleic acid and 1-octadecene (ODE) in a container, (2) heating the solution in the container, (3) injecting a first mixture of trioctylphosphine (TOP):Se solution, TMS2S, diphenylphosphine (DPP) and ODE into the heated solution, thereby forming a second mixture in the container, (4) adding ODE to the second mixture in the container, (5) growing the nanocrystals in the second mixture in a reaction in the container, and (6)_quenching the reaction, thereby resulting in precipitated nanocrystals in the container. In a further embodiment, the present invention further includes purifying the precipitated nanocrystals.
    Type: Application
    Filed: March 11, 2011
    Publication date: November 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Wanli Ma, A. Paul Alivisatos
  • Publication number: 20110274989
    Abstract: Methods and devices for catalyzing reactions, e.g., in a metal-air electrochemical cell, are disclosed. In some instances, a porous positive electrode of the metal-air electrochemical cell includes a metal to catalyze a reaction at the electrode (e.g., oxidation of one or more metal-oxide species). The metal can be disposed as nanoparticles, and/or be combined with a second metal. Other aspects are directed to devices and methods that can generally promote a chemical reaction (e.g., an oxidation/reduction reaction) such as the formation of platinum containing nanoparticles that can be used to catalyze electrochemical reactions.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 10, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yi-Chun Lu, Hubert A. Gasteiger, Yang Shao-Horn
  • Publication number: 20110272014
    Abstract: A photovoltaic structure of a photovoltaic cell and a method of fabricating a photovoltaic structure, employ a nanowire having a base connected to a stub and an electrical isolation layer surrounding the stub. The stub is a constituent of a substrate surface. The nanowire extends away from the substrate surface and is wider than the stub. The nanowire base overlies a part of the isolation layer that is adjacent to the stub. A semiconductor junction comprises the nanowire. The method includes forming the stub; growing the nanowire from the stub; and conformally coating the nanowire. A nanoparticle is applied to the substrate surface. The isolation layer is created on and embedded in the substrate surface using the nanoparticle as a mask. A portion of the substrate surface underlying the nanoparticle forms the stub. The nanoparticle catalyzes nanowire growth on the stub. The stub is narrower than the nanoparticle.
    Type: Application
    Filed: December 19, 2008
    Publication date: November 10, 2011
    Inventors: Sagi V. Mathai, Nobuhiko P. Kobayashi, Shih-Yuan Wang
  • Publication number: 20110268647
    Abstract: Two-dimensional nanomaterials are produced in a process comprising the steps of (a) providing (a1) a mixture comprising graphene oxide particles, water and at least one cationic surfactant and/or nonionic surfactant or (a2) a mixture comprising graphene particles, at least one solvent useful for solution exfoliation of graphite and at least one cationic surfactant and/or nonionic surfactant, (b) adding at least one sol precursor compound to the mixture from step (a), (c) reacting the mixture from step (b) in a sol/gel process to form gel from the at least one sol precursor compound on the graphene oxide particles or, respectively, the graphene particles, (d) removing the at least one surfactant, and (e) optionally heating the gel-coated graphene oxide particles for at least 1 min to at least 500° C. under inert gas atmosphere to reduce the graphene oxide to graphene.
    Type: Application
    Filed: April 21, 2011
    Publication date: November 3, 2011
    Applicants: Max-Planck-Gesellschaft zur Foerd. der Wisse. e.V., BASF SE
    Inventors: Sorin IVANOVICI, Shubin YANG, Xinliang FENG, Klaus MÜLLEN
  • Patent number: 8048567
    Abstract: There is provided a metal oxide having a continuous nano-fiber network structure as a negative active material for a secondary battery. A method for fabricating such negative active material for a secondary battery comprises spinning a mixed solution of a metal oxide precursor and a polymer onto a collector to form composite fibers mixed with the metal oxide precursor and the polymer, thermally compressing or thermally pressurizing the composite fibers, and thermally treating the thermally compressed or thermally pressurized composite fibers to remove the polymer from the composite fiber.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 1, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Il-Doo Kim, Jae-Min Hong, Seong-Mu Jo
  • Patent number: 8048547
    Abstract: A fuel cell comprising an anode chamber, a cathode chamber, and a nanoporous membrane between the anode chamber and the cathode chamber, wherein the nanoporous membrane sequesters and isolates a microbe in the anode chamber. The nanoporous membrane allows nutrients to flow actively or passively from the cathode chamber to the anode chamber and can be modified by a thin film composite (TFC) to create a TFC nanofiltration membrane. The nanoporous membrane can have a pore size from about 100 nm to about 1000 nm. A method of making a fuel cell comprising configuring a nanoporous membrane between an anode chamber and a cathode chamber wherein the nanoporous membrane sequesters and isolates a microbe in the anode chamber and can be used to protect the cathode chamber.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 1, 2011
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Bradley R. Ringeisen, Justin C. Biffinger
  • Publication number: 20110259082
    Abstract: The invention refers to a method and capacitive sensor for counting aerosol nanoparticles in an electric way. Aerosol particles, onto which a fluid was applied in an earlier process by known methods, change the capacitance of the dielectric of the capacitor when entering its field, which causes an electric signal. The method provides for detection of aerosol particles in a wide scope of their presence in the air and is not specific for any shape or chemical composition of nanoparticles.
    Type: Application
    Filed: October 8, 2009
    Publication date: October 27, 2011
    Inventors: Maja Remskar, Ivan Iskra, Marko Virsek, Mark Plesko, Damjan Golob
  • Publication number: 20110253205
    Abstract: The present disclosure is directed to an optimized structure for an exciton-based photovoltaic cell, in which the bulk heterojunction between the electron donor (typically an organic polymeric semiconductor) and an electron acceptor (e.g., silicon or titanium or titania) minimizes the necessary exciton travel distance to the heterojunction in three dimensions. The configuration is arrayed in three dimensions, such that one member of the heterojunction pair, such as the electron acceptor is in the form of a number of nanoscale channels, extending to an electrode. The channels extend through a photovoltaic matrix material in a predetermined three-dimensional configuration.
    Type: Application
    Filed: September 25, 2009
    Publication date: October 20, 2011
    Inventors: Jeffrey C. Grossman, Alexander K. Zettl
  • Publication number: 20110253217
    Abstract: Disclosed are methods of using magnetic or electric fields to align magnetically responsive nanoparticles in a polymeric matrix, which has not yet been completely solidified. The nanoparticles are preferably magnetically doped, then blended with photovoltaic polymer material to form devices. The methods provided are particularly useful for the formation of solar cell devices. The devices include nanostructured electron-conducting channels arranged approximately parallel to one another, where the channels comprise magnetically doped materials, as well as photovoltaic materials interspersed with the nanostructured electron-conducting channels. The method provides a way to control the morphology of blended photovoltaic devices, which will improve efficiencies. In addition, the new method provides a way to control the growth of novel, cheap, solar cells, which can in turn lead to enhanced performance.
    Type: Application
    Filed: September 28, 2009
    Publication date: October 20, 2011
    Inventors: Jeffrey C. Grossman, Alexander K. Zettl
  • Publication number: 20110253206
    Abstract: An organic solar battery (1) includes a photoelectric conversion layer that includes an electron donor layer (12) and an electron acceptor layer (14, 16, 17, 18) stacked on the electron donor layer, the electron acceptor layer including three or more electron acceptor materials, and at least one of the three or more electron acceptor materials being an organic material.
    Type: Application
    Filed: October 28, 2009
    Publication date: October 20, 2011
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Ryoji Maeda, Hideaki Nagashima, Masahide Matsuura
  • Publication number: 20110255214
    Abstract: The present invention relates generally to charge storage devices with at least one electrode having combined double layer supercapacitor, electrochemical supercapacitor and/or battery functionalities. In some embodiments, the electrode, may be composed of an ECS material, a highly-structured DLS material and a less-structured DLS material.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 20, 2011
    Inventors: George Gruner, Ian O'Connor
  • Publication number: 20110256451
    Abstract: As consistent with various embodiments, an electronic device includes a carbon nanotube film having a plurality of carbon nanotubes. In certain embodiments, a coating, such as an inorganic coating, is formed on a surface of carbon nanotube. The nanotube film supports the device and facilitates electrical conduction therein. The coated nanotube is amenable to implementation with devices such as thin film batteries, a battery separator, thin film solar cells and high-energy Lithium ion batteries.
    Type: Application
    Filed: December 21, 2010
    Publication date: October 20, 2011
    Inventors: Li-Feng Cui, Yi Cui, Liangbing Hu
  • Publication number: 20110256454
    Abstract: The present invention relates to a masterbatch in agglomerated solid form comprising: a) carbon nanofibers and/or nanotubes and/or carbon black, the content of which is between 15 wt % and 40 wt %, preferably between 20 wt % and 35 wt %, relative to the total weight of the masterbatch; b) at least one solvent; c) at least one polymer binder, which represents from 1 wt % to 40 wt %, preferably from 2 wt % to 30 wt % relative to the total weight of the masterbatch. The present invention also relates to a concentrated masterbatch, characterized in that it is obtained by eliminating all or part of the solvent from the masterbatch described previously. It also relates to a process for preparing said masterbatches and to the uses of the latter, especially in the manufacture of an electrode or of a composite material for an electrode.
    Type: Application
    Filed: March 21, 2011
    Publication date: October 20, 2011
    Applicant: Arkema France
    Inventors: Serge Nicolas, Alexander Korzhenko, Amelie Merceron, Mickael Havel, Yvan Lecomte
  • Patent number: 8039834
    Abstract: A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: October 18, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong L. Wang, Xudong Wang, Jinhui Song, Jun Zhou, Jr-Hau He
  • Publication number: 20110240106
    Abstract: Photovoltaic cells are fabricated in which the compositions of the light-absorbing layer and the electron-accepting layer are selected such that at least one side of the junction between these two layers is substantially depleted of charge carriers, i.e., both free electrons and free holes, in the absence of solar illumination. In further aspects of the invention, the light-absorbing layer is comprised of dual-shell passivated quantum dots, each having a quantum dot core with surface anions, an inner shell containing cations to passivate the core surface anions, and an outer shell to passivate the inner shell anions and anions on the core surface.
    Type: Application
    Filed: September 27, 2010
    Publication date: October 6, 2011
    Applicant: The Governing Council of the University of Toronto
    Inventors: Jiang Tang, Andras Pattantyus-Abraham, Illan Kramer, Aaron Barkhouse, Xihua Wang, Gerasimos Konstantatos, Ratan Debnath, Edward H. Sargent
  • Publication number: 20110242731
    Abstract: Electrical devices having electrodes containing carbon nanotubes infused to a substrate are described herein. The electrical devices contain at least a first electrode material containing a first plurality of carbon nanotubes infused to a first substrate and a second electrode material containing a second plurality of carbon nanotubes infused to a second substrate. The first electrode material and the second electrode material are wound in a spiral configuration about a central axis. The electrical devices can be supercapacitors, which also contain at least an electrolyte in contact with the first electrode material and the second electrode material, and a first separator material disposed between the first electrode material and the second electrode material. Methods and apparatuses for making the electrical devices are also disclosed herein.
    Type: Application
    Filed: March 2, 2011
    Publication date: October 6, 2011
    Applicant: Applied Nanostructured Solutions, LLC
    Inventors: Corey Adam FLEISCHER, Tushar K. SHAH, Lawrence P. HETZEL, Harry C. MALECKI
  • Publication number: 20110232756
    Abstract: A nanostructured optoelectronic device is provided which comprises a nanostructured material and a host material intermingled with the nanostructured material. The host material may have a higher index of refraction than the nanostructured material. The host material's index of refraction may be chosen to maximize the effective active area of the device. In an alternative embodiment, the host material comprises scattering centers or absorption/luminescence centers which absorb light and reemit the light at a different energy or both.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Marcie R. Black, Brent A. Buchine
  • Publication number: 20110229759
    Abstract: Ion storage electrodes formed by coating an underlying substrate with a nanofibrillar film of structured conjugate polymer nanofibers and methods of forming such electrodes are described herein. The electrical properties of the electrodes may be customized by modifying the structure of the polymer nanofibers, the thickness of the nanofiber film, and the pore size of the nanofiber films.
    Type: Application
    Filed: December 14, 2010
    Publication date: September 22, 2011
    Applicants: California Institute of Technology, Regents of the University of California
    Inventors: Rachid Yazami, Cedric M. Weiss, Richard Kaner, Julio D'Arcy
  • Publication number: 20110226330
    Abstract: The present invention provides novel strategies for mitigating the Staebler-Wronski Effect (SWE), that is, the light induced degradation in performance of photoconductivity in amorphous silicon. Materials according to the present invention include alloys or composites of amorphous silicon which affect the elasticity of the materials, amorphous silicon that has been grown on a flexed substrate, compression sandwiched comprising amorphous silicon, and amorphous silicon containing nanoscale features that allow stress to be relieved. The composites are formed with nanoparticles such as nanocrystals and nanotubes. Preferred are boron nitride nanotubes (BNNT) including those that have been surface modified.
    Type: Application
    Filed: August 11, 2009
    Publication date: September 22, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey C. Grossman, Alexander K. Zettl, Lucas Wagner
  • Publication number: 20110220171
    Abstract: A photovoltaic structure (100), a solar cell (100, 200) and a method (300) of fabricating a solar cell (100, 200) employ a hidden electrode (122, 222, 422) on a formed (320) mesa (120, 220, 420) and a bramble (130, 230, 430) of grown (330) nanowires. The mesa includes an insulator island (121, 221, 421) adjacent to a surface of the substrate (110, 210, 410) and the hidden electrode buried under a seed layer on the insulator island. One end of some of the nanowires (134, 234) is anchored to the seed layer (124, 224, 424) of the mesa. One end of others of the nanowires (132, 232) is anchored to a seed layer (114, 214, 414) formed (310) on the substrate adjacent to the mesa. The seed layers independently are an extrinsic semiconductor. A semiconductor junction includes the seed layers and some of the nanowires of the bramble.
    Type: Application
    Filed: January 30, 2009
    Publication date: September 15, 2011
    Inventors: Sagi V. Mathai, Shih-Yuan Wang
  • Publication number: 20110220191
    Abstract: Improved photovoltaic devices and methods are disclosed. In one embodiment, an exemplary photovoltaic device includes a semiconductor layer and a light-responsive layer (which can be made, for example, of a semiconductor material) which form a junction, such as a p-n junction. The light-responsive layer can include a plurality of carbon nanostructures, such as carbon nanotubes, located therein. In many cases, the carbon nanostructures can provide a conductive pathway within the light-responsive layer. In another embodiment, an exemplary photovoltaic device can include a light-responsive layer made of a semiconductor material in which is embedded a plurality of semiconducting carbon nanostructures (such as p-type single-wall carbon nanotubes). The interfaces between the semiconductor material and the semiconducting carbon nanostructures can form p-n junctions.
    Type: Application
    Filed: August 27, 2009
    Publication date: September 15, 2011
    Applicant: Vanguard Solar, Inc.
    Inventor: Dennis J. Flood
  • Patent number: 8017270
    Abstract: An electrochemical cell comprising a cathode, an anode and an electrolyte is provided, wherein: the cathode comprises mesoporous nickel having a periodic arrangement of substantially uniformly sized pores of cross-section of the order of 10?8 to 10?9 m; and the anode comprises a mesoporous material having a periodic arrangement of substantially uniformly sized pores of cross-section of the order of 10?8 to 10?9 m and selected from: carbon, cadmium, iron, a palladium/nickel alloy, an iron/titanium alloy, palladium or a mixed metal hydride.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: September 13, 2011
    Assignee: University of Southampton
    Inventors: Philip Nigel Bartlett, John Robert Owen, Phillip A Nelson
  • Patent number: 8017430
    Abstract: A battery can be fabricated from a substrate including silicon. This allows the battery to be produced as an integrated unit. The battery includes an anode formed from an array of spaced elongated structures, such as pillars, which include silicon and which can be fabricated on the substrate. The battery also includes a cathode which can include lithium.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 13, 2011
    Assignee: Nexeon Ltd.
    Inventor: Mino Green
  • Patent number: 8017282
    Abstract: Carbon nanotubes have an R value of at least 1.3, where R is defined as the ratio (ID/IG) of an integral value of D band intensity (ID) to an integral value of G band intensity (IG) in the Raman spectrum. Such carbon nanotubes can be used to form a support catalyst with good catalyst activity because the surface defects on the carbon nanotubes promote improved catalyst distribution in that the support catalyst includes catalyst particles having a small mean particle size and a slight variation in particle size. Such a support catalyst has particularly useful properties when used as a catalyst layer for a fuel cell electrode.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 13, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-young Choi, Chan-ho Pak, Seok-gwang Doo, Jeong-hee Lee, Young-hee Lee, Kay-hyeok An, Sung-jin Kim
  • Publication number: 20110214726
    Abstract: Photoconversion devices comprising a semiconductor region of nanostructured crystalline material are disclosed. The nanostructures of a crystalline material provide for the generation of multiple excitons per photon absorbed by the crystalline nanostructure in response to incident solar radiation. The photoconversion devices will also include one or more optical elements providing for the concentration of sunlight in the semiconductor region. Also disclosed are photoconversion methods, systems and apparatus featuring the combination solar concentration with nanostructures of a crystalline material providing for the generation of multiple excitons per photon absorbed by the crystalline nanostructure in response to incident solar radiation.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 8, 2011
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Arthur J. NOZIK, Mark HANNA
  • Publication number: 20110209759
    Abstract: High efficiency polymer photovoltaic cells have been fabricated using an optical spacer between the active layer and the electron-collecting electrode. Such cells exhibit approximately 50% enhancement in power conversion efficiency. The spacer layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: September 1, 2011
    Applicant: The Regents of the University of California
    Inventors: Kwanghee LEE, Alan J. Heeger
  • Publication number: 20110205688
    Abstract: Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 25, 2011
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Thomas William Clinton, Theodore I. Kamins, Vera Nicholaevna Lockett